
Optimal Wire Sizing and Bu�er Insertion for Low Power and a

Generalized Delay Model

John Lillis, Chung-Kuan Cheng Ting-Ting Y. Lin
Dept. of Computer Sci. & Engr. Dept. of Elect. & Computer Engr.

University of California, San Diego
La Jolla, CA 92093-0114

Abstract

We present e�cient, optimal algorithms for tim-
ing optimization by discrete wire sizing and bu�er in-
sertion. Our algorithms are able to minimize dy-
namic power dissipation subject to given timing con-
straints. In addition, we compute the complete power-
delay tradeo� curve for added
exibility. We extend
our algorithm to take into account the e�ect of signal
slew on bu�er delay which can contribute substantially
to overall delay. The e�ectiveness of these methods is
demonstrated experimentally.

1 Introduction
Timing optimization techniques for VLSI circuits

have received much attention in recent years due to
increasingly aggressive designs and technology trends
such as shrinking geometries. This work focuses on
two such techniques: wire sizing and bu�er insertion.

With the advent of sub-micron geometries, wire re-
sistance has become a signi�cant contributor to signal
delay and cycle time. However, signi�cant improve-
ments in delay can be achieved by selectively widening
some of the wires of a routing tree. Such wire sizing is
useful for both on-chip and for inter-chip (e.g. MCM)
interconnects.

Previous work on wire sizing includes the works of
Cong, Leung, Zhou and Koh [3, 1, 2], the work of Sap-
atnekar [8] and the authors previous work [7]. Cong
et. al. studied the problem of minimizing the weighted
sum of source-to-sink Elmore delays. Determination
of weighting coe�cients is presumably done by the de-
signer. They also proposed an additive weighted term
for power. Sapatnekar [8] studied the more common
metric of maximum source-to-sink delay. He noted
that the separability property used by Cong and Leung
in designing their algorithm did not hold in this case.
He proposed a geometric programming approach to the
continuous wire-sizing problem of minimizing power for
given timing constraints followed by a mapping heuris-
tic to discretize the solution. Recently [7] gave a dy-
namic programming algorithmwhich exploited the fact
that wire segment lengths are discrete in nature lead-
ing to the observation that, over all width assignments
to a sub tree, the number of distinct capacitive values
at the root is polynomially bounded. This yielded a
polynomial time minimumdelay wire sizing algorithm.
However, power was not explicitly taken into account.

Bu�er insertion is a powerful technique largely be-
cause of the decoupling property of bu�ers. Much pre-

vious research on bu�er insertion (or fanout optimiza-
tion) focused on construction of bu�er trees before lay-
out (for example, [10]). In contrast, [11], [7] and [6]
attack the problem after layout information is avail-
able. For reasons of routability and rising interconnect
delay, we propose that such an approach is preferred.

In [11] van Ginneken gave an elegant polynomial
time algorithm for delay-optimal bu�er insertion into a
given topology. He extended his algorithm to minimize
the number of bu�ers subject to timing constraints.
Implementation details of this extension were not given
and signal slew was not taken into account. In [7], a
delay-optimal algorithm for simultaneous bu�er inser-
tion and wire sizing was presented. However, power
and signal slew were not taken into account.

The main contributions of this paper are:

� Optimal polynomial-time algorithms for the min
power wire sizing/bu�er insertion problems, compu-

tation of the entire power-delay curve and an e�cient

data-structure for pruning sub-optimal solutions.

� Incorporation of the e�ect of signal slew by use of
piece-wise linear functions. The slew contribution to

delay can be large [5] and should not be ignored.

Timing constraints are given explicitly as required ar-
rival times rather than as weighting coe�cients of sink
delays. The ability to use inverters as bu�ers rather
than pairs of inverters to ensure proper signal polarity
is also of practical interest.

2 Models and Problem Formulation
Delay Models: As in previous works, we adopt the
Elmore delay model [4] for interconnects and standard
RC models for bu�ers. For wire e, let le, we, ce and re
be its length, width, capacitance and resistance respec-
tively. Further, let ev denote the wire entering node v
from its parent. We use the following basic models:

ce = �le �we re = �le=we

elmore(ev) = rev(
cev
2

+ c(Tv))

buf delay(b; cl) = db + rbcl

where � and � are constants, c(Tv) is the lumped capac-
itance of subtree Tv rooted at v, db and rb are bu�er b's
intrinsic delay and output resistance respectively and
cl is the load on bu�er b.1

1We note that we do not rely on this model for ce and

re; for instance, phenomena such as fringe capacitance can be
accommodated

A more accurate bu�er delay model includes an ad-
ditive term which is a function of the slew of the signal
entering the bu�er. One such model is:

buf delays(b; cl) = buf delay(b; cl) + �bDLprev: (1)

where �b is a characteristic constant of b and DLprev
is the RC delay of the previous stage. This and similar
models have been proposed in various contexts (e.g.,
[9], [6]). An extension of our algorithms to accommo-
date this delay model is discussed in Section 6.
Problem Formulations: We adopt required arrival
time q(Tv) as our timing metric. We de�ne q(Tv) as

q(Tv) = min
u2leaves(Tv)

(qu � delay(v; u))

where qu is the required arrival time of sink u. This
measure is useful since such a scenario is typical when
optimizing combinational networks. If q(T) at the root
is non-negative, the timing requirements are met.2

The dynamic power dissipation Pd for CMOS tech-
nology is Pd = CLV

2
DD

fp where CL is load capacitance
and fp is switching frequency [12]. With respect to
bu�er insertion and wire sizing, total capacitance is the
correct measure of dynamic power dissipation since fp
and VDD are �xed. This gives the problem of minimiz-
ing total capacitance Ctotal subject to q(T) � 0.

Alternatively, an attractive approach is to provide
the designer with the entire power-delay trade-o� curve
allowing added
exibility.

3 Algorithmic Framework
We �rst give the framework for a high level dynamic

programming algorithm into which all subsequent al-
gorithms �t. The speci�c algorithms di�er in their im-
plementation of the basic routines called by the general
algorithm and the contents of the sets they compute.

This General Dynamic Programming algorithm,
GDP(T,B,W) where B is a bu�er library and wire
widths 1::W are allowed, is given as pseudo-code in
Figure 1. The algorithm computes solution sets Sbot(v)

Algorithm GDP(T,B,W)

Foreach v 2 T in topological order from leaves to root

If v is a leaf

Sbot(v) Base Case(v)

Else

Sbot(v) Bottom Solutions(v;Stop(l(v));Stop(r(v)))

If v is not the root

Stop(v) Top Solutions(v;Sbot(v))

Else /* v is the root */

Compute Optimal Soln(v;Sbot(v))

Figure 1: General Algorithm Structure

and Stop(v). Sbot(v) can be thought of as the set of
solutions for subtree Tv, including the possibility of in-
serting a bu�er at v. Similarly, Stop(v) can be thought
of as the set of solutions for Tv augmented by wire ev

2If qu = 0 for each sink u then max delay = �q(T).

from v's parent including possible sizing of ev. We use
l(v) and r(v) to denote v's left and right children. Op-
timal Soln() computes the best overall solution (or set
of solutions) by considering the driver properties.

4 Maximizing Required Arrival Time
In this case, we maximize q(T) the required arrival

time at the root of T under the basic RC model. To
deal with signal inversion, the sets Sbot(v) and Stop(v)
are partitioned into disjoint subsets:

Sbot(v) = S
+

bot
(v) [S�

bot
(v)

Stop(v) = S
+

top(v) [S
�

top(v):

A superscript \+" indicates that we assume the incom-
ing signal is non-inverted; a superscript \-" indicates
that signal inversion is assumed.

The solutions themselves are load, required-time, or
(c; q), pairs. The meaning of these sets is, for example:

(c; q) 2 S+
bot

(v), \There exists an assignment to Tv

with upward load c and required

time q at v when the incoming
signal is not inverted."

An important initial observation made by van Gin-
neken [11] is the following.

Property 4.1 For (c; q); (c0; q0) 2 S, if c0 � c and q0 < q

then (c0; q0) is sub-optimal.

This is clear since a larger load can only worsen delay.
Thus, we always prefer smaller load and larger required
time. If these sets are in increasing order of load, we
have the following.

Property 4.2 Any load-required time set S in increasing
order of load, may be replaced by an S0 � S where S0 is
strictly increasing in load and required time.

We maintain this sorted order as an invariant so that
we may easily exploit this property.

In the context of our algorithmic framework, we fully
specify the algorithm as follows. Let cv and qv be the
input capacitance and required arrival time of sink v

respectively. First, Base Case(v) simply sets S+
bot

(v) =

(cv; qv) and S�
bot

(v) = ;.

Bottom Solutions() appears in Figure 2. The algo-
rithm computes optimal (c; q) pairs for unbu�ered so-
lutions in lines 2-13. For each achievable arrival time
q, we �nd the smallest load achieving q. This is done
in linear time in a manner similar to merging sorted
lists and ensures that Property 4.2 holds (notice that i
and j are strictly advancing). Next we �nd the optimal
bu�er con�gurations (lines 14-20) by pairing bu�ers b
with unbu�ered solutions. Finally we perform merging
and additional pruning (lines 21-23). The �nal pruning
step is also linear since the sets are in sorted order.

Top Solutions() appears in Figure 3. We examine
all pairs of widths for wire ev and solutions (c; q) at v.
Since c0 = c + wZ where Z is �xed and w 2 f1::Wg,
we can visit all c0's in order without explicitly sorting
them. For each such pairing, we obtain a new required

Algorithm: Bottom Solutions(v;Stop(l(v));Stop(r(v)))

1. /* First compute unbu�ered solutions */

2. S+
bot

(v) ;

3. Let Sl = S+
top

(l(v))

4. Let Sr = S+
top

(r(v))

5. /* Sl; Sr are indexed and ordered by c */

6. i 1 ; j 1

7. While (i � jSlj and j � jSr j)
8. Let (cl; ql) = Sl[i]

9. Let (cr; qr) = Sr [j]

10. S+
bot

(v) S+
bot

(v) [f(cl + cr;min(ql; qr))g

11. If (ql � qr) /* Left Critical */
i i+ 1

12. If (qr � ql) /* Right Critical */

j j + 1

13. Compute S
�

bot
(v) analogously

14. /* Now compute bu�ered solutions */

15. Foreach bu�er b 2 B

16. If b is an inverter

17. Find (c; q) 2 S�
bot

(v) s.t.

q
+

b = q � db � rbc is max

18. Else

19. Find (c; q) 2 S+
bot

(v) s.t.

q+b = (q � db � rbc) is maximized

20. Analogously compute q�b
21. S+

bot
(v) S+

bot
(v) [f(cb; q

+

b)j8b 2 Bg

22. S�
bot

(v) S�
bot

(v) [f(cb; q
�

b)j8b 2 Bg

23. Prune S+
bot

(v) and S�
bot

(v) by Property 4.2

Figure 2: Bottom Solutions() for Max Required Time

time. A �nal sweep applies Property 4.2 maintaining
the ordered invariant for both c and q.

Finally, Optimal Soln(v; Sbot(v)) simply pairs all of

the previously computed un-bu�ered (c; q) 2 S+
bot

(v)

with the output resistance of the driver and selects the
solution with the largest required arrival time.

To construct the optimal solution we recursively re-
visit the tree to determine which bu�ering and wire-
sizing choices led to the optimal solution.
Comments: For simplicity, we have presented our al-
gorithm in terms of a binary tree, but note that the
algorithm is easily applied to general trees by addition
of dummy nodes and 0 length wires.

As described, the algorithm assumes exactly one
sizeable wire segment between nodes and bu�er in-
sertion only at fanout nodes. When this is not the
case, we can introduce arti�cial nodes. In such cases,
Bottom Solutions() constructs unbu�ered solutions by
copying the appropriate Stop set from its child.

Run-Time: We analyze the run time in three sce-
narios: (1) wire sizing alone (jBj = 0, W > 1), (2)
bu�er insertion alone (jBj � 1, W = 1), and (3) both
methods together (jBj � 1, W > 1).

In scenario 1 we introduce the notion of \basic grid-

Algorithm: Top Solutions(v;Sbot(v))

1. S
+

top(v) ;

2. Foreach (c; q) 2 S+
bot

(v); w 2 f1::Wg in increasing

order of c0 = c+ �wlev
3. S

+

top(v) S
+

top(v) [f(c
0; q � elmore(ev))g

/* elmore delay evaluated at width w */

4. Compute S�top(v) analogously

5. Prune S+
top

(v) and S
�

top
(v) by Property 4.2

Figure 3: Top Solutions() for Max Required Time

length" to analyze the complexity.3

Property 4.3 In scenario 1 the size of each load-
required time set S is bounded by mW where m is the
total number of basic grid lengths in the tree.

This can be seen by noticing that the load at node
v is determined by

P
i=m
i=1 wi which takes on integer

values in m::mW . This bounds the the size of (c; q)-
sets by bounding the number of distinct load values.
Thus, while there is an exponential number of width
assignments, there is a polynomial number of distinct
resulting loads and relevant solutions. The resulting
run-time is O(nmW 2). When every sizeable segment
is of identical length (n = m), we have O(n2W 2).

Scenario 2 is a generalization of the situation in [11].
Since W = 1, computation of Stop is trivial. Thus, the
size of Sbot sets is the key factor in the run-time. We
�rst state some properties alluded to earlier:

Property 4.4 Let Sl and Sr be the Stop sets of node v's

left and right children respectively (of the same polarity).
The following inequality holds: jSbot(v)j � jSlj+ jSrj+ jBj.

Property 4.5 In scenario 2, for all load-required time
sets S, jSj � n+ njBj.

This property coupled with the fact that the merging
operation is linear in jSlj+ jSrj gives an overall worst-
case complexity of O(njBj(n+ jBjn)) = O(n2jBj2).

Scenario 3 is complicated by the fact that the input
capacitance of the bu�ers may not be simple multi-
ples of the capacitance of a unit-length wire. How-
ever, in practice it is reasonable to assume that capac-
itive values can be mapped to a polynomially-bounded
integer domain with su�cient precision (or are given
as such). Let cmax be the largest capacitance pos-
sible for any individual component of the tree. Un-
der this formulation we bound the size of the load-
required time sets by ncmax and the overall run-time
by O(n2cmax(max(W; jBj))). Observed run-times are
typically much less than this bound.

5 Minimizing Power
We now extend the algorithm to minimize power

under timing constraints. For clarity we present this
extension without regard to signal polarity.

3We note that this analysis relies on the linear model for wire
capacitance in Section 2, but the algorithm itself does not.

Solution sets Sbot(v) and Stop(v) now contain pairs

(p; Sp) where p is power (as a capacitive value) and
Sp is an ordered set of (c; q) pairs as in the previous
algorithm. For example, (p; Sp) 2 Sbot(v) indicates
that for power p and every (c; q) 2 Sp there exists an
assignment for Tv consuming power p, presenting load
c upward and yielding required time q at v.

The sets are ordered in increasing order of power.
Each set Sp is ordered by load c as in the basic algo-
rithm. Base Case(v) sets Sbot(v) = f(cv; f(cv; qv)g)g
since cv is the \power" associated with sink v.

Algorithm: Bottom Solutions(v;Stop(l(v)); Stop(r(v)))

1. Let B0 = B [f�g

/* � indicates \no bu�er", c� = 0 */

2. Sbot(v) ;

3. Foreach triple (pl; Sp
l
) 2 Stop(l(v));

(pr; Spr) 2 Stop(r(v));

b 2 B0

in increasing order of p = pl + pr + cb

4. Combine Sp
l
, Spr as in lines 7-12 of Figure 2

to give S0

5. If (b 6= �)

6. Find (c; q) 2 S0 s.t. q0 = q � buf delay(b; c) is max

7. S0 f(cb; q
0)g

8. Else

9. S0 S0�

f(c; q) 2 S0j9(c0; q0) 2 Sp0 ; p0 < p; c0 � c; q0 � qg

10. If (p; Sp) 2 Sbot(v) (previous triple gave same p)

11. Sp Sp [S
0

12. Prune Sp by property 4.2

13. Else

14. Sbot(v) Sbot(v) [f(p; S
0)g

Figure 4: Bottom Solutions() Routine for Low Power

Bottom Solutions() is given in Figure 4. We visit
all possible values of total power consumption at v.
These values are from both bu�ered and unbu�ered
con�gurations. We introduce the notion of a \non-
bu�er" � to unify notation. We sort the values p =
pl + pr + pb. However, we observe that the number of
distinct values p is often orders of magnitude less than
the worst case (quadratic). Hence, we utilize a hash
table to make an initial pass over all power values p
and then sort the distinct values, avoiding an expensive
sorting operation. Top Solutions() is implemented in a
similar manner in Figure 5.

These algorithms implement two types of pruning.
First we prune solutions (c; q) 2 Sp for some power
p as before by Property 4.2. An additional pruning
condition is utilized in Figures 4 and 5 on lines 9 and 6
respectively and is captured in the following property:

Property 5.1 For solution (c; q) consuming power p, if 9
solution (c0; q0) consuming power p0 < p where c0 � c and
q0 � q then solution (c; q) is sub-optimal.

The e�cient application of this property has proven
essential in giving e�cient running times in practice.

Algorithm: Top Solutions(v;Sbot(v))

1. Stop(v) = ffp; ;gjp is a possible powerg

2. Foreach pair w 2 1::W , (pbot; Spbot
) 2 Sbot

in increasing order of p = pbot + �wlev
3. Foreach (c; q) 2 Sp

bot
4. Sp Sp [f(c+ �wlev ; q � elmore(ev))g

/* elmore delay evaluated at width w */

5. Prune Sp by Property 4.2
/* (p0; Sp0) 2 Stop(v) */

6. Sp Sp�

f(c; q) 2 Spj9(c
0; q0) 2 Sp0 ; p0 < p; c0 � c; q0 � qg

7. If (Sp 6= ;)

8. Stop(v) Stop(v) [f(p; Sp)g

Figure 5: Top Solutions() Routine for Low Power

Optimal Soln(v; Sbot(v)) simply selects the lowest
power un-bu�ered solution at the root for which q(T) �
0 when paired with the driver. Alternatively, the set of
all such pairings gives the full tradeo� curve.
Detection of Property 5.1: We now detail a data-
structure to e�ciently determine, given (c; q) 2 Sp if
Property 5.1 holds. Since the solution sets can grow
to be of substantial size, a linear scan to detect this
property would likely be a disaster.

Since we visit power values in order, we know that
the entries in the data structure have power p0 < p.
Thus, the data structure need only concern itself with
c and q values. The data structure should e�ciently
support the operations

� insert(c; q): update the data structure to include (c; q)

� sub opt(c; q): return TRUE if 9(c0; q0) previously in-
serted s.t. c0 � c and q0 � q, FALSE otherwise.

These operations can be performed in O(logm) time
for m entries by use of an augmented binary search
tree. We order the tree by load values c. Each node t
in the search tree stores a load value ct and ql max, the
largest q value in the left sub-tree.

Given this augmentation, insert() is easily imple-
mented recursively and sub opt() is implemented by ex-
amining the following cases with respect to c; q (given)
and ct and ql max of the current node in the tree:4

c < ct; q < ql max explore left subtree

c < ct; q > ql max return FALSE
c > ct; q < ql max return TRUE

c > ct; q > ql max explore right subtree

By following these rules recursively, we detect the prop-
erty in time proportional to the depth of the tree.
Run Time: With respect to wire-sizing alone, i.e.
jBj = 0, we notice that p = c always holds since there
is no decoupling by bu�ers. Thus, the basic algorithm
is su�cient: we get power minimization \for free".

4boundary conditions are not given for clarity

In the general case of simultaneous wire sizing and
bu�er insertion we show a pseudo-polynomial bound.
As in Section 5.1 let cmax be the largest possible ca-
pacitive value of any component. We bound the num-
ber of (c; q) pairs at a node by (ncmax)2 (since the
same c may appear with di�erent p's). This gives an
overall bound of O(n(jBj+W)(ncmax)2 log(ncmax)) =
O((jBj +W)(n3c2max log(ncmax))). The log factor is
an artifact of sorting the power values. In practice we
observe much better run times as a result of the addi-
tional pruning described previously.

6 Accounting for Signal Slew
We now sketch a generalization of the algorithm to

account for the e�ect of signal slew. For space consid-
erations we do not give full pseudo-code here; a more
detailed discussion is available as a technical report.

By Equation 1, bu�er delay is augmented by
�bDLprev.

5 Since the algorithm is bottom-up, this is an

unknown value when computing the delay of a bu�er.
Conceptually, we would like to support queries of the
form \What is the optimal solution at v with capaci-
tance c and DLprev = x ?"

Since �bDLprev is linear in DLprev we utilize piece-

wise linear functions. Where we previously had
load-required time pairs (c; q), we now have load-
required time func pairs (c; f) where f is a piece-wise
linear function; f(x) = q is the optimal required time
q at v for load c and DLprev = x.

Figure 6 illustrates this modeling. The delay at node
v in 6a is modeled by the piece-wise linear function in
6b. The left and right subtrees have maximum delays
of 5 and 4 units respectively when the previous stage
RC delay, DLprev = 0. However, since the left and right

sub-trees are driven by di�erent bu�er types, they have
di�erent sensitivities �l and �r . The lines in Figure 6b
correspond to the delay functions contributed by the
two subtrees. The slopes correspond to the sensitivities
�l and �r . The resulting delay function at node v is
the max of the two (solid lines).

d=5 d=4

λl
=0.1 λr=0.2

10

5

v

DLprev

m
ax

 d
el

ay
 v

->
si

nk

(a) (b)

Figure 6: Piece-wise linear model of signal slew e�ect

We represent a piece-wise linear function f by a
linked list of quadruples (x0; y0; s; xend); each quadru-
ple is a segment starting at point (x0; y0), ending at
xend and having slope s.

Our manipulation of piece-wise linear functions is
based on the two basic operations:

5recall that �b is a characteristic constant of bu�er b and
DLprev is the RC delay of the previous stage

f = pwl max(f1; f2), f(x) = max(f1(x); f2(x)) 8x

f = pwl min(f1; f2), f(x) = min(f1(x); f2(x)) 8x

These are linear time operations similar to the merg-
ing of sorted lists; we step through the lists examining
points of intersection as we go.

The algorithm modi�cations are summarized as:

(1) Where we had load-required time pairs (c; q), we now
have load-required time func pairs (c; f)

(2) Where we computed scalar max and min of arrival

times q, we now compute pwl max and pwl min of
piece-wise linear functions.

(3) Where we eliminated sub-optimal solutions (c; q) by
Properties 4.2 and 5.1, we now eliminate sub-optimal

portions of solutions (c; f) by analogous properties.

Modi�cation 3 is captured in the following property.

Property 6.1 Let (c1; f1) and (c2; f2) be solution pairs
at node v (power p1 � p2 in the low power case). If c1 < c2

then we may replace f2 with f 02 where

f
0

2(x) =

�
f2(x) if f2(x) > f1(x)
�1 otherwise.

We have generalized the search tree data structure of
section 6 to e�ciently implement Property 6.1.

Because Property 6.1 introduces partially de�ned
functions there is no total order on the (c; f) sets.
Therefore, when combining solutions of children, we
may look at all such pairs in the worst case rather than
performing a simple \merge" as previously (Figure 2,
lines 7-12). However, in practice these sets tend to re-
main linear in size. A related issue is the complexity of
the functions themselves. In principle, the size of the
functions can grow exponentially. However, again we
do not observe this phenomenon in practice.

Figure 7 illustrates one of the algorithm's basic op-
erations. The �gure shows function f having load c be-
fore and after bu�er b is considered for insertion at v.6

Since b will drive load c, DLprev = crb for b's descen-

dants. Thus, the required arrival time at the output of
the bu�er is t1. Subtracting the bu�er delay gives the
required arrival time function at the input of the bu�er
shown as a solid line on the right with slope ��b.

With these and similar modi�cations, we optimally
take into account the contribution of signal slew. As
stated earlier, we are unable to show that the com-
plexity of the piece-wise linear functions does not grow
exponentially. However, in practice the algorithm per-
forms comparably to its simpler counterparts.

7 Experiments and Conclusions
We implemented our algorithms in the C/UNIX en-

vironment on a Sun SPARC 20 workstation. We ran
our algorithms on random routing topologies with non-
uniform segment lengths. Discretization was done on
a arbitrarily large integer domain (e.g. 1; 000; 000), yet
impressive run-times were obtained.

6We are dealing with required time here (not delay), hence
the negative slopes.

K=1 K=2 K=4 K=8 K=16 K=32 MAX

n B S B S B S B S B S B S CPU

10 1.94 1.94 1.95 1.95 1.96 1.96 1.97 1.97 2.0 2.0 2.07 2.07 0.2

15 2.64 2.64 2.65 2.65 2.66 2.66 2.87 2.70 3.19 2.77 3.90 2.87 0.8
20 2.99 2.93 3.04 2.99 3.13 3.02 3.30 3.07 3.66 3.16 4.37 3.47 1.3

25 3.59 3.59 3.60 3.60 3.62 3.62 3.67 3.67 3.94 3.78 4.70 3.95 3.8

30 3.42 3.39 3.49 3.40 3.63 3.42 3.91 3.46 4.47 3.56 5.59 3.73 6.8

Table 1: Basic Algorithm vs. Slew Algorithm for Various Sensitivities

DLprev
DLprev

slope=−λb

buf_delay

cr crb b

r
e
q
-t

im
e

r
e
q
-t

im
e

t1 t1

Figure 7: E�ect of inserting a bu�er

4.6 4.8 5.0 5.2 5.4
Power (nF)

2.5

3.5

4.5

5.5

6.5

De
lay

 (n
s)

Figure 8: Power-Delay Curve for a 20 sink net

Since we derive optimal solutions, experiments fo-
cused on run-time, the nature of the trade-o� curves
and the e�ect of signal slew.

We used 5 bu�er types; the smallest (1X) having
rb = 3170
, cb = 10fF, db = 300ps and �b = :08.
The largest bu�er was 8X. Intrinsic delay db was iden-
tical for all bu�ers and �b was assumed to be inversely
proportional to width (largest �b being 0:08, smallest
0:01). We used wire widths from 0:5�m to 5�m.

Figure 8 shows the optimal power vs. delay curve for
a 20 sink net with both wire sizing and bu�er insertion.
Observed run times for nets of this size are typically in
the 20-30 second range. The unsized/unbu�ered delay
is the left-most point and the minimum delay solution
is the right-most point of the curve. Clearly good en-
gineering choices appear at the \elbow" of the curve.

Our second set of experiments in Table 1 examined
the e�ect of slew. We performed experiments on nets
with 10 to 30 sinks. We introduce a scaling factor K as
a coe�cient for �b, replacing �b with K�b. For each K
we have two columns: B is the min delay result of the
basic algorithm evaluated with slew taken into account
and S is the result of the extended algorithm of section
6. The right-most column is the worst run-time among

all experiments in that row.7 As K and n grow we see
large variation between observed delays, approaching
50% in one case. The purpose of this table is to give
an idea of the trend as �b increases.8

To conclude we would like to thank Matthew Clegg
of UC San Diego and Sachin Sapatnekar of Iowa State
University for several helpful discussions. We also
thank the reviewers for several helpful suggestions.

References
[1] J.J. Cong, K.S. Leung, \Optimal Wiresizing Under Elmore

Delay Model," IEEE Trans. on CAD, v. 14 no. 3 (1995) pp.

321-336.

[2] J.J. Cong, C.-K. Koh, \Simultaneous driver and wire sizing
for performance and power optimization" IEEE Transac-

tions on VLSI Systems, Dec. v. 2 no. 4 (1994) pp 408-25

[3] J.J. Cong, K.S. Leung, D. Zhou, \Performance-driven inter-
connect design based on distributedRC delaymodel,"Proc.

ACM/IEEE Design Automation Conf., 1993 pp. 606-611

[4] W.C. Elmore, \The Transient Response of Damped Linear

Network with particular Regard to Wideband Ampli�ers,"
J. Applied Physics 19 (1948), pp 55-63.

[5] N. Hedenstierna and K.O. Jeppson, \CMOS Circuit

Speed and Bu�er Optimization," IEEE Transactions on

Computer-Aided Design, Mar. 1987, pp 270-281.

[6] L.N. Kannan, P.R. Suaris, H.-G Fang, \A Methodology and

Algorithms for Post-Placement Delay Optimization," Proc.
ACM/IEEE Design Automation Conf., 1994, pp 327-332.

[7] J. Lillis, C.K. Cheng, T.T. Lin, \Optimal and E�cient

Bu�er Insertion and Wire Sizing," Proc of Custom Inte-

grated Circuits Conference 1995.

[8] S.S. Sapatnekar, \RC Interconnect Optimization under the

Elmore Delay Model," Proc. ACM/IEEE Design Automa-

tion Conf., 1994, pp. 387-391.

[9] Synopsys 3.1 Release Manual: Appendix B, \Static Timing
Analysis."

[10] H.J. Touati, \Performance-Oriented TechnologyMapping,"
Ph.D dissertation, MemorandumNo. UCM/ERL M90/109,
Dept. of Electrical Engineering and computer Science, UC
Berkeley, 28 November 1990.

[11] L.P.P.P van Ginneken, \Bu�er Placement in Distributed
RC-tree Networks for Minimal Elmore Delay," Proc. In-

ternational Symposium on Circuits and Systems, 1990, pp
865-868.

[12] N.H.E. Weste, K. Eshraghian, Principles of CMOS VLSI

Design, Addison-Wesley, 1993, pp. 231-237.

7Run-times are of the low-power variant.
8Values for �b over 0:5 appear to be possible[5].

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

