
Efficient Validity Checking for Processor Verification �

Robert B. Jones , David L. Dill
Computer Systems Laboratory, Stanford University, Stanford, CA 94305

Jerry R. Burch
Cadence Berkeley Laboratories, Berkeley, CA 94704

Abstract
We describe an efficient validity checker for the quantifier-free

logic of equality with uninterpreted functions. This logic is well
suited for verifying microprocessorcontrol circuitry since it allows
the abstraction of datapath values and operations. Our validity
checker uses special data structures to speed up case splitting, and
powerful heuristics to reduce the number of case splits needed.
In addition, we present experimental results and show that this
implementation has enabled the automatic verification of an actual
high-level microprocessor description.

1 Introduction
As microprocessor designs become more complex, the cost

of validation becomes a larger fraction of the total design cost.
Currently, validation consumes 25-30% of the design team and
months of simulation time. Industry experts predict that there may
soon be two or three validation engineers for every design engineer
on major microprocessor design projects [Wil95].

Although today’s theorem provers could be used, in theory, to
formally verify modern processors, the time and expertise required
would be prohibitively expensive (indeed, such an effort might in-
crease the length of the design cycle). Advances in BDD-based
verification methods are not closing the tremendous gap in com-
plexity between modern commercial microprocessor designs and
those designs that can be automatically verified.

Burch and Dill [BD94b] proposed a new method for verifying
microprocessor control circuitry. The method is based on a subset
of first-order logic, specifically, the quantifier-free logic of equality
with uninterpreted functions. This logic is appropriate for verifi-
cation of microprocessor control because it allows abstraction of
datapath values and operations. By contrast, propositional logic
requires that individual bits be modeled explicitly.

Burch and Dill’s verification method has two phases. The first
phase compiles a behavioral description of the specification and
implementation into a formula in the logic; if this formula is valid
then the implementation is correct with respect to the specification.
The second phase is a program that checks whether the formula is
valid.

In this paper,we concentrate on the secondphaseof the method:
validity checking. We describe fast, compact data structures that
significantly speed up the inner loop of the validity checker. Our
experiments also explore the trade-offs of using several different
heuristics.

The logic studied here is a fundamental building-block for pro-
cessor verification, and is useful for a variety of different verifi-
cation methods. We believe that decidable logics which are more
expressive than propositional logic (and programs to manipulate
them) are going to be very important for verification as well as
other CAD applications. Logics with uninterpreted functions are

�This research was partially supported by the Semiconductor Research Corpora-
tion under contract number 94-DJ-389. The first author is supported by a National
Defense Science and Engineering Graduate Fellowship.

especially interesting, since the separation between control and
datapath is fundamental to many design methods.

Although there have been many previous processor verifica-
tion efforts, we discuss only those that are highly automated and
have been applied to relatively complex designs. We believe that
our method can deal with more complex designs than these previ-
ous efforts. For example, Beatty [Bea93] verified a switch-level
non-pipelined processor description by using BDDs and symbolic
simulation. In general, pipelining greatly increases the difficulty of
the verification problem, so it is unclear whether Beatty’s method,
or other BDD-based methods, could cope with our design exam-
ples.

Although Bhagwati and Devadas [BD94a] claimed to verify
a pipelined implementation of the DLX processor architecture
(one of our examples) using BDDs and symbolic simulation, their
method relies on the simplifying assumption that the pipelined
implementation is k-definite. Although a correctly functioning
pipeline may satisfy this assumption, design errors can result in
behaviors that are not k-definite. Since the assumption is not
checked, their method can miss a class of bugs that is of both
theoretical and practical importance. We conjecture that elimi-
nating the assumption k-definiteness in this method would make
verification of the pipelined DLX design infeasible.

Corella et al. [C+94] describe a canonical-form representation
for expressions in a subset of first-order logic which is somewhat
similar to ours. The method is based on iteratively computing
a symbolic representation of the reachable states of the system,
similar to BDD-based verifiers. However, iteration is generally
much more difficult than symbolically simulating a small, fixed
number of steps, so we believe that this method will not be able
to handle large designs. Furthermore, the expressiveness of their
logical representation is unclear.

Decision procedures for larger subsets of first order logic have
been studied by several others, generally in the context of more
general theorem-proving systems. Nelson and Oppen [NO79] give
a decision procedure for the quantifier-free theory of the real num-
bers under + and �, arrays, list structure, and equality with unin-
terpreted function symbols. Later extensions included congruence
closure [NO80]. Shostak [Sho79] also implemented a general de-
cision procedure for a quantifier-free logic richer than ours. These
extensions to our subset of first-order logic are not necessary for
verifying processor control. By using a more restricted logic, we
can construct a faster validity checker.

There is an extensive literature on using general purpose the-
orem provers to verify processor designs, including recent work
on verifying pipelined processors [Cyr93, SB90, SM95, Win95].
These methods require significantly more manual effort than our
technique.

2 The logic
The quantifier free logic of equality with uninterpreted func-

tions is more expressive than propositional logic but less expressive
than first-order logic. An example of a formula in the logic is:

ite (f(a) 6= f(b); (a 6= b); true):

The operator ite stands for “if-then-else”. f is an “uninterpreted
function” because we do not have in mind a particular meaning.
This formula is true for every possible assignment of a function to
f and values for a and b.

Our logic has the following abstract syntax:

formula ::= ite (formula, formula, formula)
| (term = term)
| predicate symbol (term, : : :, term)
| true | false

term ::= ite (formula, term, term)
| function symbol (term, : : :, term)
| read (term, term)
| write (term, term, term)
| distinct constant.

A function of no arguments is a variable, which can be written
without the following parentheses. ite represents the if-then-else
operator, which may appear as a formula (returning a Boolean
value), or as a term. The ite operator together with the truth
constants true and false is sufficient for representing all Boolean
operators. The parser for our implementation macro-expands and,
or, etc. into equivalent expressions in the above syntax.

Distinct constants are automatically assumed not to be equal
unless they are identical. This feature is useful in processor veri-
fication, for example to represent distinct instruction opcodes. In
this paper, distinct constants are distinguished with a leading “@”;
for example, “@a” is a distinct constant.

It is helpful when verifying processors to be able to reasonabout
stores (memories) such as register files, caches, or main memory.
Formally, a store is a function of one argument (the address).
There is special support for stores in the logic, in the form of two
special operations: read and write (similar to the select and store
operators used by Nelson and Oppen [NO79]). The expression
read(store; addr) is the value at address addr of store store. The
expression write(store; addr; val) is the store that has the value val
at address addr, and the same values as store for all other addresses.

Note that the logic’s view of stores is very abstract. A store
contains no information about the sizes of its addresses or values.
If a design can be proved correct under this model, then it is correct
for any actual implementation with a known memory size.

An expression in the logic is said to be atomic if it does not
contain any ite or write operations.

3 Validity checking
The symbolic simulation step of the verification procedure gen-

erates a logical expression which should be valid, meaning that it is
true under every interpretation. Checking for validity, in essence,
covers all of the cases that must be analyzed to ensure that the
processor works for every possible instruction sequence and initial
state.

The validity checking problem is a generalization of the tau-
tology checking problem for propositional formulas. However, the
validity checking problem for our logic is more difficult, because it
must take into account additional properties of equality and func-
tions. For example, if it is known that a = b and b = c, then it is
known that a = c and that f(a) = f(c).

3.1 Propositional case
First, let us consider a straightforward validity checker, based

on Shannon decomposition, for propositional formulas (the subset
of our logic that does not have equality, function symbols, or
predicate symbols). The algorithm of Figure 1 can be used to
check such formulas, once certain functions are explained. Indeed,
many tautology checkers for propositional formulas are based on
this procedure [LCDM89].

For propositional formulas, a context is a truth assignment to a
subset of the propositional variables. The atomic formulas in our
logic are equivalent to propositional variables. An atomic formula
can be asserted in a context (which assigns a propositional variable

CheckValidity(Expr e)
Expr splitter;
if (IsAtomic(e))

if (Fold(e) 6= True)
print(“Invalid result.”);
PrintContext(TopScope);
Debug();

else
splitter = FindSplitter(e);
PushContext();
Assert (splitter);
CheckValidity (Fold(e));
PopContext();
PushContext();
Deny (splitter);
CheckValidity (Fold(e));
PopContext();

Figure 1: Validity Checking Algorithm.

the value true), or denied (assigned false). A context may imply
a given atomic formula (if the variable is assigned true in the
context), imply that the atomic formula is false (if it is assigned
false), or not determine the truth of the atomic formula.

The Fold function simplifies an expression by replacing each
atomic formula by its value in the current context, if the context
determines the value;otherwise, the atomic formula is not changed.
In addition, transformations such as:

ite(true; �;�) =) �;
ite(�;�; �) =) �;

are performed. The formula returned by Fold is guaranteed to
contain no atomic formulas that are determined by the context in
which the folding occurred.

Consider the following simple example, in a context where
a = true and b = false:

ite (ite (a; b; c); d; e) =)
ite (ite (true; false; c); d; e) =)

ite (false; d; e) =) e:

PushContext creates a copy of the current context which can
be modified without corrupting previous contexts. PopContext
discards the current context and restores the one that was current
just before the corresponding PushContext.

The function FindSplitter(e) returns a propositional variable
that is a subformula ofe (the choice of formula may be important for
efficiency but doesn’t matter for correctness). Note that variables
which have been asserted (denied) will have been replaced with
true (false) during the Fold operation.

The validity checker recursively checks the validity of the for-
mulas obtained by asserting the splitter and folding, and by deny-
ing the splitter and folding. If the validity checking function is
called with an atomic formula which folds to something other than
true, a falsifying truth assignment to the atomic propositions can
be constructed from the current context and the residual formula.
Otherwise, the procedure eventually terminates, having shown that
the formula is true under every truth assignment.

3.2 Full logic
The validity checker for the full logic is also described by

Figure 1, except that the basic data structures and procedures called
are somewhat more complex.

The most significant extension is to the definition of a context.
The contexts for the full logic capture properties of equality. Our
implementation of these contexts is particularly efficient and will
be discussed in more detail below.

As in the propositional case, contexts store assertions about
atomic formulas, and a given context may or may not determine

the truth or falsity of an atomic formula. However, in the full logic
atomic formulas may be equalities or predicate formulas, where
none of the subterms contain ite or write operations. Whenever
the atomic formulas that have been asserted or denied in a context
imply or contradict another atomic formula, the data structure is
guaranteed to detect and report this fact, except for some omissions
noted below.

The functions FindSplitter and IsAtomic are as described for the
propostional case. Fold replaces eachexpression it encounterswith
the simplest equivalent expression in the current context. Simplest
defines a total order on expressions, and expressions are never
simpler than subexpressions. The truth constants true and false are
the least elements, and are simpler than all others. This behavior
subsumes the description of Fold in the propositional case.

This behavior of Fold also ensures that, when �= � holds in
the current context, expressionsf(�) and f(�)will be replaced by
the same expression (since there is only one simplest expression
among the expressions equivalent to � and �). The function Fold
memoizes its results for a given context, so its complexity is linear
in the size of the DAG representing its argument.

Expressionscontaining reads and writes require a small amount
of additional consideration. The validity checker is generally
unable to directly prove the equivalence of two stores. Instead,
whenever a user wishes to check �= �, where � and � are ex-
pressions yielding store values (e.g. writes), the expressions are
transformed into the form read(�;arb-addr)= read(�;arb-addr)
where arb-addr is a new constant name, distinct from all others in
the expression. This formula is valid iff the original is valid, since
it asserts that the values of the stores for an arbitrary address must
be the same.

Finally, the following transformation is performed automati-
cally by the validity checker:

read(write(s; �; v); �) =) ite(�=�; v; read(s; �)):

Otherwise, read and write can be treated like any other function
symbols (in actuality, there are certain heuristics that manipulate
read and write). This transformation is sufficient to eliminate all
writes during the process of checking.

4 Implementation of contexts
In our logic, expressions can have sub-expressions of arbitrary

complexity. We have chosen to implement expressions so that they
are unique: whenever two expressions are isomorphic, their storage
is shared. Therefore, whenever two expressions are syntactically
equivalent, their pointers are the same. As in BDD implementa-
tions, uniqueness is maintained through a global hash table of all
expressions.

4.1 Equality
A context keeps track of equivalences by using the well-known

union/find algorithm [Tar75, CLR90], resulting in a data structure
that is very fast and space-efficient, both in theory and in practice.
The context maintains equivalence classes of expressions; two
expressions are equivalent if Find returns the same value for each
expression. Integers are often used to differentiate equivalence
classes. Instead, we use one of the expressions in the class which
we refer to as the ECRep (equivalence class representative).

The Find(e) operation returns the ECRep of an equivalence
class. The Union(e1; e2) function merges the equivalence classes
of two expressions. The equivalence of two expressions can be
quickly determined with two Find operations.

We augment union/find by associating certain contextual in-
formation with equivalence classes in fields of the ECRep. This
information is updated during Union operations. The simplest ex-
pression in an equivalence class, used in the Fold operation above,
is always in a field of the representative of an equivalence class.
There is also a Boolean flag associated with the ECRep which is
true iff there is a distinct constant in the equivalence class. This
facilitates a quick way to recognize an inconsistency when two

equivalence classes with distinct constants are merged. We imple-
ment true and false as distinct constants.

The current validity checker is not a complete decision pro-
cedure for the logic, because we do not provide full congruence
closure in the contexts. Congruence closure deals with the interac-
tions of functions with equality [NO80]. For example, the validity
checker fails to prove that f 3

(x) = x and f 5
(x) = x imply the

equality f(x) = x: However, the validity checker is sound — it
cannot report that a formula is valid when it is not (a false positive).
The omission of congruence closure was intentional, as it has not
been necessary in our proofs and is computationally expensive.

4.2 Disequalities

When�= � is denied, the result is a disequality1. Disequalities
are more difficult to handle than equalities. Our implementation
makes use of a disequality table, which is a hash table used to store
unordered pairs of expressions. At all times, it is known thate1 6=e2
iff hFind(e1);Find(e2)i appears in the disequality table. Hence,
the disequality of two expressions can be checked very rapidly, in
the time required for two Find operations and a hash-table lookup.

The most costly computation is updating the disequality table
during a Union operation. Suppose Union(e1; e2) modifies the
equivalence class representative for e1. Then, for every disequality
in the table of the form hFind(e1); xi, a new pair hFind(e2); xi,
must be entered into the table. To accelerate this operation, all
disequalities involving an expression e are stored on a list pointed
to by e (so that the ECreps point to lists of all the disequalities
referencing them). This list must also be updated on each Union
operation.

An assertion of disequality is inconsistent with the current con-
text iff it results in an attempt to enter he; ei in the disequality table,
for some expression e.

4.3 Contexts and backtracking
The validity checking algorithm requires the ability to assert a

formula in a context, then “undo” the assertion so that it can then
be denied. Nelson implemented this by carefully removing the
assertion from the context [Nel81]. We have a different solution
to this problem.

Our solution maintains a global stack of context records. Per-
expression contextual information, including the ECRep, fields
holding the simplest expression and distinct bit, and the list of
disequalities involving the expression, are isolated into a distinct
record which we call an ACInfo (for “assumption context informa-
tion”). Each ACInfo has a pointer back to its context record, and
each context record has an ACInfoChain, a list of all the ACInfos
associated with it.

When information in the ACInfo is to be changed, it is first
checked whether the ACInfo points back to the current context. If
not, a copy of the ACInfo is made whose context pointer points
to the current context record. A pointer to the previous ACInfo
is stored in a field of the new one. Figure 2 illustrates the data
structure. PopContext iterates over the ACInfoChain of the context
record being popped, discarding the current ACInfos and restoring
the previous ones.

Each context record also has a list of all the disequality table
entries that were defined in the context. PopContext removes all
of the entries on this list from the disequality table. PushContext
creates a fresh context, preserving all previous context information.

5 Heuristics
Because validity checking by case splitting is exponential,

heuristics are essential for working on large problems. The use-
fulness of these heuristics varies with the example and the way the
expressions are constructed in the symbolic simulator.

1as opposed to an inequality, such as � < �.

E
xp

re
ss

io
ns

Contexts

ACInfos

Expr1

Expr2

Expr3

ACInfoChain

C3 C2 C1 C0Active
Context

Figure 2: Context Implementation. A context is the information
contained in an ACInfoChain, C0 is the base context. Each ACInfo
contains back pointers to it’s expression and context (not shown
for clarity).

The order in which splitting expressions are chosen greatly
influences the number of steps required by the algorithm, similar
to the way that BDDs are sensitive to variable ordering. The most
effective splitter selection strategy we have discovered thus far is
to search for splitters in large subexpressions first. This heuristic
approximately doubles the performance of the validity checker for
most of our examples.

As shown in Section 3.1, certain transformations are part of the
framework primitives. Other transformations are more complex,
and can be selectively enabled.

ITE transformations

Certain ite forms contain redundant information. Removing
the redundancies when the formula is created is more efficient than
removing them during calls to the validity checker. For example,
consider the following two transformations:

ite (�;�; �) =) ite (�; true ; �)
ite (�;�; ite (�;
; �)) =) ite (�;�; �):

Another class of ite transformations which we have found to be
useful involves recognizing a not in the if-part, and transforming
the ite to remove the not:

ite(not(�); �;
) =) ite(�;
; �):
These simple ite transformations result in incremental efficiency
gains; 20% is typical for our examples.

One idea we should borrow from BDD implementations, but
have not yet implemented, is the use of “typed pointers,” which
have a bit associated with them that changes the interpretation of
the expression pointed-to from positive to negative.

If lifting

If-lifting above equalities “lifts” the ite if-part(s) out of an equal-
ity, moving the equality inside of the resulting ite:

(ite (�;�;
) = ite (�;�; ")) =) ite (�; (� = �); (
 = "))
(ite(�;�;
) = @�) =) ite(�; (� = @�); (
 = @�)):

The first transformation demonstrates if-lifting when both ar-
guments of the equality are ites and have identical if-parts �. The
second transformation is performed when only one side of the
equality is an ite and @� is a distinct constant (recall that @ distin-
guishes distinct constants). This transformation pushes the literals

down to the leaves of ite trees, where they may possibly cancel
other literals already there:

(@a = ite (x;@a; @b)) =)
ite (x; (@a = @a); (@a = @b)) =)

ite(x; true; false) =) x:

When enabled, this transformation occurs a significant number of
times. Its effect on our examples is variable, affecting performance
by�40%. If-lifting must be performed with care, as it may destroy
sharing of subexpressions. We have discovered that if-lifting in
the general case (two ites with if-parts �1 and �2) results in an
undesirable blow-up in the size of the resultant expressions.

Read and write transformations

In 3.2 we described a read transformation which is included
in the validity checker to make it sufficiently complete. We have
implemented other read and write transformations which improve
efficiency. Consider:

ite ((� = �); s;write (s; �; �)) =)
write (write (s; �; �); �; read (s; �))

Our testing indicates that this transformation results in a more
desirable order of splitter selection, which ultimately results in
fewer case splits. For our most complex examples, the validity
checker does not finish without this transformation enabled. We are
currently investigating the effects of several other transformations
involving reads and writes.

6 Experimental results
We have done extensive testing of our validity checkerwith two

major examples: a simple RISC processor as described by Burch
and Dill [BD94b], and a processor being designed at Stanford
University as part of the FLASH project [K+94]. For each state
variable in the specification of each processor, we use the symbolic
simulator to construct an appropriate formula which is then used
as input to the validity checker (as was done by Burch and Dill).

The RISC processoris a subsetof the DLX architecture [HP90].
The subset we have verified has six instruction types: ALU im-
mediate, 3-register ALU, conditional branch, jump (unconditional
branch), load and store. Our example has a 5-stage pipeline with a
load interlock.

FLASH is a distributed memory multiprocessor system be-
ing developed at Stanford University. FLASH includes a custom
memory and interconnect controller with a general purpose proto-
col processor (PP). PP is a MIPS-based, statically scheduled, fully
pipelined, dual-issue RISC processor core with separate instruc-
tion and data caches and executes protocol code for shared memory
and message passing. PP does not support virtual memory or pre-
cise exceptions. However, it employs simple branch prediction
and load interlocks. Our PP description contains eight instruction
classes: ALU immediate, 3-register ALU, branch-on-equal, jump,
jump-register, jump-and-link, load, and store. The PP is a more
complex processorand its model is significantly more detailed than
the DLX model used by Burch and Dill [BD94b].

For DLX, our specification checks three state variables: the
register file, data memory, and program counter. For PP, our
specification checks five state variables: those in DLX plus a
“next” version of the program counter and a taken-branch bit. The
extra state is necessary in PP because of more complex branch
instruction semantics.

The heuristics speed up the verification of the DLX processor
significantly, and make the verification of PP possible. The tim-
ing results for the validity checker with various combinations of
heuristics enabled are contained in Table 1.

7 Conclusion
There is obviously a great deal of additional work to be done to

reduce the computational complexity (in practice) of the validity

State Variable Heuristics DAG Execution
size Time (s)

DLX Register File 400 6.5
1, 2, 3, 4 492 1.0

DLX Data Memory 400 4.1
1, 2, 3, 4 491 1.8
1, 2, 3 439 1.2

DLX PC 501 0.8
1, 2, 3, 4 1767 2.2

2, 3 518 0.5
PP Register File 1, 2, 3, 4 735 268.1
PP Data Memory 1, 2, 3, 4 619 825.2
PP Next PC 1, 2, 3, 4 391 0.3
PP Next PC 1, 2, 3, 4 610 80.0
PP Taken Branch 1, 2, 3, 4 583 60.3

Table 1: Expression size and execution time for various processor
models. Heuristics: (1) splitter selection, (2) ite-write, (3) ite, (4)
if-lifting. DLX results are reported for no heuristics, all heuristics,
and best (known) combination of heuristics. PP examples without
heuristics ran out of memory (>512 MB). Measurements conducted
on a SUN Sparc-20.

checker. The problem is similar to tautology checking for propo-
sitional logic, so presumably more sophisticated techniques from
that domain can be applied. However, there are probably ways
to exploit the special properties of this domain. Since the prob-
lem is provably intractable, there is clearly a need for a larger and
more representative sample of benchmark problems, which should
capture typical practical problems that are encountered.

Another obvious area for further exploration is making the
logic more expressive. Previous work has handled Pressburger
arithmetic, and the theory of the reals as well as uninterpreted
functions and arrays (which we call stores). However, there has
been an efficiency cost. As we attempt to apply our validity checker
to a wider range of applications, we expect to encounter situations
where greater expressiveness would be an advantage. Further
exploration into highly efficient implementations of more general
validity checkers will be of great interest.

Acknowledgements
We would like to thank Xiao-Wu Su for developing the descrip-

tion of the Protocol Processor.

References
[BD94a] V. Bhagwati and S. Devadas. Automatic verification

of pipelined microprocessors. In 31st ACM/IEEE De-
sign Automation Conference, 1994.

[BD94b] J. R. Burch and D. L. Dill. Automatic verification of
microprocessor control. In Computer Aided Verifica-
tion. 6th International Conference, 1994.

[Bea93] D. L. Beatty. A Methodology for Formal Hard-
ware Verification with Application to Microproces-
sors. PhD thesis, School of Computer Science,
Carnegie Mellon University, August 1993.

[C+94] F. Corella et al. Multiway decision graphs for
automated hardware verification. Unpublished
manuscript, August 1994.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, 1990.

[Cyr93] D. Cyrluk. Microprocessor verification in PVS: A
methodology and simple example. Technical Report
SRI-CSL-93-12, SRI Computer Science Laboratory,
December 1993.

[HP90] J. L. Hennessy and D. A. Patterson. Computer Ar-
chitecture: A Quantitative Approach. Morgan Kauf-
mann, 1990.

[K+94] J. Kuskin et al. The Stanford FLASH multiprocessor.
In International Symposium on Computer Architec-
ture (ISCA), 1994.

[LCDM89] P. Lammens, L. Claesen, and H. De Man. Correct-
nessverification of VLSI modules supported by a very
efficient boolean prover. In Proceedings: IEEE Inter-
national Conference on Computer Design, October
1989.

[Nel81] G. Nelson. Techniques for program verification.Tech-
nical Report CSL-81-10, Xerox PARC, June 1981.

[NO79] G. Nelson and D. C. Oppen. Simplification by co-
operating decision procedures. ACM Transactions on
ProgrammingLanguagesand Systems, 1(2):245–257,
October 1979.

[NO80] G. Nelson and D. C. Oppen. Fast decision procedures
based on congruence closure. Journal of the ACM,
27(2):356–364, April 1980.

[SB90] M. Srivas and M. Bickford. Formal verification of a
pipelined microprocessor. IEEE Software, 7(5):52–
64, September 1990.

[Sho79] R. E. Shostak. A practical decision procedure for
arithmetic with function symbols. Journal of the
ACM, 26(2):351–360, April 1979.

[SM95] M. Srivas and S. P. Miller. Applying formal verifi-
cation to a commercial microprocessor. In Computer
Hardware Description Languages, August 1995.

[Tar75] R. E. Tarjan. Efficiency of a good but not linear set
union algorithm. Journalof the ACM, 22(2):215–225,
1975.

[Wil95] R. Wilson. Verification feels strain. Electronic Engi-
neering Times, (840):18–22, March 1995.

[Win95] P. J. Windley. Formal modeling and verification of
microprocessors. IEEE Transactions on Computers,
44(1):54–72, January 1995.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

