
Memory Bank and Register Allocation in Software Synthesis for ASIPs

Ashok Sudarsanam Sharad Malik
Department of Electrical Engineering

Princeton University

Abstract—An architectural feature commonly found in digital
signal processors (DSPs) is multiple data-memory banks. This fea-
ture increases memory bandwidth by permitting multiple memory
accesses to occur in parallel when the referenced variables belong
to different memory banks and the registers involved are allocated
according to a strict set of conditions. Unfortunately, current com-
piler technology is unable to take advantage of the potential in-
crease in parallelism offered by such architectures. Consequently,
most application software for DSP systems is hand-written – a very
time-consuming task.

We present an algorithm which attempts to maximize the ben-
efit of this architectural feature. While previous approaches have
decoupled the phases of register allocation and memory bank as-
signment, our algorithm performs these two phases simultaneously.
Experimental results demonstrate that our algorithm substantially
improves the code quality of many compiler-generated and even
hand-written programs.

I. INTRODUCTION

An emerging trend in the implementation of DSP systems is the
increasing use of programmable processors, such as off-the-shelf or
application-specific processors (ASIPs). Another trend, due to cost and
power constraints, is the integration of the processor, program RAM and
ROM, and ASIC circuitry into a single integrated circuit. Consequently,
program ROM size is limited. In this scenario, the code density must be
high to keep ROM size low. Additionally, the software must be written
so as to meet high-performance constraints, which may include hard
real-time constraints. Unfortunately, the code quality of current DSP
compilers is generally unacceptable with respect to code density and
performance – compilation techniques for generalpurpose architectures
do not adapt well to the irregularity of DSP architectures. Therefore,
most application software is hand-written – a very time-consuming task.

Our research aims to overcome the limitations of current compilation
techniques for DSPs. We would like to identify the individual architec-
tural characteristics which make code generation difficult and provide
specific solutions for each of these. Our current research focuses on
providing support for multiple data-memory banks. This feature, found
in several commercial DSPs such as the Motorola 56000 and NEC
77016, increases memory bandwidth by permitting multiple memory
accesses to occur in parallel when the referenced variables belong to
different memory banks and the registers involved conform to a strict
set of conditions. Furthermore, the instruction set of this architecture
encodes parallel accesses in a single instruction word, thus assisting in
the generation of dense code. We will be using the Motorola 56000 as
our experimental vehicle in this research [4].

We present an algorithm which attempts to maximize the benefit of
this architectural feature. While previous approaches have decoupled
the phases of register allocation and memory bank assignment, thereby
compromising code quality, our algorithm performs these two phases
simultaneously. Our algorithm is based on graph labelling, the ob-
jective of which is to find an optimal labelling of a constraint graph
representing conditions on the register and memory bank allocation.
Since optimal labelling of this graph is NP-hard, we use simulated

XDB
YDB

X
Mem

Y
Mem

from AGU
or 16−bit
immediate

from AGU
or 16−bit
immediate

X0
X1
Y0
Y1

Multiplier

Accumulator
Logic Unit

A

B

Shifter/
Limiter

Shifter

Fig. 1. Data ALU and Memory Banks

annealing to find a good labelling.
This paper is organized as follows: Section II gives an overview

of the Motorola 56000 architecture. Section III describes our graph-
labelling algorithm. Section IV provides experimental results and fi-
nally, Section V presents our conclusions and future work.

II. MOTOROLA 56000 DSP ARCHITECTURE

The Motorola 56000 architectural units of interest are the Data
Arithmetic-Logic Unit (Data ALU), Address Generation Unit (AGU),
and X and Y data-memory banks:

� Data ALU: This unit, shown in Figure 1, contains hardware that
efficiently performs arithmetic and logical operations. The data
ALU consists of four 24-bit input registers named X0, X1, Y0,
and Y1, and two 56-bit accumulators named A and B. The source
operands for all ALU operations must be input registers or accu-
mulators and the destination operand must always be an accumu-
lator. Two 24-bit buses named XDB and YDB permit two input
registers or accumulators to be read or written in conjunction with
the execution of an ALU operation.

� AGU: This unit contains two files of 16-bit address registers, one
consisting of registers R0 through R3, and the other consisting
of R4 through R7. Associated with each file is an ALU which,
on each cycle, can increment or decrement a single register from
that file. Two multiplexers permit two effective addresses to be
generated on each cycle – one address is generated per register
file, and these addresses must point to locations in different data-
memory banks.

� X and Y Data-Memory Banks: This unit, also shown in Figure
1, consists of two independent 512 word x 24-bit data-memory
banks which permit two memory accesses to occur in parallel.
When register-indirect addressing is used, the AGU generates the
effective address. Alternatively, a 16-bit constant, generated as
part of the instruction word, may be used for absolute addressing.



The 56000 instruction set encodes parallel operations in a single
24-bit word, resulting in dense, high-bandwidth code. In particular,
up to two move operations can be specified in one instruction word,
where a move refers to a memory access (load or store), register trans-
fer (moving of data from input register to accumulator or vice-versa),
or immediate load (loading of 24-bit constant into input register or ac-
cumulator). Additionally, most data ALU operations can be encoded
in a single word with 1 or 2 move operations. However, there are
restrictions on which move operations can be performed in parallel:

� A memory access can be performed in parallel with another mem-
ory access or register transfer

� A register transfer can be performed in parallel with a memory
access or immediate load

� An immediate load can be performed in parallel with a register
transfer

Furthermore, two move operations can occur simultaneously only if
the associated registers and memory banks are allocated appropriately.
Consider the following parallel move:

MOVE X:(R0), X1 Y:(R4), Y1
The above parallel memory access is legal because certain register and
memory bank constraints have been appropriately satisfied:

� The two moves access data in different data-memory banks.
� The X data-memory access loads into a restricted set of locations,

namely X0, X1, A or B.
� The Y data-memory access loads into a restricted set of locations,

namely Y0, Y1, A or B.
� Both memory accesses use register-indirect addressing – the ad-

dress registers specified belong to different AGU files.
Thus, the following parallel memory accesses are NOT permitted:

� MOVE X:(R0), X1 Y:(R4), X0
The Y data-memory access does not load into the allowable set of
locations, namely Y0, Y1, A or B

� MOVE X:(R0), X1 X:(R1), X0
Both memory accesses are to the same bank

� MOVE X:(R0), X1 Y:#0034, Y1
The Y data- memory access does not use register-indirect address-
ing

� MOVE X:(R0), X1 Y:(R2), Y1
The specified address registers belong to the same AGU file

Similar restrictions exist for the other parallel move combinations which
this architecture permits.

Thus, given the nature of the 56000 architecture, our intent is to
develop an algorithm which takes full advantage of the available paral-
lelism.

III. TECHNIQUE FOR REGISTER AND MEMORY BANK ALLOCATION

Our algorithm for register and memory bank allocation, or reference
allocation, is a post-pass optimization that occurs after the instruction
selection phase. We assume that the code-generator outputs optimized
straight-line code with symbolic register and variable references. One
can visualize the code-generator as first producing optimized straight-
line code with complete reference allocation, then replacing all physical
references with symbolic ones. Our objective is to assign physical
registers and memory banks to the symbolic registers and variables,
respectively, such that high-quality code is generated.

Previous approaches have decoupled the phases of register and
memory bank allocation. Wess’ technique [10] first generates code
in which register allocation, but not memory bank allocation, has been
performed. After the code is compacted, memory bank allocation is
performed so as to satisfy the parallel move requirements. This entire
process is repeated until a valid allocation is found.

The algorithm of Powell et al. [8] first performs register allocation
on the symbolic assembly code. Thereafter, variables are assigned to
memory banks in an alternating fashion – the first variable is assigned
to the X data-memory, the second to the Y data-memory, and so forth.
Finally, the code is compacted into as few instructions as possible
without violating any data-dependency or target machine constraints.

Since the validity of parallel move operations is so highly dependent
on both register and memory bank allocation, we believe that these two
phases should be performed simultaneously. By decoupling the two
phases, these two algorithms lose all guarantees of optimality before
the code is compacted.

A. Assumptions

The following sections describe the key assumptions that we make
in our approach.

A.1 Global Variables and Parameters

To determine the optimal memory bank assignment for a given
global variable, we need to observe its references over all procedures.
The fact that code is normally generated one procedure at a time prevents
us from doing this. A similar argument can be made about parameters,
if they are passed as pointers. This problem can be addressed by
using inter-procedural data-flow analysis. For now, we assume that
all global variables and parameters are statically allocated in a single
memory bank.

A.2 Aggregate Variables

Arrays and other aggregate variables also pose problems for us,
particularly during the address register allocation phase. For now, we
simply treat each array element as a distinct variable. We are currently
working on methods which will deal with globals, parameters, and
aggregate variables in a more sophisticated fashion.

Given the assumptions surrounding our code generation technique,
we now give a detailed account of each step in our algorithm.

B. Step I: Compaction

The first step in our algorithm compacts the symbolic straight-line
code. Two move operations are compacted into a single instruction if
no data dependencies are violated and the parallel move combination
is permitted by the architecture. Additionally, an ALU operation is
compacted with up to two move operations if no data dependencies are
violated and it is permissible for this ALU operation to be specified in
conjunction with parallel moves.

Our current compaction method is rather conservative in that it
does not permit out-of-order execution of operations. Our results
demonstrate, however, that a significant improvement in code-quality
is achieved. We are currently looking into more aggressive compaction
techniques.

C. Step II: Constraint Graph Creation

We view reference allocation as a process of constraint graph la-
belling. A constraint graph has a vertex for each symbolic register and
variable, and edges which represent constraints that need to be satisfied
when labelling the vertices. Each register-vertex must be labelled X0,
X1, Y0, Y1, A or B, while each variable-vertex must be labelled either
X-MEM or Y-MEM. Associated with each edge is a cost, or penalty,
which is incurred when the corresponding constraints are violated. A
similar technique is used in register allocation for homogeneousregister
architectures [2]. The next few sections will describe each such edge.



C.1 Red (Interference) Edges

A red edge is added between vertices regx and regy , corresponding
to symbolic registers x and y, if and only if x and y are simultaneously
live [1]. This edge specifies that nodes regx and regy must be labelled
differently, or analogously,registers x and y must be assigned to different
physical registers. Otherwise, spill code will be required to save one of
these values to memory and to retrieve it upon each use.

The amount of spill code required due to an unsatisfied red edge
varies, depending on how many times the spilled value is used sub-
sequently. We currently take a conservative approach and assign the
spill cost a constant value of 10. This represents an estimate of the
additional amount of code required to implement a spill. Due to the
conservative nature of our compaction scheme, it is not necessary to
compute the actual spill cost. Since compaction does not result in out-
of-order execution of operations, the set of variables live at each point
in the program does not change. Assuming that the symbolic uncom-
pacted code contains all necessary spill code, a register allocation exists
which requires no additional spilling. Thus, by assigning the spill cost
a sufficiently large value, we reduce the probability that two vertices
connected by a red edge will be labelled identically.

Now, for each compacted instruction containing two move opera-
tions, we add a particular non-red edge to the constraint graph, which
specifies how the associated register and variable nodes should be la-
belled in order for the parallel move specification to be legal.

C.2 Green Edges

A green edge is added to the constraint graph for each parallel move
corresponding to a dual memory access. In particular, given a parallel
move of the form

MOVE vari , regi varj , regj
MOVE vari , regi regj , varj
MOVE regi, vari varj , regj
MOVE regi, vari regj , varj

we add a green edge between vertices regi and regj . The green edge
also includes pointers to vertices vari and varj . These pointers specify
that regi and vari constitute a single move operation, while regj and
varj constitute another.

Several constraints must be satisfied in order for this green edge to
be labelled appropriately and hence, for the parallel move specification
to be legal:

� Vertices vari and varj must be labelled differently.
� If vertex vari is labelled X-MEM (Y-MEM), vertex regi must be

labelled X0, X1, A or B (Y0, Y1, A, or B).
� If vertex varj is labelled X-MEM (Y-MEM), vertex regj must be

labelled X0, X1, A or B (Y0, Y1, A, or B).
If the current procedure consists of a single basic block, then each

unsatisfied green edge incurs a cost of 1. This represents the resulting
increase in instruction words and cycles: a parallel move instruction
corresponding to an unsatisfied green edge must be separated into two
individual move operations.

If the current procedure is composed of multiple basic blocks, then
each unsatisfied green edge incurs a cost of 1 * basic-block-frequency,
where basic-block-frequency is an estimate of the number of times
the current basic block is executed per procedure invocation. This
information is obtained from profiling analysis.

C.3 Blue, Brown, and Yellow Edges

In a similar manner, we add other edges to the constraint graph based
on the type of parallel move instruction encountered in the compacted

A B X0 X1 Y0 Y1

reg i reg j reg k

MPY reg , reg , regi j k

Fig. 2. Example of black edge construction

code. Each of these edges has a set of constraints which must be
satisfied when labelling the graph, plus an associated cost.

� Blue Edges: added for each parallel move corresponding to a
memory load and register transfer.

� Brown Edges: added for each parallel move corresponding to an
immediate load and register transfer.

� Yellow Edges: added for each parallel move corresponding to a
memory store and register transfer.

C.4 Black Edges

Each ALU operation in the 56000 instruction set imposes certain
constraints on its operands. We already know that the source operands
of all ALU operations must be input registers or accumulators, and
the destination operand must always be an accumulator. However, in
most cases, the constraints are more restrictive. Consider the multiply
operation:

MPY regi , regj , regk
The 56000 architecture restricts registers i and j to be input registers
only. Register k must then be an accumulator. We enforce these
constraints in our constraint graph by introducing black edges and
global vertices, which correspond to input registers and accumulators.
A black edge between register-vertex x and global-vertex y implies that
vertex x can not be labelled with the register associated with vertex y.
Thus, in order to enforce the constraint that register i must be an input
register, we add black edges between vertex regi and the global vertices
corresponding to the two accumulators. Figure 2 shows the complete
set of black edges needed for the multiply operation.

Each unsatisfied black edge has an associated cost of1 since the
register allocation implied by an illegally-labelled black edge can not
be supported by ALU hardware.

C.5 Address Register Allocation

Given some memory bank allocation, we now need to determine
the form of addressing used in each memory access. Each instruction
containing two memory accesses must use register-indirect addressing.
Instructions with one memory access may use either register-indirect
or absolute addressing. Each use of absolute addressing incurs a one
word penalty, however, since an extra word is needed to store the 16-bit
immediate. Since one of our goals is to minimize the total number of
instruction words, we choose to use register-indirect addressing exclu-
sively.

Now each memory access can be performed only if an address reg-
ister is available which contains the appropriate address. Recall that the
56000 architecture features two files of address registers which point
to locations in the data memories. Associated with these registers are
auto-increment and auto-decrement update modes which can be used
to efficiently access the various variables in memory. Rather than ex-
plicitly initializing an address register before each access, an intelligent
placement of variables within the memory banks could make use of



c = a + b;
f = d + e;
a = a + d;
c = d + a;
d = d + f + a;

(a)

(c)

a b c d e f a d a d a c d f a d
(b)

a

b

c

f

e

d

1

1

1

1

1 1

2

2

5

Fig. 3. (a) Original code sequence (b) Access sequence (c) Access
graph

these modes and thus minimize the required number of set-up instruc-
tions. This is precisely what the Offset Assignment Problem attempts to
do. The following description summarizes the work presented in [7].

There are two flavors of offset assignment: Simple Offset Assign-
ment (SOA) assumes that one address register is available for memory
accesses, while General Offset Assignment (GOA) assumes that mul-
tiple address registers are available. Since parallel memory accesses
must employ address registers from different AGU files, we arbitrarily
assign registers R0 through R3 to the X data-memory bank and registers
R4 through R7 to the Y data-memory bank. We must therefore perform
GOA on each memory bank.

Figure 3 shows the main structures used by SOA and GOA. As-
sume we are given a code sequence of variable references, as shown
in Figure 3(a). We first form an access sequence, shown in Figure
3(b), by linearizing the variable references. We next form an access
graph in which each vertex corresponds to a distinct variable, and edge
(vari ,varj ) with weight w exists if and only if variables i and j are ad-
jacent to each other w times in the access sequence. This graph, shown
in Figure 3(c), conveys the relative benefits of assigning each pair of
variables to adjacent locations in memory. With respect to the access
sequence, the cost of an assignment is equal to the number of adjacent
accesses of variables which are not assigned to adjacent memory loca-
tions. With respect to the access graph, the cost of an assignment is
equal to the sum of the weights of all edges connecting variables which
are not assigned to adjacent memory locations.

The idea behind Offset Assignment is as follows: if two variables
are accessed together frequently (i.e. the edge connecting the two
variables is of high weight), then they should be assigned to adjacent
memory locations. Consequently, an address register can efficiently
move between these two locations with the help of the auto-increment
and auto-decrement modes. Thus, for each high-weighted edge in the
access graph, we need to assign the corresponding variables to adjacent
memory locations. Since this may not be possible for all such edges,
variables should be assigned in such a way that the sum of the weights
of all edges connecting variables not assigned to adjacentmemory loca-
tions is minimized. This is equivalent to finding a maximum-weighted
path covering (MWPC) of the access graph. Since MWPC is NP-hard,
heuristics are used to find an approximate solution, i.e. a good, though
not necessarily optimal, arrangement of variables in memory. GOA is
tackled by extending the heuristic solutions of SOA.

Recall that each array element is treated as a distinct variable. The
reason for this is that offset assignment currently works for scalar
variables only. Work is currently being done on offset assignment
which will permit aggregates to be treated accordingly.

D. Step III: Constraint Graph Labelling

The cost of a particular constraint graph labelling is equal to the
unsatisfied edge costs plus the GOA cost. We wish to find a labelling
of least cost since such a labelling represents a code sequence with the
least deviation from the schedule formed by compaction. It is easy to
see that optimal labelling of the constraint graph is NP-hard because it
subsumes three other NP-complete/NP-hard problems [3]:

� Graph K-Colorability Problem: This problem is encountered in
register allocation for homogeneous architectures.

� Maximum-Weighted Path Covering (MWPC): This problem is
encountered in Offset Assignment.

� Maximum Bipartite Subgraph Problem: This problem is en-
countered if we just consider plain memory bank allocation with-
out additional constraints on register allocation.

Therefore, a heuristic is needed which will instead generate a low-
cost labelling of the constraint graph. A number of important observa-
tions can be made about constraint graph labelling:

� Complex cost function: The cost function is complex with respect
to optimizing it within the solution space.

� Large solution space with hills and valleys: Given m register
and n variable vertices, the total number of possible labellings is
6m*2n . By changing the label of a single vertex, one can cause
the cost function to change drastically in either direction, leading
to many hills and valleys in the solution space.

� Easy to determine solution cost: Each edge is examined in turn
to determine whether or not its constraints have been satisfied and
the cost is updated appropriately. GOA heuristics are applied so
as to determine the additional cost of allocating address registers.
With an intelligent choice of data structures, determining the cost
of a solution can be done efficiently.

� Easy to generate new solution: A vertex is randomly chosen and
its label is changed.

These observations suggest that finding a low-cost labelling of the
constraint graph is especially well-suited for simulated annealing [5].
Simulated annealing is a probabilistic hill-climbing algorithm which has
been used successfully in several design automation and combinatorial
optimization problems. As our results demonstrate in the next section,
our implementation of simulated annealing does a good job of finding
a low-cost labelling of the constraint graph.

IV. EXPERIMENTS AND RESULTS

We have implemented a program which accepts uncompacted, sym-
bolic assembly code and generates high-quality compacted code.

We obtained two sets of benchmarks for purposes of experimenta-
tion. The first set came from the DSPstone benchmark suite [9] and
contained compiled code for various DSP kernels: complex multiply,
complex update, real update, iir biquad, convolution, fir, and lms (least-
mean square). The secondset was obtained from Motorola’s public bul-
letin board and contained hand-written code for a few DSP algorithms:
rvb (reverberation) and adpcm (speech encoding). We obtained two
versions of the reverberation program – rvb1 was unoptimized while
rvb2 was optimized.

Each benchmark was first rewritten into a symbolic format and then
fed as input to our program. Table I demonstrates how our algorithm
performed on both sets of benchmarks. The first two columns of Table
I convey the sizes of the resulting constraint graphs: the graphs for
the DSPstone benchmarks were quite small, while the graphs for the
hand-written benchmarks were much larger.

The columns labelled Initial Code Size and Code Size After An-
nealing demonstrate that our algorithm was able to significantly reduce
the code size of each benchmark. In the DSPstone set, our algorithm



Constraint Constraint Initial Code Size Annealing Code Size
Benchmark Graph Nodes Graph Edges Code Size After Annealing Time (s) After Greedy

complex multiply 14 39 22 12 6.9 12
complex update 23 58 38 28 33.5 28
real update 9 14 12 9 1.8 9
iir biquad 25 73 35 21 61.3 23
convolution 7 18 10 8 1.4 8
fir 15 41 20 15 6.8 15
lms 30 76 48 35 40.7 35

rvb1 76 186 120 51 1872.4 52
rvb2 76 214 88 41 1329.0 44
adpcm 171 579 275 196 10268.7 200

TABLE I
SIMULATED ANNEALING VS. GREEDY ALLOCATION

reduced the size of iir biquad from 35 words to 21 words, a 40 percent
reduction. In the Motorola set, our algorithm reduced the size of rvb1
from 120 words to 51 words, a 58 percent reduction.

The substantial improvement in code size of the DSPstone bench-
marks can be attributed to the naive reference allocation performed by
the 56000 compiler: all variables were placed in the Y data-memory
bank and all memory references used absolute addressing. The hand-
written benchmarksdid make use of both data-memory banks,however,
but absolute addressing was still heavily employed. It is conceivable
that the large number of variables in these benchmarks forced the as-
sembly programmer to use absolute addressing for sake of clarity, at
the expense of code density.

The amount of CPU time (in seconds) required to perform simu-
lated annealing on each benchmark is given under the column labelled
Annealing Time. These measurements were taken on a Silicon Graph-
ics Indigo R4000 with 32 MB of RAM. The times for the DSPstone
benchmarks were quite low, which can be attributed to the small con-
straint graph sizes. In contrast, the times for the Motorola benchmarks
were quite high, obviously due to the large constraint graph sizes. Al-
though simulated annealing is computationally-expensive, we find its
use completely acceptable because it yields high quality results.

For each benchmark, we compared our method with greedy alloca-
tion, which works as follows: the memory bank assigned to a given
variable is the opposite of that assigned to the variable last referenced.
Moreover, if a variable is assigned to the X (Y) data-memory bank, then
preference is given to registers X0 and X1 (Y0 and Y1) when allocating
the correspondingregister. One can see, from the column labelled Code
Size After Greedy, that there was very little difference in the quality of
code generated by both techniques. However, our approach has the
advantage that it can be easily extended to more complex architectures,
whereas the generality of greedy allocation is unknown. For instance,
there exist architectures with four data-memory banks [6], allowing a
total of four data-memory accesses to occur in parallel. By simply
modifying the compaction and annealing routines, our approach can
easily be extended to support this architecture, whereas it is not clear at
all how greedy allocation would perform. Hence, the important issue
of scalability strongly favors our approach over greedy allocation.

V. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm which attempts to maximize the
benefit of multiple data-memory banks. Simulated annealing is used to
find a low-cost labelling of the constraint graph. Experimental results

demonstrate that our algorithm provides significant improvements over
compiler-generated code, and even large hand-written programs.

We are currently looking into ways of further improving code
quality. We are investigating more aggressive compaction schemes,
which will significantly increase the amount of compaction, and inter-
procedural data-flow analysis, which will allow us to find appropriate
register and memory bank allocations for global variables and parame-
ters.

VI. ACKNOWLEDGEMENTS

This research was supported by an NSF NYI award (grant MIP
9457396).

REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

[2] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins,
and P. Markstein. Register allocation via coloring. Computer
Languages, (6):47–57, 1981.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-completeness. W. H. Freeman and
Company, 1979.

[4] Motorola Inc. DSP56000/DSP56001 Digital Signal Processor
User’s Manual. 1990.

[5] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Science, 220:671–
680, 1983.

[6] E.A. Lee. Programmable DSP Architectures: Part I. IEEE ASSP
Magazine, pages 4–19, Oct. 1988.

[7] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang. Storage
Assignment to Decrease Code Size. In Proceedings of the ACM
SIGPLAN’95 Conferenceon ProgrammingLanguage Design and
Implementation, pages 186–195, June 1995.

[8] D.B. Powell, E.A. Lee, and W.C. Newman. Direct Synthesis of
Optimized DSP Assembly Code from Signal Flow Block Di-
agrams. Proceedings International Conference on Acoustics,
Speech, and Signal Processing, 5:553–556, 1992.

[9] V. Živojnović, J. Martı́nez Velarde, and C. Schläger. DSPstone:
A DSP-oriented Benchmarking Methodology. Technical report,
Aachen University of Technology, August 1994.

[10] B. Wess. Automatic code generation for integrated digital signal
processors. Proceedings International Symposium on Circuits and
Systems, pages 33–36, 1991.


	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index


