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Abstract

Embedded systems generally interact with the outside
world. Thus, some real-time constraints may be imposed
on the system design. Verification of these constraints re-
quires computing a tight upper bound on the worst case
execution time (WCET) of a hardware/software system.
The problem of bounding WCET is particularly difficult on
modern processors, which use cache-based memory sys-
tems that vary memory access time significantly. This
must be accurately modeled in order to tightly bound
WCET. Existing approaches either search all possible pro-
gram paths, an intractable problem, or they use pes-
simistic assumptions to limit the search space. In this pa-
per we present a far more effective and accurate method
for modeling instruction cache activity and computing a
tight bound on WCET. It is implemented in the program
cinderella . We present some preliminary results of us-
ing this tool on sample embedded programs.

1 Introduction

The execution time of a program often can vary signifi-
cantly from one run to the next on the same system. In
many cases it is essential to know the worst case execu-
tion time (WCET) for a hardware/software system. In hard
real-time systems, the programmer must guarantee that the
WCET satisfies the timing deadlines. Many real-time op-
erating systems rely on this data for process scheduling. In
embedded system designs, the WCET of the software is of-
ten required for deciding how hardware/software partition-
ing is done.

Since it is impractical to simulate all possible input
data and initial system states, an upper bound on WCET,
denoted as theestimated WCET, is usually computed by
static analysis of the program. WCET estimates are partic-
ularly difficult for modern microprocessors, which usually
include pipelined instruction execution and cache-based
memory systems. These features speed up the typical per-

formance of the system, but complicate worst case timing
analysis. The exact execution time of an instruction may
vary significantly. The effect of pipelining on execution
time can be found relatively easily and accurately since it
is affected only by adjacent instructions. The cache mem-
ory system poses a much bigger challenge. To accurately
tell whether or not the execution of an instruction results in
cache hit, a global analysis of the program is required.

Incorporating accurate cache modeling into worst case
timing analysis is essential in order to computetight es-
timated WCETs of programs running on modern proces-
sors. In this paper, we propose a method to model direct-
mapped instruction caches. Unlike other cache analysis
methods, it does not impose any pessimistic assumptions
on the cache activity and it yields an accurate solution in
an effective way. This method is integrated into our previ-
ous work [1] on program path analysis for determining the
WCET.

2 Related Work

The problem of determining a program’s estimated WCET
is in general undecidable and is equivalent to a halting
problem. The sufficient conditions for it to be decidable
are: (i) no recursive function calls, (ii) no dynamic struc-
tures and (iii) bounded loops [2].

Several WCET analysis with instruction cache model-
ing methods have been proposed. Liu and Lee [3] note
that asufficientcondition for determining theexactworst
case cache behavior is to search through all feasible pro-
gram paths exhaustively. This becomes an intractable
problem whenever there is a conditional statement inside a
while loop, which unfortunately happens frequently. Lim
et al. [4], who extend Shaw’s timing schema methodol-
ogy [5] to incorporate cache analysis, also encountered a
similar problem. To deal with this intractable problem,
the above researchers trade off cache prediction accuracy
for computational complexity by proposing different pes-
simistic heuristics. Arnoldet al. [6] propose a less ag-



gressive cache analysis method. They use flow analysis
to identify thepotentialcache conflicts and classify each
instruction as first miss, always hit, always miss or first
hit categories. This results in fast but less accurate cache
analysis. Rawat [7] handles data cache performance analy-
sis by using graph-coloring techniques. However, this ap-
proach has limited success even for small programs. All
the above methods encounter computational complexity
because they try to determine theexact sequenceof cache
hits and misses. Different pessimistic methods are thus
proposed to cope with this complexity, and they result in
loose estimated WCET. Another severe drawback is that
they cannot handle any user annotations describing infea-
sible program paths, which are essential in tightening the
estimated WCET.

Our objective is to determine tight estimated WCETs,
not the exact cache activity. The key observation is that
the estimated WCET is only affected by the numbers of
cache hits and cache misses. The actual sequence of hits
and misses have no effect on the estimated WCET. An im-
portant aspect to cope with the complexity is to capture
only the necessary information that effects the estimated
WCET, and ignore all other information as much as pos-
sible. Based on this observation, we extend our previous
work on worst case path analysis, which uses integer lin-
ear programming (ILP) for estimating WCET.

3 ILP Formulation

Our previous work on WCET estimation [1] is focused
on path analysis given a simple microarchitectural model.
This model assumes that every instruction takes a con-
stant time to execute. Instead of searching all program
paths, our strategy is to analytically find the dynamic ex-
ecution count of each instruction under a worst case sce-
nario. Given that each instruction takes a constant time
to execute, the total execution time can be computed by
summing the product of instruction counts by their cor-
responding instruction execution times. Since all instruc-
tions within a basic block must have the same execution
counts, they can be considered as a single unit. If we let
xi be the execution count of a basic blockBi , andci be the
execution time of the basic block, then given that there are
N basic blocks, the total execution time of the program is
given as:

Total execution time =
N

∑
i

cixi . (1)

The possible values ofxi are constrained by the program
structure and the possible values of the program variables.
If we can represent these constraints as linear inequalities,
then the problem of finding the estimated WCET of a pro-
gram will become an ILP problem.

/* k >= 0 */
s = k;
while (k < 10) {

if (ok)
j++;

else {
j = 0;
ok = true;

}
k++;

}
r = j;

B1 s = k;
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d10
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d7
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x1

d2

d1

x2 B2 while(k<10)

B7 r = j;x7

d9

B3 if(ok)x3

B4 j++;x4

B6 k++;x6

B5	 j = 0;

	 ok=true;
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(i) Code (ii) CFG

Fig. 1: An example code fragment showing how the structural
and functionality constraints are constructed.

The linear constraints are divided into two parts: (i)
program structural constraints , which are derived from
the program’s control flow graph (CFG), and (ii)program
functionality constraints, which are provided by the user
to specify loop bounds and other path information. The
construction of these constraints is best illustrated by an
example shown in Fig. 1, which shows a conditional state-
ment nested inside a while loop. Each node in the CFG
represents a basic blockBi . A basic block execution count,
xi , is associated with it. Each edge in the CFG is labeled
with a variabledi which counts the the number of times
that the program control passes through that edge. Struc-
tural constraints are derived from the CFG from the fact
that, for each nodeBi , its execution count is equal to the
sum of control inflow and also the sum of control outflow.
The structural constraints of this example are:

d1 = 1 (2)

x1 = d1 = d2 (3)

x2 = d2 +d8 = d3 +d9 (4)

x3 = d3 = d4 +d5 (5)

x4 = d4 = d6 (6)

x5 = d5 = d7 (7)

x6 = d6 +d7 = d8 (8)

x7 = d9 = d10. (9)

Here, the first constraint (2) is the starting condition that
specifies the code fragment is to be executed once.

The loop bound information is provided by the user as
a functionality constraint. In this example, since variable
k is positive before the control enters the loop, the loop
body will be iterated between 0 and 10 times each time it



is entered. The constraints to specify this information are:

0x1 ≤ x3 ≤ 10x1, (10)

The functionality constraints can also be used to specify
other path information: e.g., the else statement (B5) can be
executed at most once inside the loop:

x5 ≤ 1x1. (11)

All these constraints ((2) through (11)) are passed to the
ILP solver with the goal of maximizing cost function (1).
The ILP solver will return the estimated WCET and the
worst case values of the variables.

4 Instruction Cache Analysis

Our goal is to incorporate instruction cache memory anal-
ysis. In this paper we will restrict ourselves to direct-
mapped caches, however, this method can be extended to
set associative instruction caches. We would like to in-
clude this analysis into our ILP model shown in the pre-
vious section without changing the established linear con-
straints. This is accomplished by modifying the cost func-
tion (1) and by adding a set of linearcache constraints
representing the cache memory behavior. These will be de-
scribed in the following subsections.

4.1 New Cost Function

With cache memory, the execution time of an instruction
may be different depending on whether it results in a cache
hit or cache miss. Thus, we need to subdivide the original
instruction counts into counts of cache hits and misses. If
we can find these counts, and the hit and miss execution
times of each instruction, then a tighter bound on the ex-
ecution time of the program can be established. As in the
previous section, we can group the adjacent instructions to-
gether. We define a new type of atomic structure for analy-
sis, theline-blockor simplyl-block. A l-block is defined as
a contiguous sequence of instructions within the same ba-
sic block that are mapped to the same line in the instruction
cache. All instructions within anl-block will always have
the same cache hit/miss counts, and the same total execu-
tion counts.

Fig. 2(i) shows a CFG with 3 basic blocks. Suppose that
the instruction cache has 4 lines. For each basic block, we
find all the cache lines that instructions within it map to,
and add an entry on these cache lines in the cache table
(Fig. 2(ii)). The boundary of eachl-block is shown by the
solid line rectangle. Suppose a basic blockBi is partitioned
into ni l-blocks. We denote thesel-blocksasBi.1, Bi.2, . . . ,
Bi.ni .

For any twol-blocks that map to the same cache line,
theyconflict with each other if the execution of onel-block
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Fig. 2: An example showing how the l-blocks are constructed.
Each rectangle in the cache table represents a l-block .

will displace the cache content of the other. Otherwise,
they are callednon-conflicting l-blocks (e.g.B1.3 andB2.1
in Fig. 2).

Sincel-block Bi. j is inside the basic blockBi , its execu-
tion count is equal toxi . The cache hit and the cache miss
counts ofl-block Bi. j are denoted asxhit

i. j andxmiss
i. j respec-

tively, and

xi = xhit
i. j +xmiss

i. j , 1 ≤ j ≤ ni (12)

The new total execution time (cost function) is given by:

Total execution time =
N

∑
i

ni

∑
j

(chit
i. j x

hit
i. j +cmiss

i. j xmiss
i. j ). (13)

wherechit
i. j andcmiss

i. j are the hit cost and the miss cost of the
l-block Bi. j respectively.

Equation (12) links the new cost function (13) with the
program structural constraints and the program functional-
ity constraints, which remain unchanged. In addition, the
cache behavior can now be specified in terms of the new
variablesxhit

i. j ’s andxmiss
i. j ’s.

4.2 Cache Constraints

These constraints are used to constrain the hit/miss counts
of the l-blocks. Consider a simple case. For each cache
line, if there is only onel-block Bk.l mapping to it, then
onceBk.l is loaded into the cache it will permanently stay
there. In other words, only the first execution of thisl-
block may cause a cache miss and all subsequent execu-
tions will result in cache hits. Thus,

xmiss
k.l ≤ 1. (14)

A slightly more complicated case occurs when two or
morenon-conflicting l-blocksmap to the same cache line.
The execution of any of them will load all thel-blocks
into the cache line. Therefore, the sum of their cache miss
counts is at most one. In this example, the constraint is:

xmiss
1.3 +xmiss

2.1 ≤ 1. (15)
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Fig. 3: A general cache conflict graph containing two conflict-
ing l-blocks .

When a cache line contains two or moreconflicting l-
blocks, the hit/miss counts of all thel-blocksmapped to
this line will be affected by the sequence thesel-blocksare
executed. An important observation is that the execution of
any otherl-blocksfrom other cache lines will have no ef-
fect on these counts. This leads us to examine the control
flow of thel-blocksmapped to that particular cache line by
defining acache conflict graph.

4.3 Cache Conflict Graph

A cache conflict graph (CCG) is constructed for every
cache line containing two or more conflictingl-blocks. It
contains a start node ‘s’, an end node ‘e’, and a node ‘Bk.l ’
for everyl-block Bk.l mapped to the same cache line. The
start node represents the start of the program, and the end
node represents the end of the program. For every node
‘Bk.l ’, a directed edge is drawn from nodeBk.l to nodeBm.n
if there exists a path in the CFG from basic blockBk to ba-
sic blockBm without passing through the basic blocks of
any otherl-blocksof the same cache line. If there is a path
from the start of the CFG to basic blockBk without going
through the basic blocks of any otherl-blocksof the same
cache line, then a directed edge is drawn from the start
node to nodeBk.l . The edges between nodes and the end
node are constructed analogously. Suppose that a cache
line contains only two conflictingl-blocks Bk.l andBm.n. A
possible CCG is shown in Fig. 3. The program control be-
gins at the start node. After executing some otherl-blocks
from other cache lines, it will eventually reach any one of
nodeBk.l , nodeBm.n or the end node. Similarly, after ex-
ecutingBk.l , the control may pass through somel-blocks
from other cache lines and then reach to nodeBk.l again or
it may reach nodeBm.n or the end node.

For each edge from nodeBi. j to nodeBu.v, we assign a
variablep(i. j ,u.v) to count the number of times that the con-
trol passes through that edge. At each nodeBi. j , the sum
of control flow going into the node must be equal to the
sum of control flow leaving the node, and it must also be

equal to the execution count ofl-block Bi. j . Therefore, two
constraints are constructed at each nodeBi. j :

xi = ∑
u.v

p(u.v,i. j) = ∑
u.v

p(i. j ,u.v), (16)

where ‘u.v’ may also include the start node ‘s’ and the
end node ‘e’. Note that this set of constraints links thep-
variables to the program structural and functionality con-
straints via thex-variables.

The program is executed once, so at start node:

∑
u.v

p(s,u.v) = 1. (17)

The variablep(i. j ,i. j) represents the number of times that
the control flows intol-block Bi. j after executingl-block
Bi. j without entering any otherl-blocksof the same cache
line in between. Therefore, the contents ofl-block Bi. j are
still in the cache every time the control follows the edge
(Bi. j ,Bi. j ) to reach nodeBi. j , and it will result in a cache
hit. Thus, there will be at leastp(i. j ,i. j) cache hits forl-
block Bi. j . In addition, if both edges (Bi. j ,e) and (s,Bi. j ) ex-
ist, then the contents ofBi. j may already be in cache at the
beginning of program execution as its content may be left
by the previous program execution. Thus, variablep(s,i. j)
mayalso be counted as a cache hit. Hence,

p(i. j ,i. j) ≤ xhit
i. j ≤ p(s,i. j) + p(i. j ,i. j). (18)

Otherwise, if any of edges (s,Bi. j ) and (Bi. j ,e) does not ex-
ist, then

xhit
i. j = p(i. j ,i. j). (19)

Equations (14) through (19) are the possible cache con-
straints for bounding the cache hit/miss counts. These con-
straints, together with (12), the structural constraints and
the functionality constraints, are passed to the ILP solver
with the goal of maximizing the cost function (13). Be-
cause of the cache information, a tighter estimated WCET
will be returned. Further, some path sequencing informa-
tion can be expressed in terms ofp-variables as extra func-
tionality constraints. The CCGs are network flow graphs
and thus the cache constraints are typically solved rapidly
by the ILP solver. In the worst case, there is one CCG for
each cache line.

4.4 Bounds onp-variables

In this subsection, we discuss bounds on thep-variables.
Without the correct bounds, the solver may return an in-
feasiblel-block count and an overly pessimistic estimated
WCET. This is demonstrated by the example in Fig. 4. In
this example, the CFG contains two nested loops. Sup-
pose that there are two conflictingl-blocks B4.1 andB7.1.
A CCG will be constructed (Fig. 4(ii)) and the following
cache constraints will be generated:
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Fig. 4: An example showing two conflicting l-blocks (B4.1 and
B7.1) from two different loops. The italicized numbers shown
on the left of the variables are the pessimistic worst case so-
lution returned from ILP solver.

x4 = p(s,4.1) + p(4.1,4.1) + p(7.1,4.1)

= p(4.1,e) + p(4.1,4.1) + p(4.1,7.1) (20)

x7 = p(s,7.1) + p(7.1,7.1) + p(4.1,7.1)

= p(7.1,e) + p(7.1,7.1) + p(7.1,4.1) (21)

p(s,4.1) + p(s,7.1) + p(s,e) = 1 (22)

p(4.1,4.1) ≤ xhit
4 ≤ p(s,4.1) + p(4.1,4.1) (23)

p(7.1,7.1) ≤ xhit
7 ≤ p(s,7.1) + p(7.1,7.1). (24)

Suppose that the user specifies that both loops will be
executed 10 times each time they are entered and that ba-
sic blockB4 will be executed 9 times each time the outer
loop is entered. The functionality constraints for this in-
formation are:

x3 = 10x1, x7 = 10x5, x4 = 9x1. (25–27)

If we feed the above constraints and the structural con-
straints into the ILP solver, it will return a worst case so-
lution in which the counts are as shown on the left of the
variables in the figure.

From the CCG, we observe that thesep-values imply
thatl-blocks B4.1 andB7.1 will be executed alternately, with
l-block B7.1 being executed first. This execution sequence
will generate the maximum number of cache misses and
hence the WCET. However, if we look at the CFG, we
know that this sequence is impossible because the inner
loop will be entered only once. Once the program con-
trol enters the inner loop,l-block B7.1 must be executed
10 times before control exits the inner loop. Hence, there
must be at least 9 cache hits forl-block B7.1. The ILP
solver over-estimates the number of cache misses based on
the given constraints. Upon closer investigation, we find
that the correct solution also satisfies the above set of con-
straints. This implies that some constraints for tightening
the solution space are missing.

The reason for producing such pessimistic worst case
solution is that thep-variables are not properly bounded.
When we assign thep-variables to the edges of the CCG,
we do not specify any upper limits of thesep-variables.
However, the flow equations (16) place a bound on them.
For any variablep(i. j ,u.v), its bounds are:

0 ≤ p(i. j ,u.v) ≤ min(xi ,xu). (28)

Consider the case that two conflictingl-blocks Bi. j and
Bu.v are in the same loop and at the same loop nesting level.
In this case the maximum control flow allowed between
these twol-blocks is equal to the total number of loop it-
erations. This will be the upper bound onp(i. j ,u.v). Since
l-blocks Bi. j andBu.v are inside the loop,xi andxu can at
most be equal to the total number of loop iterations. There-
fore, (16) will boundp(i. j ,u.v) correctly.

Suppose that there are two nested loops such thatl-
block Bi. j is in the outer loop whileBu.v is in the inner loop.
If edge (Bi. j ,Bu.v) exists, all paths represented by this edge
go from basic blockBi to basic blockBu in the CFG. They
must pass through the loop preheader1, say basic blockBh,
of the inner loop. Since the execution count of basic block
Bh, xh, may be smaller thanxi andxu, a constraint

p(i. j ,u.v) ≤ xh (29)

is needed to properly boundp(i. j ,u.v).
In general, a constraint is constructed at each loop pre-

header. All the paths that go from outside the loop to inside
the loop must pass through the loop preheader. Therefore,
the sum of these flows can at most be equal to the execu-
tion count of the loop preheader. In our example, a con-
straint at loop preheaderB5 is needed:

p(s,7.1) + p(4.1,7.1) ≤ x5. (30)

1A loop preheader is the basic block just before entering the loop. For
instance, in the example shown in Fig. 4, basic blockB1 is the loop pre-
header of the outer loop and basic blockB5 is the loop preheader of the
inner loop.



With this constraint, the ILP solver will generate a correct
solution.

5 Interprocedural Calls

So far our cache analysis discussion has been limited to
a single function. In this section, we show how function
calls are handled.

A function may be called many times from different lo-
cations of the program. The variablexi represents thetotal
execution count of the basic blockBi when the whole pro-
gram is executed once. Similarly,xhit

i. j andxmiss
i. j represents

the total hit and miss counts of thel-block Bi. j respectively.
Equation (12) is still valid and (13) still represents the total
execution time of the program.

Every function call is treated as if it is inlined. During
the construction of CFG, a function call is represented by
an f -edge pointing to an instance of the callee function’s
CFG. The edge has a variablefk which represents the num-
ber of times that the particular instance of the callee func-
tion is called. Each variable and name in the callee func-
tion has a suffix “. fk” to distinguish it from other instances
of the same callee function.

Consider the example shown in Fig. 5. Here, function
inc is called twice in themain function. The CFG is
shown in Fig. 5(ii). The structural constraints are:

d1 = 1 (31)

x1 = d1 = f1 (32)

x2 = f1 = f2 (33)

d2. f1 = f1 (34)

x3. f1 = d2. f1 = d3. f1 (35)

d2. f2 = f2 (36)

x3. f2 = d2. f2 = d3. f2 (37)

x3 = x3. f1 +x3. f2 (38)

The last equation above links the total execution counts
of basic blockB3 with its counts from two instances of
the function. Based on these variables, the user can pro-
vide specific information on different instances of the same
function.

The CCG is constructed as before by treating each in-
stance ofl-block Bi. j . fk as different from other instances
of the samel-block. In the example, ifl-block B1.1 con-
flicts with l-block B3.1, then sincel-block B3.1 has two in-
stances (B3.1. f1 andB3.1. f2), there will be 5 nodes in the
CCG (Fig. 5(iii)).

The cache constraints and the bounds onp variables are
constructed as before, except the hit constraints are modi-
fied slightly. In addition to the self edges, the edge going
from one instance of al-block (sayBi. j . fk) to another in-
stance of the samel-block (Bi. j . fl ) are counted as the cache

hit of the l-block Bi. j , as it represents the execution ofl-
block Bi. j at fl after the samel-blockhas just been executed
at fk. The complete cache constraints derived from the ex-
ample’s CCG are:

x1 = xhit
1.1 +xmiss

1.1 (39)

x2 = xhit
2.1 +xmiss

2.1 (40)

x3 = xhit
3.1 +xmiss

3.1 (41)

xmiss
2.1 ≤ 1 (42)

x1 = p(s,1.1) = p(1.1,3.1. f1) (43)

x3. f1 = p(1.1,3.1. f1) = p(3.1. f1,3.1. f2) (44)

x3. f2 = p(3.1. f1,3.1. f2) = p(3.1. f2,e) (45)

p(s,1.1) = 1 (46)

xhit
1.1 = 0 (47)

xhit
3.1 = p(3.1. f1,3.1. f2). (48)

6 Implementation & Hardware Modeling

The above cache analysis method has been included into
our original tool cinderella , which estimates the
WCET of programs running on an Intel QT960 develop-
ment board [8] containing an 20MHz Intel i960KB proces-
sor, 128KB of main memory and several I/O peripherals.
The i960KB processor is a 32bit RISC processor used in
many embedded systems (e.g. in laser printers). It contains
an on-chip 512 byte direct-mapped instruction cache orga-
nized as 32�16-byte lines. It also features a floating point
unit, a 4-stage instruction pipeline, and 4 register windows
[9, 10].

The hit costchit
i. j of a l-block Bi. j is found by adding up

theworst caseeffective execution times of the instructions
in the l-block. This may induce some pessimism inchit

i. j .
Additional time is also added to the lastl-blockof each ba-
sic block so as to ensure that all the buffered load/store in-
structions are completed when the control exits the basic
block. The miss costcmiss

i. j is equal to the hit costchit
i. j plus

the cache miss penalty.
Cinderella contains about 15,000 lines of C++

code. It reads the subject program’s executable code and
constructs the CFGs and the CCGs. It then outputs the an-
notation files in which thex’s and f ’s are labelled along
with the program’s source code. The user is then asked to
provide loop bounds. A WCET bound can thus be com-
puted and additional path information can be provided.
The constraints are solved by the public domain ILP solver
lp solve 2, which uses the branch and bound procedure
to solve ILP problems.

An optimization implemented incinderella actu-
ally reduces the number of CCGs and variables. If two or

2lp solve is written by Michel Berkelaar and can be retrieved from
ftp://ftp.es.ele.tue.nl/pub/lp solve .



void main()
{

B1 inc(&i);
B2 inc(&j);

}

void inc(int *pi)
{

B3 *pi++;
}

B1

B2

x1

x3.f1d1

f1

B3.f1

f2

x2

B3.1.f1

B1.1

d2.f1

d3.f1

x3.f2 B3.f2 B3.1.f2

d2.f2

d3.f2

s

e

B3.1.f2B3.1.f1B1.1
p(1.1,3.1.f1)

p(3.1.f1,3.1.f2)

p(3.1.f2,e)

p(s,1.1)

(i) Code fragment (ii) CFG with two instances of function inc (iii) CCG

Fig. 5: An example code fragment showing how function calls are handled.

Table 1: Set of Benchmark Examples, their descriptions,
source file line size and the binary executable code size.
Function Description Lines Bytes
check data Example from Park’s thesis [11] 17 88
piksrt Insertion Sort 15 80
line Line drawing routine in Gupta’s thesis [12] 143 1,556
circle Circle drawing routine in Gupta’s thesis 88 1,588
fft Fast Fourier Transform 56 544
des Data Encryption Standard 185 1,796
fullsearch MPEG2 encoder frame search routine 204 1,436
whetstone Whetstone benchmark 245 2,760
dhry Dhrystone benchmark 480 1,360
matgen Matrix routine in Linpack benchmark 50 248

more cache lines can hold instructions from the same set of
basic blocks, e.g. cache lines 0 and 1 in Fig. 2(ii), then the
correspondingl-blockscan be combined and only a single
CCG is needed. The combined block is calledextended-l-
blockor e-block.

7 Experimental Results

Our goal is to find a tight bound on a program’s WCET.
Some small amount of pessimism is normally present in
the estimated bound. This is due to two factors: (i) insuf-
ficient path information from the user so that some infea-
sible program paths are considered, and (ii) inaccuracy in
microarchitectural modeling which effects the accuracy of
the values ofchit

i. j ’s andcmiss
i. j ’s in (13).

In this section, we would like evaluate the accuracy of
our cache analysis method as well as examine its perfor-
mance issues. Since there are no standard benchmark pro-
grams, we have selected the set of benchmark programs
from [1] for our evaluation. This set includes programs
from academic sources, DSP applications, and other stan-
dard software benchmarks. Table 1 shows the program
names, brief descriptions, the size of the source code in
lines and the executable code size of the program in bytes.

Since it is impractical to simulate all the possible pro-
gram input data and all initial system states, a program’s

Table 2: Estimated WCETs of Benchmark programs. All val-
ues are in units of clock cycles.

Function Measured Estimated WCET Estimated WCET
WCET with cache analysis w/o cache analysis

check data 4.41�102 4.91�102 11.9�102

piksrt 1.79�103 1.82�103 5.01�103

line 4.85�103 6.09�103 9.15�103

circle 1.45�104 1.53�104 1.59�104

fft 2.05�106 2.71�106 4.04�106

des 2.42�105 3.66�105 6.69�105

fullsearch 6.25�104 9.57�105 29.0�105

whetstone 6.83�106 10.2�106 14.9�106

dhry 5.52�105 7.53�105 13.3�105

matgen 9.28�103 10.9�103 17.2�103

actualWCET cannot be computed. Instead, we try to iden-
tify the worst case data set by a careful study of the pro-
gram and measure the program’s execution time for this
worst case data set. We initialize the program with its as-
sumed worst case data set and then run it in a loop sev-
eral hundred times and measure the elapsed time. At the
beginning of each loop iteration, the instruction cache is
flushed. Since this elapsed time includes the overhead to
do the loop iteration and cache flushing, we also run an
empty loop and measure its execution time. The differ-
ence between these two times is themeasuredWCET of
the program. We assume that themeasuredWCET of a
program is very close to itsactualWCET.

Table 2 shows the results of our experiments. Clearly
the estimated WCET with cache analysis is much tighter
than the one without it. For small integer programs
(e.g. check data and piksrt ) it is very close to the
measured WCET. The difference between the measured
WCET and the estimated WCET is mainly due to the
pessimism in the execution-time estimates of function
call/return instructions. For other programs, the differ-
ences are mainly due to the pessimism in the execution
times of floating point instructions.

Table 3 shows, for each program, the number of vari-
ables and constraints used, the number of branches in solv-



Table 3: Performance issues in cache analysis.
Function No. of Variables No. of Constraints ILP Time

d’s f ’s p’s x’s Struct. Cache Funct. branches (sec.)
check data 12 0 0 40 25 20 4 1 0
piksrt 12 0 0 38 22 21 4 1 0
line 31 2 264 231 73 60 2 1 0
circle 8 1 81 100 24 186 1 1 0
fft 31 0 15 92 52 70 12 1 0
des 174 11 1,068 550 342 1,165 16+16 5+5 87+86
fullsearch 371 3 1,402 678 572 1,754 43 1 28
whetstone 52 3 564 400 108 834 13 1 3.5
dhry 102 21 607 504 289 794 12+13+13 1+1+1 6+5+5
matgen 24 0 0 78 43 42 5 1 0

ing the ILP problem, and the time required to solve the
problem. Since each program may have more than one set
of functionality constraints [1], a ‘+’ symbol is used to sep-
arate the number of functionality constraints in each set.
For a program havingn sets of functionality constraints,
the ILP solver will be calledn times. The ‘+’ symbol is
once again used to separate the number of ILP branches
and the CPU time for each ILP call.

We found that even with thousands of variables and
constraints, the branch and bound ILP solver can still find
the solution within the first few calls to the LP solver. The
time taken to solve the problem ranges from less than a
second to a few minutes on a SGI Indigo2 workstation.
With a commercial ILP solver CPLEX, CPU time reduces
significantly to a few seconds.

8 Conclusions and Future Work

In this paper, we present a method to find a tight bound
on the worst case execution time of embedded software
that includes direct-mapped instruction cache analysis. It
uses an integer linear programming formulation to solve
the problem. This approach does not impose any pes-
simistic assumptions on the cache activity and it avoids
enumeration of program paths. Furthermore, it allows the
user to provide additional annotation on feasible and infea-
sible program paths. The method is implemented in the
tool cinderella . Experimental results show that the
estimated WCET is much closer to the measured WCET
than if cache analysis is not included. Since the linear con-
straints are mostly derived from network flow graphs, the
ILP problems are typically solved efficiently.

In future, we would like to extend the current method
to handle set-associative instruction caches, as well as data
cache memory. We would also like to portcinderella
to analyze programs running on other hardware platforms.
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