
LOT: Logic Optimization with Testability -

New Transformations using Recursive Learning �

Mitrajit Chatterjee Dhiraj K. Pradhan Wolfgang Kunz

Laboratory for Computer and Digital Systems

Department of Computer Science

Texas A & M University

College Station, TX 77843.

Abstract: A new approach to optimize multi-level
logic circuits is introduced. Given a multi-level cir-
cuit, the synthesis method optimizes its area, simulta-
neously enhancing its random pattern testability. The
method is based on structural transformations at the
gate level. New transformations involving EX-OR
gates derived based on indirect implications by Re-
cursive Learning have been introduced in the synthe-
sis of multi-level circuits. This method is augmented
with transformations that speci�cally enhance random-
pattern testability while reducing the area. Testabil-
ity enhancement is an integral part of our synthesis
methodology. Experimental results show that the pro-
posed methodology can not only realize lower area, but
also achieves better testability compared to testability
enhancement synthesis tools such as tstfx. Speci�cally
for ISCAS-85 benchmark circuits, it was observed that
EX-OR gate-based transformations can yield smaller
circuits compared to state-of-the-art logic optimization
tools like SIS and HANNIBAL.

1 Introduction
Traditional goals in all automatic synthesis and op-

timization of multi-level combinational circuits [10, 8,
6, 4, 3, 5, 11] include low area, high performance and
power. In almost all cases, synthesis of multi-level
circuits only concentrates on one of its goals and ig-
nores other design requirements. With the growing
demand in e�ective automatic synthesis methods, tar-
getting multiple design requirements is of practical im-
portance. Although EX-OR gate-based synthesis [18]
of two or three-level logic has been explored, no work
has yet been reported on multi-level logic synthesis us-
ing EX-OR gates. E�cient usage of EX-OR gates in
multi-level circuits can be advantageous to a variety
of circuits. These EX-OR gates can not only reduce
the circuit area but also, they make the circuit more
easily testable [20, 22]. In this paper, synthesis is done

�Research reported is supported partly by NSF grant MIP

9406946 and ONR grant # N00014-92-J-1366. W. Kunz has

a joint appointment with Texas A&M University and Max-

Planck-Society, Fault Tolerant Computing Group, Potsdam,

Germany. This work is a collaborative research e�ort between

the two instituitions.

with reference to area optimization and random pat-
tern testability enhancement. Transformations done
during synthesis include new transformations intro-
ducing EX-OR gates in multi-level circuits. Our syn-
thesis method, Logic Optimization with Testability
(LOT), can target area optimization as well as ran-
dom pattern testability. Also, for the �rst time, a uni-
form framework is provided able to integrate multiple
design goals in a single tool. It is important to note
that transformations using indirect implications [1, 3]
provide a powerful, uni�ed theory for the entire syn-
thesis process. Further extensions of this framework
to delay optimization is currently underway.

The synthesis procedure is based on the gate-level
description of a multi-level circuit. It has been ob-
served that the logic optimization with Boolean trans-
formations at the structural level [4, 9, 5, 3] can be
more memory-e�cient [3] and closer to the physical re-
ality of the design compared to a functional level logic
optimization based on Boolean networks or BDDs
[10, 11]. Furthermore, working on the gate-level can
give a better view of other design costs during syn-
thesis. Our synthesis method applies logic transfor-
mations to a multi-level circuit to yield reduced area
as well enhances random testability. The transforma-
tions used here are of two types:
(a) Transformations based on indirect implications de-
rived by recursive learning [3, 1].
(b) New transformations using EX-OR gates.
The transformations of the �rst type make use of ef-
�cient redundancy identi�cation techniques to make
a wide range of circuit transformations. These trans-
formations can perform arbitrary manipulations in a
combinational network [3], thus covering a large de-
sign space. The transformations of the second type are
based on introduction of EX-OR gates in the circuit.
Using EX-OR gates as primitive gates in digital cir-
cuits has drawn attention in synthesis [18, 19, 22], par-
ticularly in implementing arithmetic and linear func-
tions, telecommunication, encryption and encoding
schemes [18]. Recent designs of PLD and FPGAs are
also including EX-OR gates in their logic units. More-
over, circuits with more EX-OR gates tend to be more
testable [20, 22]. Transformations of both types can

be used iteratively to yield an optimized circuit.
While most of these tools ensure that all faults of in-

terest are testable, random testability [21] of the faults,
used in the context of built-in-self-test (BIST), is not
considered. Sythesis techniques presented to date for
random pattern testable circuit required two-level cir-
cuit description as input [12, 13, 14]. Our technique
presented here di�ers in that it can take any multi-
level circuit as input to the synthesis tool. Therefore,
it is more versatile in the environment of engineer-
ing changes. In addition, our tool relies on the uni-
fying theory of transformations through indirect im-
plications [1, 3] to achieve both area optimization and
testability.

The paper is organized as follows. The next Sec-
tion provides a brief summary of previous work. Sec-
tion 3 outlines some preliminaries and reviews logic
synthesis using Implication-based Boolean (IB) Trans-
formations. Section 4 introduces new transformations
based on EX-OR gates. Section 5 presents synthesis
for area optimization and its performance in ISCAS-85
benchmark circuits. Section 6 describes an algorithm
for random pattern testability enhancement present-
ing related experimental results. We conclude in Sec-
tion 7.

2 Previous Work
A survey of multi-level combinational logic opti-

mization techniques based on Boolean networks can
be found in [11]. Logic synthesis based on struc-
tural transformations has been e�ectively applied in
[4, 9, 3, 5]. Synthesis for area optimization was done
by transformations [4, 5] using redundancy elimina-
tion based on adding and removing connections in the
circuit. These transformations were also applied in
the form of permissible bridges after technology map-
ping in [9]. A generalized form of the IB transfor-
mations, based on orthonormal expansions, have been
presented in [3].

Logic synthesis, with extensive use of EX-OR gates,
has been limited to two-level (AND-EXOR) and three-
level (AND-OR-EXOR) designs (see [18]). These
methods develop algorithms for optimizing exclusive-
or sum-of-products yielding a minimum number of
product terms. Earlier, [20, 22] have shown that EX-
OR gates enhance testability for AND-EXOR designs.

Logic synthesis with testability enhancement has
been studied at various levels of synthesis - start-
ing from high-level synthesis to technology mapping
[17]. In the context of random testable logic synthe-
sis of the unmapped circuit, previous research con-
sists of redundancy removal from combinational cir-
cuits [11], synthesis of fully testable circuits [8, 15],
testability-preserving of multiple stuck-at-faults, path
delay faults [17] and synthesis of random testable cir-
cuits from two-level circuits [13, 14].

It has been proposed in [12] that careful assign-
ment of don't cares of functions and redundant lines
can improve the detectability pro�le of circuits. The
two previous random pattern testable circuit synthe-
sis methods [13, 14] start with a two-level circuit, �rst
determing the random testability of the circuit and
identifying the hard faults. Multi-level circuits are

synthesized from two-level circuits using transforma-
tions, each step being evaluated based on its impact on
the random testability of the circuits.The transforma-
tions in [13] are limited to algebraic factors, namely
kernels and common cubes. The algebraic transfor-
mations used in [14] include single cube division, dou-
ble cube division and some double cube divisions with
multiple outputs. The synthesis procedure in [13] also
uses testability-preserving transformations proposed
in [8, 15] and inserts test points based on fault de-
tection probabilities.

3 Transformations for Synthesis
The proposed synthesis method takes as its input

a multi-level combinational circuit and optimizes area
while enhancing testability. The cost function used,
therefore, can include both area and random pattern
testability. Structural transformations are used to
minimize the cost function. This Section gives the ba-
sic preliminaries for synthesis, and presents the trans-
formations to be used here.

3.1 Preliminaries
Assume a combinational circuit, C, is given with n

primary inputs and m primary outputs. The combi-
national circuit consists of primary gates like AND,
OR, NOT, NAND, NOR and EX-OR gates. All gates
in the circuit have a unique label and their output
signals, yi, realize Boolean functions yi(~x): Bn

2 !

B2 with B2 = f0,1g, where the variable x1; ::xn cor-
responds to the primary input signals of the circuit
C. Following the usual representation of a combina-
tional circuit as a directed acyclic graph (DAG), a
signal f lies in the transitive fanout of y if and only if
there exists a directed path from y to f . Furthermore,
we assume that there are no external don't cares, the
function of the combinational network C(~x):Bn

2 !Bm
2

with B2 = f0,1g is completely speci�ed.
Two combinational networks, C and C0, are called

equivalent, denoted C = C0, if they implement the
same function C(~x):Bn

2 ! Bm
2 with B2 = f0,1g. A

transformation from a network C to another equiva-
lent network C0 is possible by replacing the node y
in C by a node y0 with an equivalent function. A
function at node y can also be replaced by some non-
equivalent function y0 if this does not change the func-
tion C(~x):Bn

2 ! Bm
2 of the logic network as a whole.

Such functions are called permissible functions [6].

3.2 Implication-based Boolean Transfor-
mations - Review

Indirect implications derived by using Recursive
Learning have been shown to be useful in testing veri-
�cation and optimization[1, 2, 3]. Given a set of value
assignments, Recursive Learning can be used to ob-
tain all indirect implications. The procedure allows
the user to set the maximum level of recursion to
control the computational time. Therefore, this pro-
vides a way of trading o� between time for transforma-
tions and redundancy removal. In this paper, we rely
on Boolean transformations derived by using indirect
implications. These transformations can be referred
here as Implication-based Boolean (IB) transforma-
tions. They have three main advantages :

Condition Transformations
1 y=0) f=1 y'= �f + yj1
2 y=0) f=0 y'= f + yj0
3 y=1) f=1 y'= f .yj1
4 y=1) f=0 y'= �f .yj0

Table 1: Transformations based on Implications

� They are simple and the cost of each transforma-
tion can be estimated with low time overhead.

� These transformations preserve the functionality
of the circuit and therefore there is no need to
verify for equivalence after transformation unlike
[5].

� The expansions based on IB transformations can
cover a wide variety of logic transformations [3].

The following reviews the basic transformations al-
ready presented in [3]. We enhance these transfor-
mations with new ones for our tool. The factorization
techniques commonly used in multi-level optimization
can be derived based on the expansion:

y(~x) = f(~x):y(~x) jf(~x)=1 + �f (~x):y(~x) jf(~x)=0 (1)

Here, we use the following notation, y = f:y j1 + �f :y j0
to represent the above equation.
The above expression can take the form of a di-
vision operation with f(~x) as the divisor, y(~x)
as the quotient, y(~x) jf(~x)=1 as the dividend and
�f (~x):y(~x) jf(~x)=0 as the remainder. The terms
y(~x) jf(~x)=1 and y(~x) jf(~x)=0 denote the cofactors of
this expansion. The above expression can be inter-
preted as a generalized form of the well-known Shan-
non expansion [3] The main issue of this approach is
to divide [11, 10] function y(~x) by appropriate divisors
f(~x) such that the exploitation of the internally cre-
ated don't cares results in a reduced circuit. Though
don't care conditions are not explicitly calculated, a
test pattern generation tool is used to remove the
redundancies resulting from these don't cares. This
leads to the following two-step process :
1. Transformation: y = f:y + �f :y
2. Reduction: Redundancy elimination.
The above can be seen as performing a special way

of doing a Boolean division [11] for some dividend y
and some divisor f (Boolean division is not unique).
The method to identify divisors is based on indirect
implications [1, 2]. If a value assignment at a node y
allows us to imply a unique value assignement at node
f , then the four transformations in Table 1 are valid
[3]. The node f must not be in the transitive fanout
of y, to ensure that the circuit remains combinational
after the transformation.

Example 3.1: Take the circuit shown in Fig1(a) as
an example. It can be observed that y = 0) f = 0
and transformation based on Condition 2 can be ap-
plied on the circuit. The resultant circuit is shown
in Fig 1(b). Redundancy elimination on the resultant
circuit would determine lines `c' and `d' to be as re-
dundant s-a-0 lines and hence, can be eliminated. The
�nal circuit after redundancy elimination is shown in
Fig 1(c).2.

d

a

c

b

f y

y’

y

a

b

c

d

f

a
b

yf

T2

(a) (b)

(c)

Figure 1: An example of an IB transformation.

Transformations identi�ed by `D-implications' [3]
are related to permissible functions.
De�nition 3.1: If f = U , U 2 0; 1 is a value assign-
ment at node f which is necessary to detect the fault,
y s-a-V , at least one primary output of the combi-
national network C, then y = �V `D-implies' f = U

and is denoted by: y = �V
D
! f = U . The conven-

tional implications can be viewed as a special case of
such D-implications. These implications can exploit
the controllability as well as the observability condi-
tions in the concerned nodes. The transformations
de�ned in [3] are the following :

Theorem 3.1: (Analogous to Condition 1) Let f
and y be arbitrary nodes in a combinational network
C where f is not in the transitive fanout of y and y is
an irredundant node in the network. The function y0

with y0 = y j1 + �f is a permissible function at node y

i� the D-implication y = 0
D
! f = 1 is true [3].2

Theorem 3.2 - 3.4: Analogous to Conditions 2 - 4.
Transformations 1-4: Transformations based on

Theorems 3.1-3.4 followed by redundancy removal.
D-implications to be used in the transformations

are determined by Recursive Learning. This is ac-
complished by two routines: make all implications()
and fault propagation learning(), as given in [1], if they
are performed to the Roth's �ve-valued logic alphabet.
The implication-based synthesis procedure only looks
at indirect implications as the promising candidates
for optimization.

4 Transformations with EX-OR gates
Circuits transformations based on Transformations

1 - 4 can make arbitrary manipulations in a combina-
tional network based on AND, OR and NOT gates. It
was observed that transformations involving EX-OR
gates can provide an added direction in the search for
circuit optimization. New implication-based transfor-
mations introduce EX-OR gates allowing (a) replacing
a 2-input gate with an EX-OR or EX-NOR gate and
(b) introducing an extra EX-OR gate. It may be noted
that, as in [3], these transformations are guaranteed
to preserve functionality. Also they introduce redun-
dancy in the circuit which, when removed, can often
lead to a reduced circuit.

4.1 Transforming Gate Functionality
Two-input gates in circuits can be transformed to

EX-OR gates or EX-NOR gates if they are permissi-
ble, based on implications [6, 5, 11]. However, a two-
input gate, when transformed to an EX-OR gate, does

a

b

c
d

ea1

a0
a

b

c
d

e

ea1

a0

(b)(a)

Figure 2: An example of Transformation 6.

a

b

c

e
d

a

b

c

e
d

d’

(b)(a)

Figure 3: An example of Transformation 8.

not necessarily enhance the random testability. If the
transformation is followed by some other transforma-
tions, as we show, the EX-OR gate may play an active
role in random testability enhancement. A two-input
AND (OR) gate or a two-input NOR (NAND) gate
can be transformed to an EX-NOR (EX-OR) gate due
to an observability don't care condition [11, 5]. We can
identify two such types of gate transformations. The
proofs the theorems can be found in [7].

Theorem 4.1: Let y be a node feeding from an AND
(NOR) gate with two inputs, a0 and a1. The condition

y = 0
D
! (a0 � a1 = 1) is said to exist if a change in

node y from 0 to 1 can only be observed at the primary
outputs if (a0�a1 = 1) and the AND (NOR) gate can
be replaced by a permissible EX-NOR gate.2

Theorem 4.2: Let y be a node feeding from an OR
(NAND) gate with two inputs, a0 and a1. The condi-

tion, y = 1
D
! (a0�a1 = 1) is said to exist if a change

in node y from 1 to 0 can only be observed at the pri-
mary outputs if (a0 � a1 = 1) and the OR (NAND)
gate can be replaced by a permissible EX-OR gate.2

Transformation 5-6: Transformations based on
Theorems 4.1-4.2 followed by redundancy removal.

Example 4.1: The circuit shown in Fig.2(a) can
be represented as (ab+bc+ca). At node d, the con-
dition for a change from 1 to 0, to be observed at e, is
f(a1,a0)=(0,1),(a1,a0)=(1,0)g. This condition can al-
low the two-input OR gate at node d to be transformed
to an EX-OR gate, (Transformation 6), yielding the
circuit in Fig.2(b).2

The search for such gate functionality transforma-
tions can be used iteratively between the other IB
transformations.

4.2 Transforming with EX-OR Gates
Based on D-Implication

In the above, we described how one can replace a
two-input gate with an EX-OR gate. The following
shows how one can combine lines through an addi-
tional EX-OR gate like it is done in Transformations
1-4. EX-OR gates can be introduced as permissible
functions based on conditions testing for line y stuck-
at-0 as well as the line y stuck-at-1. The following
transformations give the condition for introducing per-
missible EX-OR gates.

LOT - Area Optimization(Iter)
Begin

1. For i = 1 to Iter do
2. For each line y in the circuit do
3. Search for next possible indirect implication;
4. Make the appropriate transformation 1-8;
5. If area reduced or same, accept, else repeat;

End

Figure 4: Algorithm LOT for Area Optimization.

Theorem 4.3: Let f and y be arbitrary nodes in
a combinational network, C, where f is not in the
transitive fanout of y and y is an irredundant node in
the circuit. The function y0 with y0 = y j1 � f is a
permissible function at node y i� the D-implications

y = 0
D
! f = 0 and y = 1

D
! f = 0 are true.2

Theorem 4.4: Let f and y be arbitrary nodes in
a combinational network, C, where f is not in the
transitive fanout of y and y is an irredundant node in
the circuit. The function y0 with y0 = y j1 � �f is a
permissible function at node y i� the D-implications

y = 0
D
! f = 1 and y = 1

D
! f = 1 are true.2

Transformation 7-8: Transformations based on
Theorems 4.3-4.4 followed by redundancy removal.

Example 4.2: The circuit shown in Fig.3 illustrates
an example for Transformation 8. The conditions re-
quired to test d stuck-at 0 as well as d stuck-at 1 both
include the assignment (a = 1). Thus, from the def-

inition of D-implications, we get d = 0
D
! a = 1 and

d = 1
D
! a = 1 as true. The resultant circuit is shown

in Fig.3(b).2
The transformations introduced here are new and

can be used for area optimization as well as for random
testability enhancement in combinational circuits. In-
troduction of the EX-OR gate may result in more than
one line becoming redundant, thus aiding area opti-
mization. The EX-OR gate will also enhance the ob-
servability of all the faults in the input cone of, f ,
resulting in better random testability.
5 Synthesis for Area Optimization

Here, the main emphasis during optimization is
on area only. The new transformations introduced
in the paper are used in combination with the exist-
ing IB transformations [3] to get a stronger combi-
national multi-level area optimization tool. Applica-
tion of EX-OR based transformations is motivated by
the fact that optimized AND-EXOR expressions re-
quire fewer products than sum-of-product expressions
in many circuits [18]. E�cient library implementa-
tion of EX-OR gates can ensure that their extra de-
lay and area overhead is not signi�cant compared to
other gates and routing. EX-OR gates can be particu-
larly useful if they can replace several two-input gates.
Transformations are applied on the circuits based on
Transformations 1 - 8 and are accepted based on the
resultant area of the circuit. This method is greedy in
nature and accepts any of the transformations which
can reduce the area. The new transformations based
on Transformations 5 - 8 can cover new search spaces
during optimization and thus have the potential to

Circuit Original SIS 1.1 HANNIBAL LOT Time Comparison
No. Name 2-i/p GE 2-i/p GE 2-i/p GE 2-i/p GE hr:min LOT/SIS LOT/HANN

1 c432 175 123 104 105 00:05 0.85 1.01
2 c499 340 384 333 328 00:01 0.85 0.98
3 c880 320 300 291 286 00:03 0.95 0.98
4 c1355 496 384 379 328 00:03 0.85 0.86
5 c1908 530 357 356 328 00:15 0.92 0.92
6 c2670 780 533 516 520 00:20 0.97 1.01
7 c3540 1113 909 863 835 02:20 0.91 0.96
8 c5315 1746 1282 1364 1330 01:39 1.03 0.97
9 c6288 2384 2187 1871 1864 06:10 0.85 0.99
10 c7552 2367 1694 1352 1367 10:11 0.80 1.01

Table 2: Comparison of Area with SIS and HANNIBAL.

Circuit 2-i/p EX-OR Gates Total # of
Name Original LOT 2-i/p Gates
c432 18 0 105
c499 104 104 172
c880 0 27 245
c1355 0 104 172
c1908 0 63 234
c2670 0 52 442
c3540 0 131 780
c6288 0 15 1841
c7552 0 283 943

Table 3: Estimate of EX-OR gates.

create a smaller circuit. The procedure stops after a
pre-determined number of iterations across the circuit.
Experimental Results

Experiments were conducted on the ISCAS 85
benchmark circuits to demonstrate the combined
strength of the transformations. Our tool, LOT, has
been implemented by making extensions to the HAN-
NIBAL code [3] which also includes the public domain
fault simulator FSIM. A short pseudo-code of the im-
plementation has been presented in Fig. 4. The re-
sults, presented in Table 2, show that the new EX-
OR-based transformations can make a di�erence in
the area of the circuits. During area estimation, tech-
nology mapping would have given the best estimate of
the circuit area. However, we have used the number
of 2-input gates, denoted as 2-i/p GE (equivalent to
half the number of connections in [3]) to evaluate the
resultant area. Though a two-input EX-OR gate can
be counted as 2 two-input gates [18], here, a two-input
EX-OR gate is counted as 2.5 two-input gates (as in
[23]). This makes the comparison fairer. The circuits
synthesized by the proposed tool, LOT, were com-
pared with that synthesized by SIS 1.1 (script.rugged)
and HANNIBAL [3]. It may be seen that there is a
potential for smaller area by LOT when compared to
SIS and HANNIBAL. It is interesting to note that the
amount of savings for LOT over SIS has a similar pat-
tern to that over HANNIBAL, as shown in Fig. 5.
The synthesis time, as reported in the 7th column,
was measured in a Sparc 5 machine and is comparable
to [3]. The run-time can be much improved by a bet-
ter software implementation of the tool. One of the
areas we can obtain savings in time is in redundany

0.8

0.9

1.0

1.1

A
re

a
C

om
pa

ri
si

on

1 2 3 4 5 6 7 8 9 10

Circuits

LOT/SIS
LOT/HANN

Figure 5: Area Savings Compared to SIS & HANNI-
BAL.

removal by using a better test generation tool. One
other tradeo� that needs to be studied is increasing
the maximum level of Recursion Learning which can
yield more indirect implications, and therefore, more
exibility in the search for optimality.

Table 3 presents the number of EX-OR gates that
were used in the optimized circuits. The number of
two-input EX-OR gates has been presented in col-
umn 3. Column 4 gives the total number of two-input
equivalent gates in the circuit (as has been measured
in [5]). Here a 2-input EX-OR gate is counted as a
2-input gate. As can be observed, LOT incorporates
many EX-OR gates in the optimized circuit and uses
them in the circuit. As an example, it could iden-
tify all the EX-OR gate structures in c1355 and the
resultant structure is now similar to c499 (c1355 was
derived from c499 by transforming its XOR gates to
NAND gate representations).

6 Random Pattern Testability En-

hancement
The following describes the integrated framework

for the tool to simultaneously optimize area and en-
hance testability. The underlying philosophy here is to
integrate the primary objective of optimal area with a
secondary objective of testability. However, the pro-
posed framework allows for reordering and expanding
the objectives. For example, if the primary objective
is testability and the secondary objective, area, the or-
dering of the optimization procedures can be changed
as shown here.

E�ective BIST requires design of random pattern

y=0 ==> f=1
D

y

f f1

f2

f3

y y’

f

(b)(a)

Figure 6: Transformation 1 - an example.

testable circuits or design of test pattern generators
(TPGs) tailored for the circuit under test (CUT).
Those faults that need long TPG sequences for test-
ing are termed as hard-to-detect (HTD) faults. A less
randomly testable circuit will have a high number of
(HTD) faults. Standard techniques used to test HTD
faults, using shorter TPG sequences, use complex ad-
ditional hardware, either inside the circuit with ad-
ditional pins (test points) or in the TPG[21]. The
additional hardware incurred can be miminized if the
circuits are synthesized with a higher random pattern
testability.

During synthesis, most of the transformations ap-
plied here would result in reducing the area - but some
may increase the area to sacri�ce for better testabil-
ity. The two main features include a synthesis guid-
ance procedure based on random pattern testability
and a method for e�cient detection of the cost func-
tion of the circuit. The cost function here will depend
on the fault detection probabilities in the circuit and
an approximate estimate is used to guide the search.

6.1 Calculating Detection Probabilities
As the proposed synthesis procedure is guided by

the random testability of the combinational circuit at
each iteration, the approximate estimation of the de-
tection probabilities of the faults should have low time
overhead. Our synthesis method is based on statistical
estimation of fault detection probabilities, as proposed
in STAFAN [16]. STAFAN uses results on control-
lability of lines, as well as statistics on sensitization
frequency of lines computed by simulating a given set
of patterns on the circuit, to deduce fault detection
probabilities. Simulations are done to estimate the
controllabilities and path sensitization probabilities at
each line in the circuit. The method of calculating the
observabilities from the estimated parameters is de-
scribed in [16].

The proposed synthesis method begins by apply-
ing STAFAN Stafan() to estimate the fault detection
probabilities and identifying the HTD faults in the
given multi-level circuit. Here after, whenever the cir-
cuit is changed, there will be a change in the estimated
parameters in the circuit. If the testability has to be
measured at each iteration of the synthesis process,
estimating the parameters every time will be time-
consuming. The proposed synthesis method uses Up-
date Stafan()[7], where the earlier estimated parame-
ters are incrementally updated based on the change
in circuit structure and the detection probabilities are
re-evaluated. This estimation of fault detection prob-
ability is based on the nature of transformation made
on the circuit. As these estimates are approximate, we
use simulation for better parameter estimation after a
certain number of incremental updates.

1

2

3

4

5

6

7 9

10 11

12

8

7

5

6

3

4

11

12

9

10 13

1

2

4 = 1 3 = 1
D

11 = 1 3 = 1

CIRCUIT BCIRCUIT A

Figure 7: IB Transformations for Example 3.1
CIRCUIT A

CIRCUIT B

2

4

4

6

8

8 12

#

of

Flts

2 6 10

of Tests

Figure 8: Detectability Pro�le

Testability Cost: The testability cost (TC) takes
into account the change in the fault detection prob-
abilities of the HTD faults, as these faults impact
on the random pattern test length. In the pro-
posed method, HTD faults are those faults whose
fault detection probailities lie between PD min and
(PD min�PD range). PD min is the PD of the
node with the minimum fault detection probability.
PD range is a predetermined value, and depends on
the nature of the circuit. Thus, the TC of a transfor-
mation is given by :

TC =
X

8l2HTD

NEW PD(l) - OLD PD(l) (2)

6.2 Testability Enhancement Algorithm
Proposed is an algorithm that can be used to opti-

mize area with enhancement of random pattern testa-
bility. IB transformations which enhance random
testability can be classi�ed into two types:
(1) Type A: IB transformation enhancing testability
with no increase in area.
(2) Type B: IB transformation enhancing testability
with increase in area.
The proposed method uses both these transformations
iteratively in the synthesis process. It has been ob-
served that as a circuit is transformed during logic
synthesis to improve area or speed, its testing prop-
erty can change, often in unpredictable ways [15]. The
most important factor in such a procedure is the abil-
ity to identify transformations that are good for the
random testability of the circuit.

Example 3.1: Consider two circuits, A and B, in
Fig 7. Circuit A can be transformed to Circuit B us-
ing the transformation based on (line 11 = 1) ! (line
3 = 1). Furthermore, circuit B can be transformed
back to circuit A using the transformation (line 4 =

1)
D
! (line 3 = 1). It can be observed that both the cir-

cuits have the same area in terms of connections and
literal counts. Here, one can verify whether one of the
circuits is better than the other in random pattern
testability. The detectability pro�le of the circuits is
presented in Fig. 8. Note that circuit A has two HTD
faults (faults with only two test vectors) compared to
circuit B having three HTD faults. If we assume that

LOT - Random Testability(Iter)
Begin

1. Apply Stafan() on the initial circuit;
2. Phase Status = Phase 1;
3. For i = 1 to Iter do
4. If (Phase Status = Phase 1) Then
5. For each line y in the circuit do
6. Make Transformations 1 - 8;
7. Else
8. For each line y in the circuit do
9. Make Type B Transformations;
10. For each line y in the circuit do
11. Make Type A Transformations;
12. If (Testability reduced in last loop) then
13. Phase Status = Phase 2;

End

Figure 9: Algorithm LOT for Enhancing Testability.

all the test vectors are equiprobable, circuit A is a
more randomly testable circuit compared to circuit B.
Any synthesis method optimizing area or delay may
choose circuit B instead of circuit A and degrade ran-
dom pattern testability of the circuit. If the circuit is
a sub-circuit of a larger circuit, the test vectors at the
input of the sub-circuit may not be equiprobable and
the random testability might be di�erent.2

IB transformations of Type A are the area-
optimization Transformations 1 - 8. In the proposed
method, among these, only those transformations are
accepted where the estimated testability cost (equa-
tion 2) is positive. Thus, area optimization is allowed
with improvement of random pattern testability of the
circuit.

IB transformations of Type B, where the area can
be increased to enhance tesatbility involve addition
of redundant lines which improve the observability of
areas in the circuit containing a high concentration
of HTD faults. Addition of redundant lines will be
based on Transformations 1 - 4. Figure 6 gives the
example of Transformation 1. Note that such a trans-
formation enhances the observability at the vicinity of
the fanin cone of f : the shaded area in the Figure.
If this area consists of considerably fewer HTD faults,
the transformation does not make any improvement in
the random testability of the circuit. Transformations
where the area at the vicinity of the cone of f has
a large concentration of HTD faults and where y has
a high observability, are useful in enhancing random
pattern testability. The procedure tries to introduce a
large number of such redundant lines and ensures that
these lines are not removed in the next few iterations
during redundancy elimination.

The synthesis procedure, as shown in Figure 9, has
two Phases. In Phase 1, area optimization is done
on the circuit based on the earlier proposed IB trans-
formations (1 - 8). In Phase 2, we use Type B and
Type A transformations in order to realize testabil-
ity enhancement. The synthesis procedure starts with
Phase 1 and continues reducing the circuit size until
further reduction would reduce its testability. At this
point, the procedure changes to Phase 2 (steps 12-

13) and continues with transformations with testabil-
ity enhancement (steps 8-11). Phase 1 minimizes the
area without degrading the random testability where-
as Phase 2 tries to improve the random testability.

Though the above procedure concentrates only on
the testability, the emphasis on area optimization can
also be easily controlled. Our synthesis method can
iteratively use Phases 1 and 2 until the design goals are
met. Moreover, in this synthesis methodology we have
not considered the delay of the resulting circuit. The
IB transformations presented here can also be used
under the added contraint of the delay of the network.

Experimental Results
The PLA benchmarks were chosen for random pat-

tern testability enhancement because these circuits
and their multi-level implementation by SIS [10] have
poor random-pattern testability [14]. The synthesis
tool, LOT, takes in as its input the PLA benchmarks
synthesized by tstfx [14] and optimizes the resultant
multi-level circuit enhancing random testability.

To make the circuits compatable to our imple-
mentation, the multi-level circuits synthesized by
tstfx were mapped to a SIS library obtained from
mcnc.genlib; they contain no complex gates. The
mapped circuits were then synthesized by LOT. For
the sake of comparison, these circuits were also synthe-
sized by HANNIBAL [3], which only optimizes area.
The random testability of all the circuits was obtained
by using LFSR-generated pseudo-random sequences.
The test sequences for 100% single stuck-at fault cov-
erage presented are an average, over several di�erent
LFSR-generated sequences (typically, 5-10 primitive
polynomials were used). The circuit areas (Ar) were
compared based on 2-input GEs, as was done in the
earlier section. The results are presented in Table 4.
At the time of writing of this paper, we did not have
complete results on two well-known random pattern
resistant ISCAS 85 circuits (c2670 and c7552). Prelim-
inary results indicate signi�cant reduction in the frac-
tion of undetectable faults, when compared against
original circuits.

Comparison with tstfx : As can be observed from
Table 4, the proposed method improves both the area
and the random pattern test length of the circuits syn-
thesized by tstfx. The area of the tstfx-synthesized
circuits was further reduced by 36.1%, on the aver-
age, by LOT. For 7 out of the 10 circuits, there was a
considerable reduction in the test length by the syn-
thesis tool - the average ratio being equal to 4.32:1. In
particular, circuits with a high test length (in4, in7,
vg2, x1dn) have shown considerable improvement in
random testability.

Comparison with HANNIBAL: HANNIBAL opti-
mizes circuits only on the basis of area. When the
same circuits are optimized for random testability,
there is a slight increase in the area of the circuits, as
shown in Table 4. However, the increase in area is not
signi�cant - with the average being equal to 8%. On
the contrary, the test length for 100% fault coverage
was reduced by 37%. Though in many circuits, opti-
mization by HANNIBAL can reduce the test length,
the test length was found to increase in 3 out of the

Circuit tstfx Hannibal Name LOT tstfx/LOT Hannibal/LOT
Ar TL Ar TL Ar TL Ar TL Ar TL

b10 382 18.2K 280 18.0K 302 13.9K 1.22 1.31 0.93 1.30
b4 250 47.5K 179 57.0K 189 47.5K 1.33 1.00 0.95 1.20
gary 424 16.8K 288 17.6K 345 15.8K 1.23 1.00 0.89 1.12
in2 368 14.8K 180 12.9K 187 5.4K 2.04 2.76 0.95 2.39
in4 440 490K 197 38.5K 193 38.5K 2.27 12.7 1.02 1.00
in5 227 44.2K 159 34.4K 164 10.1K 1.38 4.36 0.97 3.39
in6 256 47.5K 180 57.0K 192 47.5K 1.20 1.00 0.94 1.20
in7 100 141K 59 53.4K 69 32.8K 1.26 4.29 0.86 1.62
vg2 177 857K 61 95.7K 61 95.7K 2.70 8.95 1.00 1.00
x1dn 251 707K 69 229K 93 143K 2:70 4.95 0.75 1.60

Average 1.56 4.32 0.93 1.58

Table 4: 100% Fault Coverage Test Length and Area Comparison.

10 circuits.
Comparison with SIS: It may be noted that circuits

synthesized by LOT are much more randomly testable
and area-comparable to those synthesized by SIS.

Therefore, in summary, LOT achieves signi�cantly
better testability with area, comparable to HANNI-
BAL. It also achieves signi�cant reduction in area and
testability, compared to tstfx, which is based on SIS.

7 Conclusions
A novel optimization procedure using recursive

learning-based implications is presented here. The
transformations proposed are based on (a) new logic
transformations based on EX-OR gates. (b) methods
to guide the synthesis process enhancing random pat-
tern testability and (c) heuristics to identify di�cult-
to-test faults. The new EX-OR logic transformations
developed with the primary objective of enhancing
observability di�culties also play an important role
in area optimization. Our synthesis scheme can be
applied to poor random-testable multi-level circuits
which were synthesized by another synthesis tool to
improve random testability, as well as area. Experi-
ments indicate improvement over other optimization
tools in terms of area as well as testability.

References
[1] W. Kunz, D.K. Pradhan, \Recursive Learning: A

New Implication Technique for E�cient Solution
to CAD Problems - Test, Veri�cation and Opti-
mization," IEEE Trans. on CAD, Sept., 1994.

[2] D.K. Pradhan, W.Kunz,\Method for Circuit Ver-
i�cation and Multi-level Circuit Optimization
based on Structural Implications,", Patent Appli-
cation # 08/263,721, Filed date June, 1994.

[3] W. Kunz, P.R. Menon, \Multi Level Logic Opti-
mization by Implication Analysis," ICCAD 1994.

[4] K.T. Cheng, L.A. Entrena,\Multi-level Logic Op-
timization by Redundancy Addition and Re-
moval," EDAC, pp. 373-377, 1993.

[5] S.C. Chang, M. Marek-Sadowska,\Perturb and
Simplify: Multi-Level Boolean Network Opti-
mizer," ICCAD, pp. 2-5, 1994.

[6] S. Muroga et. al, \The Transduction Method - De-
sign of Logic Networks Based on Permissible Func-
tions," IEEE Trans Compt., Oct 1989.

[7] M.Chatterjee, D.K.Pradhan, W.Kunz, \ATPG
-based Transformations for Random-Pattern
Testable Logic Synthesis," Tech. Report 95-024,
Computer Sc., Texas A&M University, 1995.

[8] J. Rajski et. al, \Testability Preserving Transfor-
mations in Multi-Level Logic Synthesis," Intl. Test
Conference, pp. 265-273, 1990.

[9] B. Roheisch, F. Berglez, \Introduction of Per-
missible Bridges with Application to Logic Op-
timization after Technology Mapping," Proc.
EDAC/ETC/EUROASIC, 1994.

[10] R.K. Brayton, et. al, \MIS: Multi-level Interac-
tive Logic Optimization System," IEEE Trans on
CAD, pp. 1062-1081, Nov., 1987.

[11] G. De. Micheli, \Synthesis and Optimization of
Digital Circuits," McGraw-Hill, Inc. 1994.

[12] A. Krasniewski, \Can Redundancy Enhance
Testability ?," Intl. Test Conference, 1991.

[13] N. Touba, E.J. McCluskey, \Automated Logic
Synthesis of Random Pattern Testable Circuits,"
Intl. Test Conference, pp. 174-183, 1994.

[14] C.H. Chiang, S.K. Gupta, \Random Pattern
Testable Logic Synthesis," ICCAD 1994.

[15] M.J. Batek, J.P. Hayes, \Test-Set Preserving
Logic Transformations," DAC, 1992.

[16] S.K. Jain, V. D. Agrawal, \Statistical Fault Anal-
ysis," IEEE Design Test Comp., pp. 38-44, 2(1).

[17] S. Gupta, \Synthesis of Testable Combinational
Circuits: An Overview of University Activities,"
Test Synth. Seminar, Intl. Test Conference, 1994.

[18] T. Sasao (ed.) Logic Synthesis and Optimization,
Kluwer Academic Publishers, 1993.

[19] T. Sasao, P. Besslich, \On the complexity of
MOD-2 sum PLA's,"IEEE Trans on Comput., vol.
39, No. 2, Feb. 1990.

[20] D.K. Pradhan, \Universal Test Sets for Multi-
ple Fault Detection in AND-EXOR Arrays", IEEE
Trans. Compt., Vol. C{27, pp. 181{187, Feb 1978.

[21] M. Abramovichi, M.A. Breuer, A.D. Friedman,
\Digital Testing and Testable Design," Compter
Science Press.

[22] A. Sarabi, et. al, \Design of Testability Properties
of AND/XOR Networks," IFIP WG 10.5 Work-
shop on Applications on Reed-Muller Expansion
in Circuit Design, Germany, Sept., 1993.

[23] J. Hartmann, G. Kemnitz, \How to do weighted
random testing for BIST ?," ICCAD, 1993.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

