
Fast Functional Simulation Using Branching Programs

Pranav Ashar
CCRL, NEC USA

Princeton, NJ 08540

Sharad Malik
Princeton University
Princeton, NJ 08544

Abstract
This paper addresses the problem of speeding up functional (delay-
independent) logic simulation for synchronous digital systems. The
problem needs very little new motivation – cycle-based functional
simulation is the largest consumer of computing cycles in system
design. Most existing simulators for this task can be classified as
being either event driven or levelized compiled-code, with the lev-
elized compiled code simulators generally being considered faster
for this task. An alternative technique, based on evaluation using
branching programs, was suggested about a decade ago in the con-
text of switch level functional simulation. However, this had very
limited application since it could not handle the large circuits en-
countered in practice. This paper resurrects the basic idea present
this technique and provides significant modifications that enable its
application to contemporary industrial strength circuits. We present
experimental results that demonstrate up to a 10X speedup over
levelized compiled code simulation for a large suite of benchmark
circuits as well as for industrial examples with over 40,000 gates.

1 Introduction
Design validation by simulation is a key step in the design cycle of
digital systems. It is also one of the most time consuming. Each time
a design is iterated, it must be re-simulated until a satisfactory con-
fidence level is achieved. Simulation is performed at various levels
of abstraction during the design process. We address the problem of
speeding up delay-independent (i.e. purely functional) cycle-based
logic simulation of synchronous digital circuits. At this level, the
simulator is required to determine the output sequence produced
by the circuit for a sequence of input vectors, independent of the
delays associated with the gates and wires. In effect, the simulator
determines the output vector for each input vector by evaluating the
Boolean equations associated with each gate in the circuit. The cir-
cuit is assumed to possess feedback through flip-flops. Therefore,
the circuit can be evaluated for the next input vector only after the
evaluation for the current input vector is complete. This type of
simulation where the input vectors must be simulated sequentially
in this manner is said to be cycle-based sequential simulation.

Two techniques have traditionally been applied for logic simula-
tion at this level:

� event-driven simulation, e.g. [16, 4]

� levelized compiled-code (LCC) simulation, e.g. [12, 9, 8, 17]

1.1 Evaluation Using Branching Programs
An alternative technique, presented by Cerny [7], relies on the
use of decision diagrams to derive branching programs for func-
tion evaluation. This work was originally done for switch-level
functional simulation but has an obvious application to logic level
simulation. A decision diagram for a Boolean function evaluates the
function by a sequence of decisions (typically two-way branches),
with each decision based on the value of one of the variables that
the function depends on. Decision diagrams were first introduced
by Akers [2] and they shot into prominence with the introduction
of the reduced ordered binary decision diagrams (ROBDDs or just
BDDs) by Bryant [5]. Figure 1 shows an example of a decision
diagram for the function x1x2+ x3.

0

0

0

1

1

1

01

x1

x2

x3

v1

v2

Figure 1: Example Decision Diagram for f = x1x2+ x3

if(x1) then goto v1;
else goto v2;

v1: if(x2) then return 1;
else goto v2;

v2: if(x3) then return 1;
else return 0;

Figure 2: Example Branching Program for f = x1x2 + x3

Several researchers have pointed out the straightforward iso-
morphism between a decision diagram and a branching program
(e.g. [11]). A branching program evaluates its function using a
sequence of multi-way branches, with each branch depending on
the value of one of the arguments of the function. The branching
program for the decision diagram example in Figure 1 is shown
in Figure 2. This is just a direct transformation from the decision
diagram and has not been optimized in any way.

Since a specialized program is generated for each circuit, this
method is a form of compiled-code simulation. The main advantage
of this method is that the complexity of simulating a vector is
proportional to the number of input arguments of the function, since
each one needs to be examined only once to determine the function
value. This seems like a big win, since the number of inputs is
typically very much less than the number of gates in the circuit,
which is the complexity of levelized compiled-code simulation.
However, in spite of this intuitive elegance, this method did not see
practical success due to the following factors:

� It was unclear how the approach could be extended from a
single output function to multiple output functions.

� The size of the decision diagrams grows very quickly,resulting
in programs that can either not be stored, or not be easily
compiled, or result in memory thrashing.

1.2 Proposed Approach

Our proposed approach resurrects the main ideas in using decision
diagrams/branching programs to evaluate Boolean functions and
provides significant modifications that enable it to overcome the
previous limitations. These can be summarized as follows:

1



� Instead of using a decision diagram for each single-output
function in the circuit, we use decision diagrams for charac-
teristic functions of multi-output functions [6].

� Instead of a single decision diagram for the entire circuit, we
use a set of decision diagrams. Between them, the character-
istic functions in this set compute all the outputs, i.e. the out-
puts are partitioned among the characteristic functions. While
Cerny did mention the use of a set of decision diagrams, no
algorithm for this was provided, nor any application shown for
large circuits. The key feature of our partitioning technique is
that it is done dynamically based on the size of the decision
diagrams. Thus, it is guaranteed never to result in memory
blow up. As soon the memory requirements reach a threshold,
a new characteristic function is created.

As a consequence of this partitioning, this method encompasses
both levelized compiled-code, as well as branching program based
evaluation. It reduces to the former when the each partition corre-
sponds to a single gate, and to the latter when the there is a single
partition that contains the entire circuit. Intuitively we feel that this
method finds the right partitioning along this spectrum for a given
circuit. Practically, the results demonstrate a 10X speed up over
levelized compiled-code simulation for many circuits from a large
suite of benchmarks.

2 Simulation Using BDD-Based Char-
acteristic Functions

The reader is referred to [5] for an introduction to the Binary Deci-
sion Diagram (BDD) data structure.

2.1 Single Output Circuits

Consider first the problem of simulating a single-output circuit.
The support of a function is defined as the set of input variables
that the function depends on. Let the number of input variables in
its support be #I, and let the number of gates be #G. Further, let us
assume that each gate implements a basic Boolean operation such
as NOT, AND or OR. If the BDD for the circuit is available, the
output can be determined by tracing the unique path corresponding
to the input vector from the root of the BDD to a leaf. The value of
the output is the 0 or 1 value associated with the leaf reached. At
most as many vertices of the BDD are encountered along the path
as #I.

Compared to conventional simulation techniques in which the
Boolean equations associated with gates are evaluated at run time
(total evaluation time is therefore proportional to #G), the decision
diagram approach is at least asymptotically much faster since #I<<
#G in typical circuit circuits. We recognize the fact that asymptotic
complexity may not always be the best measure of the practical
utility of an algorithm, the constants involved in a particular imple-
mentation can strongly influence the practical utility. However, the
asymptotic complexity does serve as a useful first-level complexity
measure.

The downside is that the BDD representation of a circuit is usually
larger than a representation consisting of arbitrary gates. Also, it
does not permit the same kind of pipeline and memory hierarchy
utilization as LCC simulation. The ideal situation would of course
be to store the truth table for the circuit and read off the output in
constant time for the applied input vector. Storing the truth table is
obviously infeasible for a circuit with more than a handful of inputs.
A BDD representation is usually much more compact than a truth
table. In a sense, the use of decision diagrams for evaluating the
output represents a middle ground between evaluating the gates at
run time and storing the truth table for the circuit - they are likely to
be faster to evaluate than LCC simulation but at the cost of greater
memory requirement, and they are much more compact than a truth
table but require some computation at run time.

2.2 Multiple-Output Circuits
It is unlikely that any circuit encountered in practice will have a
single output. We now consider the general case, where more than
one output is present. Let the number of outputs in the circuit be
#O. In the naive approach we can evaluate each output separately
using its decision diagram as described in Section 2.1. The total
running time in the worst case (when all the outputs depend on all
the inputs) is proportional to #I � #O, since #I evaluations may be
needed for each output. This clearly does not compare favorably
with conventional simulation techniques since #I� #O is typically
much larger than the number of gates (#G).

We would like to avoid the product of #I and #O in the asymptotic
complexity if possible. An almost obvious solution here is to try
and simultaneously evaluate the multiple outputs in the decision di-
agram. That way, only #I evaluations will be needed to accomplish
this. (A further #O operations may be needed to read the indi-
vidual outputs from the result of the multiple-output evaluation.)
This is accomplished by using BDD-based characteristic function
representation of the circuit to determine the values of the multiple
outputs for the applied input vector. Characteristic functions were
first introduced by Cerny [6] and have since then seen much use in
the synthesis and verification of digital systems.

Definition 2.1 Let E be a set and A � E. The characteristic
function ofA is the function�A: E ! f0; 1g definedby�A(x) = 1
if x 2 A, �A(x) = 0 otherwise[15].

Thus, the characteristic function is a Boolean function represen-
tation of a subset of some universal set. The particular universal set
of interest to us is the set of all possible 2#I+#O input-output com-
binations for a given circuit. The subset of interest is the set of 2#I

valid combinations. A combination is said to be valid if the output
vector in the combination is the output produced by the circuit when
the input vector in the combination is applied to it. In essence, the
characteristic function captures the complete functionality of the
multi-output circuit.

How do we use the characteristic function to evaluate the multiple
outputs in run time much smaller than #I � #O? The characteristic
function of a multiple-output circuit can be represented by a BDD
with #I + #O variables. Figure 3 shows an example of the BDD for
the characteristic function of a 1 bit full adder. a and b are the data
inputs, c is the carry in, S is the sum (a� b� c) and C is the carry
out (ab + ac + bc). Each path to a 1 leaf in this BDD corresponds
to a single valid input-output combination.

That is not enough for multi-output evaluation since the output
vector is not known a priori and we need to determine it. One
solution, albeit not a very good one, is to impose a variable ordering
on the BDD which requires that all the output variables appear only
after all the input variables have appeared. Since each input vector
produces a unique output vector, once all the input values have been
fixed, there will be a unique path from that point to a 1 leaf through
the vertices corresponding to the output variables. Therefore, to
determine the output vector one must first trace the sub-path in the
BDD corresponding to the input values; from that point, one just
needs to trace the unique path to the 1-leaf. Along the way, one
reads off the values taken by the output variables. These values are
the outputs produced by the circuit. For example, in Figure 3, for
the input vector < a = 1; b = 0; c = 1 >, corresponding circuit
outputs are< S = 0;C = 1 >. The evaluation time is proportional
to the numberof vertices encounteredon the traced path. Since there
are #I + #O variables in the characteristic function, the evaluation
time is bounded by #I + #O. In general, #I + #O can be expected
to be much smaller than #G in the typical circuit. Therefore, the
use of the BDD based characteristic function representation allows
us to simulate circuits much faster than conventional simulation. If
we just look at the asymptotic complexity, this solution looks pretty
good. However, this is still not good enough.

2.2.1 Variable Ordering

It is well known that the size of a BDD is usually very sensitive
to the variable ordering chosen. In the solution just suggested, we
imposed an ordering in which output variables are allowed to appear



The right edges are the 0 edges and the left edges are the 1 edges.

a

b b

c c c c

SS S S

C C

0 0

01 1

Figure 3: BDD for the Characteristic Function of a Full Adder

only after the input variables. This is a very bad ordering and as
a consequence this solution is impractical. To see why this is so,
let us assume we use this ordering. Now consider all BDD nodes
such that they correspond to an output variable, and their parents
correspond to input variables. Let this set be N . The BDDs rooted
at each n 2 N contain only the output variables. The cardinality
of N is the number of distinct output combinations that the circuit
can produce. This is typically exponential in the number of circuit
outputs. This exponential growth severely limits the number of
outputs that this method can handle.

We can do better. Let us relax the ordering condition that the
output variables appear only after all the input variables in the
BDD. To maintain the #I + #O run time complexity, we only need to
ensure that we never have to follow both the THEN (or 1) and ELSE
(or 0) edges of a BDD node corresponding to an output variable.
Whenever an output variable is encountered in a path of the BDD,
its value must already have been determined by the values assigned
to the input variables seen until that point. To ensure this, we just
have to guarantee that an output variable appears on any path only
after all the input variables in its support set have appeared. This
relaxation of ordering constraints allows us to interleave the output
variables with the input variables. While in the worst case this still
does not provide any guarantees on the size of the BDD, at least
we have avoided the more obvious exponent in the size with all the
output variables ordered after all the input variables. Fortunately,
it turns out that interleaving the output variables among the input
variables is an excellent variable ordering heuristic for BDDs of
characteristic functions [15].

The ordering algorithm (from [15]) operates in two steps: First a
good ordering of the output variables fyig is obtained as described
below. Subsequently, the input variables in the support of each
of the output functions are ordered individually according to the
algorithm in [10]. Let the output functions associated with the out-
put variables fyig be denoted by ffig. Let the support of each
function be denoted by supp(fi). In the final interleaved ordering,
the output variables follow immediately after their support as fol-
lows: supp(f1); y1; . . . ; supp(fn)� [1�i�n�1supp(fi); yn. The
ordering of the output variables is chosen so that the following cost
function is minimized:

cost(�) =
X

1�i�n

j[1�j�isupp(f�j )j

Given a set A, jAj denotes the cardinality of the set. Finding a per-
mutation that minimizes this cost function exactly is not feasible.
In practice, the greedy heuristic of looking ahead a few (2 or 3) lev-
els, trying out all possible permutations up to those few levels and
choosing that one with minimum cost seems to work well. In effect,
the outputs are ordered so that the outputs with many support vari-
ables in common are bunched together. It is this ordering heuristic

Simulator

Input Vectors

Output Vectors

Circuit

C-Code:
Branching
Program

CompilationDecision Diagram
Based Representation

Output Ordering
Partitioning
BDD Generation

Translation

Figure 4: Overall Flow of Decision Diagram Based Simulation

that we will be using to construct the BDDs for our characteristic
functions.

It has been demonstrated recently that dynamic variable ordering,
i.e. reordering the variables while building the BDDs, works well
in practice [13]. In our case also, once we have obtained the output
and input variable ordering heuristically, we can try to improve
upon it during BDD creation using the dynamic variable ordering
techniques. Note that we can only allow the input variables to
be moved towards the root and the output variables to be moved
towards the leaves.

Finally, the variable ordering on different paths in the decision
diagram need not be identical as long as we ensure that each input-
output combination corresponds to a single path in the decision
diagram and that the output variables appear only after their support
variables have appeared. Decision diagrams that allow different
orderings along different paths are called free-BDDs. They are
potentially smaller in size than BDDs, but are not as efficient to ma-
nipulate. Their use for generic circuits has been investigated in the
recent past [1, 11]. If free-BDD manipulation software is available,
it can potentially be used to reduce the size of the characteristic
function representation. Dynamic variable ordering and the use of
free-BDDs have not been implemented yet.

2.3 Multiple Characteristic Functions
Ideally, for maximum speed up, we would like to represent the entire
circuit with a single BDD-based characteristic function. In practice,
that may not be possible for a variety of reasons - a function requiring
a BDD provably exponential in size for any variable ordering may
exist in the circuit, different outputs of the circuit may require
different variable orderings, the circuit may have an unmanageably
large number of inputs and outputs, or a good variable ordering for
the circuit may not be easy to find.

Fortunately, the application of BDDs to simulation is one that
degrades gracefully when such a situation is encountered. The
solution is to represent the circuit by a set of characteristic functions,
X , such that all the outputs can be evaluated using this set. In this
process, we possibly create additional outputs and inputs which
correspond to intermediate signals in the circuit.
X is then levelized, where the level of a characteristic function,

�i, is defined as the number of characteristic functions that must
be evaluated in order to evaluate �i. The entire circuit is then
simulated by evaluating the �is in the order of increasing levels.
The levelizing ensures that the values for the inputs to a given �i
will be available when it is to be evaluated. This strategy comes
at the expense of a loss in the speed up. In general, the greater the
cardinality of X , the greater is the loss in speed up. But, as we
observe in practice, even a simple heuristic for generating these sets
is sufficient to keep number of characteristic functions that need to
be evaluated small. Figure 4 shows the overall flow of the compiled
code simulation package.

An exact solution to the partitioning problem would try to gen-
erate the minimum number of �is while ensuring that these can be
built with available memory. This is obviously a difficult problem
and we do not attempt to solve it exactly. We find that the following
strategy of adding additional inputs and outputs on demand works
well in practice:



1. Order the outputs according to the clustering algorithm de-
scribed in Section 2.2.1.

(a) Order the input variables for this output order.

2. Build BDD for the next output in the order.

(a) If BDD construction is not possible due to memory lim-
its, select a set of nodes (called a cut) in the transitive
fanin of the output so that BDD size at each node in the
cut is less than some threshold value. This cut satis-
fies the property that the nodes in the cut are not in the
transitive fanin of each other, i.e., no node function for
any of the cut nodes can directly depend on the node
function of another cut node.

(b) Order only the new outputs according to the clustering
algorithm described in Section 2.2.1.

(c) Build BDD for the next new output in the new-output
order. This step is guaranteed to finish by virtue of Step
2(a).

(d) Add this new outputvariable to the current characteristic
function.

i. If this step is not possible because the resulting
BDD size exceeds the allowed threshold, start a
new characteristic function for the remaining new
outputs.

(e) Return to Step 2(c) if some new output has not been in-
corporated into a characteristic function. Else continue
to 2(f).

(f) Add the new inputs corresponding to the cut made in
Step 2(a) to the set of inputs.

(g) Restart at Step 1 with the updated set of inputs, and a
new characteristic function.

3. Add the output variable to the current characteristic function.

(a) If Step 3 is not possible because the resulting BDD size
exceeds the allowed threshold, start a new characteristic
function and add the output to it.

4. Repeat until all outputs have been included in some character-
istic function.

If a new output is in the transitive fanin of some original output,
then these two outputs can never occur in the same characteristic
function because the value of the output in the transitive fanin is
needed to evaluate the value of the other output. Steps 2(b) - 2(g)
ensure this by keeping the newly generated outputs and the original
outputs that have yet to be processed in different characteristic
functions.

2.4 Non-Binary Valued Simulation
The previous sections have focussed on the use of binary decision
diagrams to generate branching programs for use in simulation. The
key assumption made here is that the final simulation will be binary-
valued, i.e. all signals will have values either 0 or 1. This is not
always true, in practice multiple logic values are used in simulation.
The non-binary values that are used are:

� X: An unknown value, representing either 0 or 1.

� Z: A high impedance value, representing neither 0 nor 1.

One solution is is to encode the four logic values of each input by
using two binary-valued variables. In practice, this results in larger
BDDs and a significant loss of speedup.

A more practical solution is to use an event-driven-simulator
front end to drive out the X’s arising from unknown initial states on
the memory elements. Once theX’s have been driven out, 2-valued
functional simulation can be used. Z’s need to be simulated in order
to detect contention between bus-drivers. In the cycle-based delay-
independent simulation framework, this contention can be detected
by analyzing the Boolean values on the controlling inputs of the
tristate-buffers. In fact, some commercial LCC simulators also
follow this policy.

Circuit # I # O # G # L (unopt) # L (opt)

s420 35 18 196 336 199
s510 25 13 211 424 313
s838 67 34 390 670 447
s1494 14 25 647 1393 836
s9234 247 250 5597 7971 2507

s13207 700 790 7951 11165 3394
s15850 611 684 9772 13645 4379
s35932 1763 2048 16353 28269 11257
s38417 1664 1742 22179 32028 17404
s38584 1464 1730 19253 32756 15880

NA37 476 457 1766 3501 3658
MAIN 1133 1106 21698 35392 8525
tur13 2131 2304 38182 63556 39757

I/O/G/L: Primary Inputs/Primary Outputs/Gates/Literals in the un-
optimized (unopt) and the SIS optimized (opt) networks.

Table 1: Statistics of the Circuits Used in Our Experiments

3 Experimental Results

We have tried our simulation approach on all circuits from the
combinational and sequential ISCAS benchmark suites, and three
large industrial circuits. We present two-valued simulation results
on some of the larger circuits from the set. The largest circuit
in the set, tur13, has about 40,000 gates and 65,000 literals in
its un-optimized form. We demonstrate through these results that
considerable reductions in simulation time can be obtained using
our approach. The BDD package distributed with SIS [14] was
used in these experiments to construct the branching programs. For
purpose of comparison we implemented a levelized compiled code
simulator (for two-valued simulation). The compilercc distributed
with SunOS Release 4.1.3 was used to compile the branch-
ing programs as well as the levelized gate-netlists. The optimization
option -O1 was used during all compilation. All run times are on
a SPARC 2 with 128 Meg of main memory. Relevant data about
the circuits is provided in Table 1. # L (unopt) corresponds to
the number of literals in the original unmodified gate netlists. # L
(opt) corresponds to the number of literals after optimization for
literal count using SIS. The purpose of the optimization is to extract
common sub-expressions which help in speeding up the simulation.

Simulation times for evaluating one million random vectors are
reported in Table 2. These are raw simulation times and do not
include the time taken to read and write the vectors. The column
BBCF (stands for BDD-based characteristic function) contains the
simulation times using our approach. The column # Partitions indi-
cates the number of partitions that were required in the BDD-based
simulation. A 1 indicates that a single BDD-based characteristic
function was required. LCC simulation times can be considerably
reduced by optimizing the circuit for literal count prior to simula-
tion. LCC simulation times for the optimized netlists are reported
in column LCC(opt). To obtain these times, the optimized netlists
were first levelized, with level of a gate being defined as the largest
number of gates on any path from a primary input to it. The levelized
netlists were translated into C-code with additional code added for
I/O. This code was then compiled into an executable binary. The
corresponding speedups, defined as (LCC simulation time)/(BBCF
simulation time), are provided in the column Speedup. The total
times required for generating the simulation binaries are indicated
in the column Prep. Time. The sizes of the simulation binaries are
indicated in the column Binary Size.

4 Conclusions

We have presented a new technique for functional simulation that
uses branching programs. We have demonstrated multiple factors
of speed up using this technique over LCC simulation. The main
algorithmic contributions of this paper are as follows:



Circuit Simulation Time (sec) Speedup # Partitions Binary Size (KB) Prep. Time (sec)
LCC(opt) BBCF LCC/BBCF LCC(opt) BBCF LCC(opt) BBCF

s420 31.3 10.4 3.0 1 2 6 32 32
s510 44.6 8.2 5.4 1 3 4 32 32
s838 85.4 18.6 4.6 1 6 31 40 72

s1494 136.9 11.5 11.9 1 6 8 40 40
s9234 617.0 378.8 1.6 10 69 700 96 944
s13207 2011.0 944.0 2.1 9 298 1200 192 892
s15850 2406.0 983.0 2.4 18 216 2010 184 1836
s35932 7120.0 2018.0 3.5 4 1056 1109 520 800
s38417 10672.0 3598.0 3.0 64 1354 8750 632 4136
s38584 9254.0 2770.0 3.3 40 959 9298 560 6400
NA37 1489.0 403.7 3.7 8 250 1100 144 768
MAIN 5123.0 1081.0 4.7 20 436 5116 352 2960
tur13 29653.0 3425 8.7 64 3498 9778 1224 9864

Simulation time is the time for evaluating one million vectors. It is the raw simulation time and does not include time for reading and writing vectors. All
abbreviations are explained in text.

Table 2: Comparing the Raw Simulation Speeds of Conventional LCC to BBCF

� Demonstrating how BDDs for characteristic functions can be
used to handle multiple-output functions for simulation. While
it is known that characteristic functions are a useful represen-
tation for multiple-output functions, it is not obvious how a
BDD for a characteristic function can be used for simulation.
Not all variable orders permit simulation, an output variable
must appear in the order only after its support. In addition,
the naive ordering of all output variables at the end needs to
be avoided since it results in memory explosion.

� Demonstrating how a set of characteristic functions can be
dynamically generated based on memory usage.

There is probably room for considerable improvement. A com-
piler customized for generating machine code from branching pro-
grams could potentially speed up compile times considerably, mak-
ing this method much more attractive. There is also room for
improving the partitioning algorithm. The use of dynamic variable
ordering can potentially speed up the simulation further by reduc-
ing the sizes of the simulation binaries and reducing the number of
partitions.

References
[1] A. Ghosh A. Shen, S. Devadas. Probabilistic construction and

manipulation of free boolean diagrams. In Proceedings of the
International Conference on Computer-Aided Design, pages
544–549, November 1993.

[2] S. B. Akers. Binary decision diagrams. In IEEE Transactions
on Computers, volume C-27, pages 509–516, June 1978.

[3] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. Wang. MIS: A multiple-level logic optimization system. In
IEEE Transactions on CAD, volume C-6, pages 1062–1081,
November 1987.

[4] M. A. Breuer and A. D. Friedman. Diagnosis and Reliable
Design of Digital Systems. Computer Science Press, Inc.,
1976.

[5] R. Bryant. Graph-based algorithms for Boolean function ma-
nipulation. In IEEE Transactions on Computers,volume C-35,
pages 677–691, August 1986.

[6] A. Cerny. An approach to unified methodology of combina-
tional switching circuits. In IEEE Transactionson Computers,
volume 27(8), August 1977.

[7] A. Cerny and J. Gecsei. Simulation of MOS circuits by de-
cision diagrams. In IEEE Transactions on Computer-Aided
Design, volume C-4, pages 685–693, October 1985.

[8] M. Chiang and R. Palkovic. LCC simulators speed develop-
ment of synchronous hardware. In Computer Design, pages
87–91, 1986.

[9] N. Ishiura, H. Yasuura, T. Kawata, and S. Yajima. High-speed
logic simulation on a vector processor. In Proceedings of the
International Conference on Computer-Aided Design, pages
119–121, November 1985.

[10] S. Malik, A. R. Wang, R. Brayton, and A. Sangiovanni-
Vincentelli. Logic Verification using Binary Decision Dia-
grams in a Logic Synthesis Environment. In Proceedings
of the International Conference on Computer-Aided Design,
pages 6–9, November 1988.

[11] Christoph Meinel. Modified branching programs and their
computational power. Springer-Verlag, 1989.

[12] G. F. Pfister. The Yorktown Simulation Engine: Introduction.
In The Proceedings of the Design Automation Conference,
pages 51–54, June 1982.

[13] R. Rudell. Dynamic variable ordering for ordered binary deci-
sion diagrams. In Proceedingsof the International Conference
on Computer-Aided Design, pages 42–47, November 1993.

[14] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Bray-
ton, and A. Sangiovanni-Vincentelli. Sequential circuit design
using synthesis and optimization. In Proceedings of the Inter-
national Conference on Computer Design, 1992.

[15] H. Touati, H. Savoj, B. Lin R. K. Brayton, and A. Sangiovanni-
Vincentelli. Implicit state enumeration of finite state machines
using BDDs. In Proceedings of the International Conference
on Computer-Aided Design, pages 130–133, November 1990.

[16] E. Ulrich. Exclusive simulation of activity in digital networks.
In Communications of the ACM, volume 13, pages 102–110,
February 1969.

[17] L. T. Wang, N. H. Hoover, E. H. Porter, and J. J. Zasio.
SSIM: A software levelized compiled-code simulator. In The
Proceedingsof the Design Automation Conference,pages 2–8,
June 1987.


	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index


