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Abstract
In order to accurately characterize dispersive system of
VLSI  interconnects at higher frequencies, full wave analy-
sis which takes into account all possible field components
and satisfies all boundary conditions is required. However,
conventional circuit simulation of interconnects with full
wave models is extremely CPU expensive. This paper pre-
sents a new method to extend the moment matching tech-
nique, complex frequency hopping, to the case of
interconnects modeled with full wave analysis. Formula-
tion of circuit equations is modified to incorporate inter-
connect stencil from full wave analysis. A new algorithm
for  the moment generation for interconnect networks with
full wave models has been developed. Full wave analysis
has been carried out with the efficient ‘spectral domain
approach’. Results have shown that the proposed method
is accurate while it yields a speed up of one to three orders
of magnitude over conventional simulation techniques.

I. INTRODUCTION

VLSI technology trends towards smaller feature sizes,
increased complexity, and higher clock rates have intro-
duced the effects of high speed interconnects. Improperly
designed interconnects can engender signals that are dis-
torted by ringing, reflections, delay, and crosstalk, which
may seriously affect the overall system perfomance[1]. At
sub-nano second rise times electrical length of an inter-
connect can become a significant fraction of the operating
wavelength. Consequently, lumped circuit models become
inadequate to describe interconnect behavior and distribut-
ed models become necessary. Generally, distributed mod-
els are based on the TEM approximation. However, with
clock rates catching up in GHz range, the field compo-
nents in the direction of propagation can no longer be ne-
glected[2]. Among the methods commonly employed for
full wave analysis, most prominently used one is  the
‘Spectral Domain Approach’ [3] - [5]. However, simula-

tion of interconnect networks with full wave models using
conventional techniques is highly CPU intensive.

Recently there have been several publications on simu-
lation of VLSI interconnects with moment matching tech-
niques, such as asymptotic waveform evaluation(AWE),
complex frequency hopping(CFH) [6] - [11], and Padé via
Lanczos(PVL)[12]. These methods have proven to be both
efficient and accurate, yielding a very high CPU advan-
tage. However, PVL technique is limited to lumped equiv-
alent circuit models. AWE and CFH are based on the quasi
TEM approximation and does not address simulation of in-
terconnects with full wave models.

In this paper, we describe a new method to extend the
CFH to the case of interconnects modeled with full wave
analysis. Modified Nodal Analysis(MNA) formulation has
been extended to incorporate interconnect stencil from full
wave analysis. Also a new algorithm to generate moments
for full wave modeled interconnects has been developed.
In order to facilitate moment generation for full wave sten-
cil which do not have a closed form solution, polynomial
fitting approach for the characteristic frequency dependent
parameters(propagation constant,  characteristic imped-
ance and the current eigen amplitude vectors[2]) has been
adopted. Polynomial representation of characteristic pa-
rameters of an interconnect, needs the full wave model to
be solved for only few  frequency points and hence it re-
sults in considerable CPU time saving.

Full wave model based on the spectral domain ap-
proach and the proposed method are integrated in a CFH
circuit simulator. Several small and large networks con-
taining large number of transmission lines with full wave
model have been simulated successfully with the new
technique. Results were compared to simulations done us-
ing full network solutions and a good match has been
found. A speed up of one to three orders of magnitude is
achieved compared to the conventional circuit simulation.
Also major advantage of the proposed technique is that it
can be used for efficient macromodeling of full wave inter-
connect networks having nonlinear teminations[8].



II. FORMULATION OF THE NETWORK
EQUATIONS

Consider a linear network  which contain linear
lumped components and  full wave modeled coupled
interconnect sets, with  coupled conductors in intercon-
nect set . The frequency domain equations of a full wave
interconnect subnetworkk can be written in the form(de-
rived in section III),

(1)

where  and  represent the Laplace domain terminal
voltages and currents of the subnetwork , respectively.Ak
andBk are the matrices obtained using full wave analysis.
Using (1), the Laplace transform of the MNA[13] assum-
ing zero initial conditions can be written as,

(2)

where  is the vector of  nodal variables describing
the subnetwork ,  are constant matrices describ-
ing lumped memory and memoryless elements of network

, respectively,  is a constant vector with entries deter-
mined by independent voltage and current sources,  is
the selector matrix that maps , the vector of currents
entering the full wave interconnect subnetworkk, into the
node space  of network . (2) can be concisely written as,

(3)

III. VOLTAGE BASED COMPUATIONAL
MODEL FROM FULL WAVE ANALYSIS

Consider a dispersive system of interconnects embed-
ded in an inhomogeneous dielectric medium, and enclosed
in a conductor box, as shown in Fig. 1. The  system con-
tains hybrid modes(TE and TM) and the fields associated
with ith  dielectric can be written as,
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where  and,  are the scalar
electric and magnetic potential functions and

. ,  and  represent the di-
rected unit vectors.  is the propagation constant of waves
moving in thez direction.  and  represent the permittiv-
ity and permeability of the medium. Scalar potentials rep-
resented by  and   satisfy the Helmholtz
wave  equation [3],

(8)

Writing scalar potentials and field components for each
dielectric region [2] - [6], and matching the boundary con-
ditions, we get a set of homogeneous linear equations
which can be solved for propagation constant, ,i = 1,
2...N, corresponding toN dominant modes.  The modal
characteristic impedanceZij for any modei propagating
along any strip j  is computed as the ratio of complex
power transportedPij   and,  the square of longitudinal cur-
rent Iij  due to the modei flowing along the stripj.  Follow-
ing the approach outlined in [2], the  stencil of a full wave
modeled transmission line can be derived as follows.

Let VI and I I be the input voltage and input current
vectors,VO and IO be the output voltage and output cur-
rent vectors, respectively. The multiconductor system can
be described in terms of line voltages and currents  as,

(9)

(10)

where , is the modal
propagation matrix, L is the length of the conductor, and

is  the system characteristic impedance ma-
trix. M is a  matrix in which each entrymki represent
the relative current amplitude on linek with respect to line
1 due to modei. Zm is also a  matrix with each entry

. Herezki represent the modal characteris-
tic impedance due to modei propagating on linek. Equa-
tions (9) and (10) can be rearranged to obtain the stamp for
full wave modeled interconnect as,

(11)

where U is an identity matrix and .
Equation (11) is the stencil of full wave modeled intercon-
nect system, as represented by the concise form (1).
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IV. REVIEW OF CFH

Complex frequency hopping [9] - [11],  is a technique
whereby the Taylor series expansion of the network equa-
tions is used  to generate, via matching, a low-order trans-
fer function approximation at multiple expansion points in
the complex plane using a binary search algorithm. With a
minimized number of frequency point expansions, enough
information is obtained to enable the generation of an ap-
proximate transfer function that matches the original func-
tion up to a pre-defined highest frequency. The transfer
function or set of transfer functions then acts much as the
entire network up to that frequency, both in the time and
frequency domains. Expanding  in (3) about the
complex frequency point  yields,

(12)

where is the nth vector of coefficients (moments) of the
Taylor expansion. A recursive equation for the evaluation
of the moments can be obtained in the form

(13)

with

(14)

The transfer function of the system is then found by
matching a Padé approximation to the moments of the sys-
tem in (12). In case of quasi TEM models for an intercon-
nect subnetworkk, efficient and accurate methods for the
computation of the moments  and   in
terms of RLCG distributed parameters are discussed ex-
tensively in the literature [6] - [11].  However, moment
evaluation of full wave models has not been addressed
previously in the literature.  In the following presentations
moment generation method is extended to networks which
include interconnect networks of above mentioned types.

V. FULL WAVE INTERCONNECT MO-
MENTS

To obtain the derivatives ofY(s) in (3) we need the de-
rivatives ofA(s) andB(s). To find a closed form expres-
sion for  and , the derivatives of the
individual entries in matricesA(s) and B(s), represented
by equation (11) are needed. This needs the derivatives of

, which can be obtained using Leibnitz’s theorem,
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The  derivatives of  and   are now need to be cal-
culated.  Let , and noting that
and , we can write,

(16)

and,

. (17)

Equations (16) and (17) give the derivatives of  and
 in terms of the lower order derivatives ofE, M andZm.

Next, the derivatives ofE, M andZm can be found by suc-
cessively applying Leibnitz’s theorem on the entries
present in the corresponding matrices. To complete the
moment evaluation process, we need the derivatives of the
entries represented by ,mij and,Zij    where
and, . However, all these entries are frequency
dependent and they do not have a closed form expression
with respect to frequency. To solve this problem, we per-
form full wave analysis for every individual interconnect
setk  for a minimum number of frequency points and fit a
polynomial using least square method for each of the
above entries. Due to the complex dependance of these en-
tries on frequency, it is difficult for a single polynomial to
fit accurately to each of them over a wide frequency range.
Hence more than one polynomial may be needed and each
of these are valid in a particular frequency range only.

Consider the case of  propagation constants, the  poly-
nomial for  any   can be expressed as,

(18)

Therth derivative of the above polynomial is given by,

(19)

where,  for evenr and,  for oddr.

Similarly the derivatives ofmij  andZij  can be comput-
ed. It can be seen that the additional computational cost
arising from the existence of full wave model is drastically
reduced, since the corresponding moments are evaluated
in closed form using the polynomial representation. This
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fact is substantiated by the speedup reported in Section VI.

VI. COMPUTATIONAL RESULTS

A circuit having 243 nodes and containing 160 resis-
tors, 162 inductors, 162 capacitors and   12  full wave
modeled interconnects was  simulated. The interconnect
configuration used  [4], [5] had the following dimensions:
h1=0, h2=1.27mm, h3=10.43mm, h4=1mm, s=0,
w=0.635mm, a=6.35mm,  and,

, as per the symbols shown in  Fig. 1. In-
put signal was a 1V pulse with 0.1ns rise/fall time and
10ns duration. For a maximum frequency of 15 Ghz, 44
hops were required for convergence.  Transient responses
obtained from the new method and conventional approach
are given in Fig. 2, where the latter was obtained by solv-
ing (3) directly at 1024 frequency points and applying IF-
FT. New technique required 44 L/U decompositions of the
circuit matrix and only 25 points were chosen for full
wave model evaluation for obtaining the polynomial rep-
resentation. Conventional approach required 1024 L/U de-
compositions and 1024 times full wave model evaluations
for each interconnect. The overall speed-up achieved in
this example was 35:1.

VII. CONCLUSION

An efficient technique to include the results from full
wave analysis of system of dispersive VLSI interconnects
into circuit simulation has been proposed in this paper.
MNA formulation is extended to include the results from
full wave analysis. New algorithm for the evaluation of
moments for full wave interconnects is presented. Exam-
ples have shown that this method can be as accurate as
FFT analysis while requires far less computational  time.
Also the proposed technique can be used for efficient mac-
romodeling of full wave modeled interconnect networks.
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Fig. 2. Transient Response
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