
Spectral-Based Multi-Way FPGA Partitioning

Pak K. Chan�, Martine D.F. Schlag,yand Jason Y. Zien

Computer Engineering
University of California, Santa Cruz
Santa Cruz, California 95064 USA

Abstract| Recent research on FPGA partitioning
has focussed on �nding minimum cuts between partitions
without regard to the routability of the partitioned sub-
circuits. In this paper we develop a spectral approach
to multi-way partitioning in which the primary goal is to
produce routable subcircuits while maximizing FPGA de-
vice utilization. To assist the partitioner in assessing the
routability of the partitioned subcircuits, we have devel-
oped a theory to predict the routability of the partitioned
subcircuits prior to partitioning. Advancement over the
current work is evidenced by results of experiments on the
standard MCNC benchmarks.

I FPGA partitioning

The design
ow using commercial FPGA tools in-
volves technology mapping, placement and routing.
Since FPGA devices have relatively low density, the
use of multiple FPGAs is often required to implement
a large circuit. A large circuit has to be decomposed
or partitioned into subcircuits for a multiple-FPGA
realization, as shown in Fig. 1.
Modi�cations of standard iterative mincut-based

partitioning algorithms have been applied to FPGA
partitioning. In [10], Kuznar et al considered the
problem of partitioning a circuit for heterogeneous
FPGA systems. Their cost function was the total-
dollars to implement the circuit. This approach is
perhaps suitable from the standpoint of developing
a new multiple-FPGA board to realize the given cir-
cuit. However, it doesn't consider the (labor) cost to
layout the FPGA systems, where regularity is one of

�Supported in part by NSF Grant MIP-9196276 & MIP-
9223740 & MICRO Program of University of California with
matching support from Xilinx Inc.

ySupported in part by NSF Grant MIP-9223740 & MICRO
Program of University of California with matching support
from Xilinx Inc..

0

the major design issues. In addition, most existing
multiple FPGA systems are homogeneous systems;
for example, the Quickturn emulators and recon�g-
urable FPGA-based computing engines. So there is
a need for partitioning algorithms for homogeneous
FPGA systems.
Given a large circuit, a partitioner generates many

subcircuits. Only when all the subcircuits have
been successfully placed and routed, will the multiple
FPGAs realize the large circuit. An important issue
that has not been considered in the literature is the
routability of the partitioned subcircuits. In this
paper, we shall see that the manner in which a
circuit is partitioned can determined whether all the
subcircuits can be automatically routed. We present
a theory to predict the routability of partitioned
subcircuits prior to partitioning: pre-partitioning
routability prediction. The routability predictor can
assist a user in determining the number of partitions,
and the selection of FPGA devices (when possible) to
realize the large circuit.
Knowing the parameters that would a�ect the

routability of the subcircuits, we devise a spectral-
based partitioning algorithm to decompose a large
circuit into subcircuits. Routability of the partitioned
subcircuits is the primary concern. The inputs to our
partitioner include partition size and cut constraints.
Although spectral-based partitioning algorithms have
not been recognized for their ability to realize hard
constraints, we shall demonstrate that spectral-based
partitioning algorithms are excellent candidates for
routability reasons.
In this paper, we shall present two main results on

spectral-based partitioning targeted for homogeneous
FPGA systems:

1. A theory to predict the routability of the parti-
tioned subcircuits to assist the partitioner in as-
sessing the routability of the partitioned circuits
prior to partitioning.

2. A k-way, spectral partitioning method which
handles both partition-size and cut-size con-
straints. The partitioner's primary goal is to
generate routable subcircuits while maximizing
logic utilization.

We compare our partitioning results to those in the

1

Routability
Prediction

Routability
Prediction

Routability
Prediction

Techology
Mapping

subcircuit 1 subcircuit k

Partitioning

Placement
and routing

Placement
and routing

remapping

Design
Entry

Figure 1: Multiple FPGAs design
ow.

literature using the standard MCNC Partitioning
1993 benchmarks. Our partitioner yields partitions
which are predictable in the routability sense, while
still producing fewer partitions in comparison to
results reported in the literature.

II Routability of subcircuits

A routability barometer has been suggested in [4]
to predict the routability of a single FPGA circuit.
We attempt to extend the technique to predict the
routability of the partitioned subcircuits. There are
two ways to approach this. The straightforward ap-
proach is to partition the circuit, and apply the single-
FPGA routability predictor to the partitioned subcir-
cuits. We call this post-partitioning routability pre-
diction. A more ambitious approach is to predict
the routability of the subcircuits prior to partition-
ing, and we call this pre-partitioning routability pre-
diction. This approach has the bene�t that it can
assist a user in determining the number of partitions,
and the suitable FPGA devices required to generate
routable subcircuits. Given a single FPGA circuit, a
single-FPGA routability predictor bene�ts from the
fact that the structure of the circuit can be extracted,
hence the average wire length can be estimated with
accuracy. Pre-partitioning routability prediction for
multiple FPGAs is harder because the structures of
the partitioned circuits can only be estimated before
partitioning, and the predictions might not be as ac-
curate as the single-FPGA case.
Figure 1 depicts the roles of both routability

predictions in the multiple-FPGA design
ow. Given
a large circuit to be partitioned, the design
ow
also suggests two possible methods to control the
routability of the partitioned subcircuits:

1. remap the given circuit to achieve 100 percent
routable subcircuits [13, 3], and

2. partition the given circuit to facilitate the routabil-
ity of the subcircuits.

Here, we shall focus on the second method.
Simply put, the routability prediction for a single

FPGA circuit involves estimating the channel width

requirement of the circuit for routing completion [8].
The parameters of the circuit involved are:

1.
: the average number of pins emanating from
each Con�gurable Logic Block (CLB), we shall
refer to
 as the pins-per-CLB ratio,

2. �: the average number of pins on a net (we refer
to � as the pins-per-net ratio), and

3. L: the average wire length of the circuit after
placement.

The average channel width requirement for routing
completion is [8, 4]:

W =
1

2

�

 �

�
1 +

� � 2

�

�
L

�
: (1)

Routability is determined by comparing W with the
FPGA device's channel width. We present a theory
to predict the average channel width requirement
of subcircuits before partitioning by predicting the
average pins-per-CLB and pins-per-net ratios of
the partitioned subcircuits (before the circuit is
partitioned). The inputs to the routability predictor
are:

1. the total number of CLB pins of the (original) circuit,

2. the total number of nets in the circuit,

3. the average wire lengths of the subcircuits,

4. the number of partitions k, and

5. the average number of I/O pins per partition.

The �rst two parameters can be calculated from the
(unpartitioned) circuit. The average wire lengths of
the subcircuits can only be estimated (see Equation
(8) later). The last two parameters depend on the
devices in the FPGA system. Assuming that the
pins-per-CLB ratios do not vary widely among the
partitioned subcircuits, on the average the pins-per-
CLB ratio of a partitioned subcircuit is:

p �
 = total CLB pins=total CLBs : (2)

Similarly, the average pins-per-net ratio, �p, of the
partitioned subcircuits is

(CLB + IO pins in a partition)=nets in a partition
(3)

The average pins-per-net ratio �p can be estimated
with good accuracy, as we shall see. Let

1. pins denote total CLB pins before partitioning,

2. pinsp denote CLB pins in partition p,

3. nets denote total nets before partitioning,

4. netsp denote nets (with one or more pins) contained
in partition p,

5. IOb denote total IOs before partitioning (sum of all
IO pins in the original circuit),

6. IOa denote total IOs after partitioning, (total
number of IO pins in all the partitioned subcircuits),

7. iop denote the number of IO pins in partition p, and

8. C denote the number of nets cut by partitioner.

2

The number of nets before partitioning and after
partitioning can be related as:

nets =
kX

p=1

netsp � (IOa � IOb) +C (4)

which essentially states that \nets" are conserved.
Equation (4) follows from the observation that when
a net is partitioned into t pieces exactly t new I/Os
will be introduced if the net had no I/O pin to begin
with, while only t�1 new I/Os will be introduced if it
had an I/O pin (if it was already cut). The nets cut by
partitioner (C) term only counts the nets cut by the
partitioner which were not connected to the original
IOs. Equation (4) is exact, and on the average:

netsp = (nets + IOa � IOb �C)=k (5)

so the average pins-per-net ratio is

�p �
average no: of pins in a partition

average no: of nets in a partition
(6)

= (pinsp + iop)=netsp

= k � (pinsp + iop)=(nets + IOa � IOb �C)

= (pins + k � iop)=(nets + IOa � IOb �C):

We'll need to make some approximation of Equa-
tion (4) before Equation (6) can be useful. We ap-
proximate: C � (IOa � IOb)=min(k; �) since these
are the nets that are not connected to the IOs. On
the average these nets fanout to k or � chips, which
ever is smaller. Also, IOa = k � iop: So, we deduce

�p �
(pins + k � iop)

nets + (k � iop � IOb)(1 � 1=min(k; �))
(7)

Given a circuit, we can extract the number of pins,
the number of nets, and the number IO pins, so we
know �. If we know the number of partitions and the
average number of IO pins used after partitioning,
we should be able to predict the average pins-per-
net ratio �p prior to the actual partitioning. A good

guess of iop is the number of I/O pins available on the
FPGA device. From Equations (1), (2), and (7), we
can predict the routability of the partitioned circuits
even before partitioning if the average wire length can
be estimated. Our approach is to calculate L based
on the logic utilization of the FPGA devices and the
FPGA device used:

L =
p
logic utilization� Ldevice type (8)

where Ldevice type depends solely on the FPGA device
type used. We shall validate our routability theory
and Equation (7) through experiments presented in
Section IV.
Equation (7) identi�es an important aspect of

partitioning for routability; the number of IOs (iop)
has some bearing on the pins-per-net ratio (hence the

routability) of the partitioned subcircuits. Equation
(7) indicates that �p decreases with increasing iop,
this suggests that a routability-driven partitioner
should maximize the IO utilization, whenever it
is possible. Intuitively, a partitioner decomposes
the nets of a circuit into inter-partition net and
intra-partition nets. Equation (4) expresses the law
of \conservation of nets." Large cut sizes imply
smaller fanout inside the FPGA devices, making the
subcircuits more routable.
There are tradeo�s between routability and the

cost of devices to implement the partitioned subcir-
cuits. Routability generally increases with reduced
utilization, whereas cost decreases with utilization.
The art of routability-driven partitioning is to seek
the �ne balance between routability and cost. It is
not obvious that mincut-based algorithms can han-
dle this seemingly paradoxic set of constraints. Typi-
cally, mincut-based partitioning algorithms minimize
inter-partition cuts [14]. We have devised a spectral-
based partitioner that maximizes the IO utilization
while minimizing the number of FPGA devices. This
will be discussed in the next section.

III Spectral partitioning

We provide some background to understand spectral-
based partitioning. We shall also discuss the subtlety
involved in choosing the proper graph matrix (Lapla-
cian or the adjacency matrix) in order to handle both
partition-size and cut-size constraints. An instance of
the graph partitioning problem consists of a graph,
G = (V; E) with vertices, V = f�1; �2; : : : ; �ng, and
weighted edges where the weight of edge e = (�i; �j),
represents the cost of putting �i and �j in separate
partitions. The problem is to �nd a partition of
the set of vertices P = fP1; P2; P3; :::Pkg for a given
k, which optimizes some cost criterion based on the
weights of the edges cut and/or the sizes of the par-
titions.
The adjacency matrix of G is the n � n matrix

A(G) = [aij] where aij is the weight of the edge
between nodes �i and �j. The degree matrix of
G is the n � n matrix D(G) = [dij] de�ned by,

dij =

� Pn

k=1 aik if i = j
0 if i 6= j

: The Laplacian of G is

the n� n symmetric matrix Q(G) = D(G) � A(G).

III-A Laplacian or adjacency matrix?

Spectral partitioning forms clusters of vertices based
on the embedding implied by the eigenvectors V of a
graph matrix, which can be the Laplacian Q, or the
adjacency matrix A of the graph. To minimize the
ratio-cut cost metric, researchers used the Laplacian
Q to obtain an embedding [11, 2] of the eigenvectors.
This is the correct approach since spectral embedding
of the Laplacian appears to be closely related to the
ratio-cut cost metric.
Let � be the set of all k-way partitions of a graph

G, and Eh be the total weight of the edges in G
having exactly one endpoint in partition Ph. In [5]

3

the authors show that,

min
XTX=I

trace(X
T
QX) � min

P2�

kX
h=1

Eh

jPhj
(9)

which provides a lower bound on k-way ratio-
cut cost metric. The �rst k eigenvectors V of
the Laplacian Q satisfy this inequality and the
eigenvectors can be used to form the projector, V V T ,
as an approximation of the ratioed partition matrix
[5]. Note that minimization of the ratio-cut cost
metric implies that partition size and partition cut
constraints are not imposed simultaneously on the
partitions. This is a consequence of the de�nition
of the ratio-cut cost metric.
The adjacency matrix A(G) of a graph G is

a less popular choice of the matrix to obtain an
embedding. Based on Donath/Ho�man's result [7],
Rendl/Wolkowicz [12] derived an upper bound on the
weight of the edges uncut (Euncut) by a partition
satisfying pre-determined partition sizes. If m1 �
m2 � : : : � mk are the target partition sizes, M =
diag(m1; :::;mk), and �n�k+1 � �n�k+2 � : : : � �n
are the largest k eigenvalues of the adjacency matrix,
then

nX
i=n�k+1

mi�i(A) = max
XTX=I

�
trace(MX

T
AX)

	
� 2Euncut:

If all the partitions have the same size, m1 = m2 =
::: = mk = m, then the above equation can be
simpli�ed to:

nX
i=n�k+1

�i(A) = max
XTX=I

�
trace(XT

AX)
	
�

2� Euncut

m

which provides an upper bound on the number
of edges uncut. The last k eigenvectors V of the
adjacency matrix A satisfy this inequality and the
eigenvectors can be used to form the projector V V T .
It is an approximation of the ratioed partition matrix
[5]. Consequently the partitions will be equal-sized,
roughly speaking. Hence, the adjacency matrix A is
a better choice than the Laplacian Q to partition a
circuit for a homogeneous FPGA system.
Equation (7) states that the pins-per-net ratio de-

creases with increasing number of I/O pins used. So,
it is meaningful for a partitioner to �nd suboptimal
cuts for routability purposes. First, a spectral-based
partitioner has the inherent property that it can gen-
erate a wide selection of cuts. It is easy to see why.
For example, from Equation (9), if we exclude the
�rst eigenvector v1 from the minimization, then the
lower bound will be increased:

min
XTX=I

XT v1=0

trace(XTQX) =
k+1X
h=2

�i(Q) �
kX

h=1

�i(Q):

This has the implication that more cuts (consequently
more I/O pins) would be obtained by using interme-
diate eigenvectors to induce the partitions (A similar

Current partition

consideration
vertex under

Figure 3: Ranking heuristic based on Cuts.

argument holds for the adjacency matrix). Second,
some net models used in transforming hypergraphs
into graphs are known to produce more cuts than the
others, we may use those net models to increase the
cuts. As the last resort, we can use a di�erent graph
matrix. For example, use the Laplacian in place of
the adjacency matrix.

III-B From Eigenvectors to Partitions

Given the logic capacity and I/O capacity constraints,
we present a procedure to use the eigenvector embed-
ding of a graph matrix to construct partitions that
satisfy the constraints. As in [5], our approach to
k-way partitioning is to \reverse engineer" the par-
titions from the embeddings implied by the eigen-
vectors of A, V = [vn�k+1; :::; vn] (or the intermedi-
ate eigenvectors V = [vn�k+1�q; :::; vn�q+1], for some
q � n if so desired). 1 Given the eigenvectors, we
measure the cosine of the angle between the two row
vectors i and j of V (or the column vectors of V T).
These directional cosines provide a measure of the
proximity of the vertices relative to each other. This
strategy, in e�ect, identi�es all the `1's in the par-
titioning matrix P implied by the projector V V T .
The �rst step is to determine a vertex of largest mag-
nitude to serve as the prototype (seed) for the �rst
partition. The �rst prototype is selected by magni-
tude, and the rest are determined by their relative
(anti)orthogonality with respect to the existing pro-
totypes.
A vertex is said to be allocated if it has been

assigned and committed to a partition. After the
determination of the prototype, the rest of the
unallocated vertices are ranked based on their anti-
orthogonality with respect to the prototype. The
ranked vertices are sorted in a heap data structure,
which is updated as vertices are extracted from the
heap.
An additional factor to be considered in the ranking

of the vertices is the number of cuts incurred by
including a vertex in a partition. The ranking
function for the vertices is:

rank = anti orthogonality � f � cuts incurred (10)

where f is a weight parameter associated with the
heuristics. We use 0:5 < f < 2:5; a typical value is
1. We have two di�erent strategies. We call them
the pcut and pcluster heuristics, respectively. Figure

1We use the �rst k eigenvectors of the Laplacian graph
matrix, and the last k eigenvectors of the adjacency matrix.

4

KPF Partition(I/O constraint, logic constraint) f
Remove high-fanout nets in the hypergraph and transform it to a graph
Find k eigenvectors of this graph, V

Associate each row of V with its vertex in the original hypergraph
Mark all vertices unallocated
h=0;
Select vertex with largest-magnitude vector as 1st prototype

while (there are unallocated vertices) f
h++;
if h 6= 1 select vertex most orthogonal to previous

prototype and use it as the prototype for partition h
Build heap based on the ranking function, Eq. (10)
while partition h has not reached logic capacity f

remove largest cost vertex, �, from heap
assign � to partition h
update cut tally for each net to which � belongs
update heap cost for all vertices adjacent to �
put � on Rollback list if I/O capacity is exceeded
reset Rollback list if I/O capacity is not exceeded

g
Remove vertices on Rollback list from h and mark them unallocated

g
Print partition results

g

Figure 2: Pseudo-code for spectral KPF partitioning method.

3 illustrates a vertex (in solid) which, with the pcut
heuristics, is considered to have saved 4�3 = 1 cut if
incorporated into the current partition; whereas with
the pcluster heuristics, it is considered to have saved
4 cuts (or incur �4 cuts).
The logic capacity and I/O constraints are satis�ed

by using the procedure KPF as outlined in Fig. 2.
In essence, the partitions are built one at a time.
A prototype is the �rst entry of a partition. One
at a time, vertices are extracted from the heap and
tentatively assigned to the current partition. If the
I/O capacity is exceeded, then the vertex's ID is
entered into a rollback list. The rollback list is
reset if the number of I/Os drops within the bound.
Upon each extraction of a vertex from the heap,
the costs of vertices in the heap are incrementally
updated according to the cost function, Eqn. (10).
The extraction is repeated until the logic capacity
constraint is exceeded. Rollback commences if there
are entries in the rollback list; it rolls back to the
last point where the I/O constraint is met. Then
all vertices in the feasible partition are marked
\allocated."

IV Experimental results

IV-A KPF K-way FPGA partitioner

We implement our k-way partitioning algorithm with
both clustering heuristics pcuts and pcluster, and
the best results of the two heuristics are presented.
We refer to our k-way spectral-based partitioning
algorithm as KPF.
We ran the graphs derived from the MCNC FPGA

partitioning 1993 benchmarks for the Xilinx XC3000
series. The hypergraphs of the benchmarks were
transformed into graphs by using Frankle's clique
expansion net model [9], or the star graph net model.
Unlike the clique net model, the star graph net

model produces a very sparse graph matrix, which
accelerates the eigensolver. On the other hand,
this hypergraph model generates auxiliary vertices
that have to be �ltered out from the eigenvector
embedding. We have observed that the star graph
net model tends to produce more partitions than
the clique net model. Unless otherwise stated,
the partitioning results reported are produced by
Frankle's clique net model.
Also, the hypergraphs of the benchmarks were

pre-processed to remove high-fanout nets of degree
greater than 99. Nets whose degree were greater than
99 were removed in order to reduce storage space and
processing time. This step is essential in facilitating
the eigensolver (Scott/Parlett implementation of the
Lanczos algorithm) to run on a low-end SPARC
station with only 32 Mbyte of memory. The high-
fanout nets are only excluded during the calculation
of the eigenvectors. Once the eigenvectors are
computed, all nets are considered in determining the
partitions.
A user supplies the desired FPGA package type,

number of eigenvectors (h) desired, a balancing
constraint, the circuit, and the net model desired to
the partitioner. The balancing constraint determines
the ratio of the partition sizes of the last two
partitions. The partitioner transforms the circuit
to a graph (adjacency) matrix according to the net
model. The Lanczos algorithm is used to �nd the
last h eigenvectors; the partitioner then generates
the partitions. The number of partitions might be
di�erent from the number of eigenvectors speci�ed.
The partitioned subcircuits are translated to the

Xilinx map format. The routability predictor kop was
applied to all the subcircuits. All the subcircuits are
subsequently placed and routed using the vendor's
tool apr (version XACT 5.0) with the default options.
Overall, the results in Table 1 demonstrate that

5

Circuit Kunzar et al's results KPF results CLB IOB elapsed
of chips CLB util % # of chips util % util % time in sec.

c3540 f0,0,3,0,0g 66 f0,0,3,0,0g 66 99 38
c5315 f2,1,2,0,0g 73 f0,0,4,0,0g 65 94 64
c6288 f0,0,4,2,0g 81 f0,0,0,4,0g 93 77 84
c7552 f0,0,4,0,0g 85 f0,0,4,0,0g 85 99 83
s5378 f0,0,1,0,1g 82 f0,0,0,0,2g 60 72 38
s9234 f0,0,0,1,1g 77 f0,0,0,0,2g 71 69 69
s13207 f3,5,4,0,0g 72 f0,0,11,0,0g 58 98 202
s15850 f0,0,2,2,1g 83 f0,0,0,0,4g 66 91 171
s38584 f0,5,15,4,1g 75 f0,0,0,16,0g 81 95 1710

Circuit Chou (SC) KPF results
et al`s results

s13207 f0,0,0,0,6g f0,0,0,0,6g(routable)
s15850 f0,0,0,0,3g f0,0,0,0,3g (unroutable); f0,0,0,0,4g (marginal)
s38417 f0,0,0,0,10g f0,0,0,0,8g (unroutable); f0,0,0,0,9g (marginal)
s38584 f0,0,0,0,14g f0,0,0,0,11g(marginal); f0,0,0,0,12g(marginal)

Table 1: Summary of KPF (k-way partitioning for homogeneous FPGA systems). Partitioning results using a
SUN IPC workstation with 32 Mbyte of memory. The number of chips generated by the partitioners is presented
as f# of XC3020, # of XC3030, # of XC3042, # of XC3064, # of XC3090g Xilinx XC3000 FPGAs. Kuznar et
al's partitioner [10] is for heterogeneous FPGA systems. Chou's partitioner (SC) [6] is for homogeneous FPGA
hardware emulators.

our spectral-based graph partitioner KPF is capa-
ble of handling hard constraints and producing good
partitions in reasonable time. We used the results
from [10, 6] as references. The partitioner of Kuz-
nar et al [10] is targeted for heterogeneous systems,
while our partitioner KPF is targeted for homoge-
neous systems. We only list our homogeneous parti-
tioning results in Table 1. However, our partitioner
is also capable of generating very competitive het-
erogeneous results. For example, in [10] the authors
use a monetary cost function, their partitioner gen-
erates a device distribution of f0; 0; 1; 0;1g meaning
one XC3042 and one XC3090 FPGA to implement the
benchmark circuit s5378 (routability results are not
reported in [10]). But without balancing constraints,
our partitioner generates a better device distribution
f1; 0; 0; 0; 1g meaning one XC3020 and one XC3090
FPGAs to implement the circuit, and the average
CLB utilization is 99.6%. Also, our result is less ex-
pensive than [10] with a monetary cost function. But
the vendor's placement and routing tool apr [1] can-
not complete the routing of this XC3090 subcircuit,
the tool reports 50 unrouted nets! This demonstrates
that partitioning without consideration for routabil-
ity could be an exercise of futility. Even though sev-
eral parallel processing researchers reported that in
terms of cuts, spectral-based partitioning results can
be further improved by applying mincut-based parti-
tioning algorithm such as Kernighan and Lin; we do
not resort to this post-processing step for routability
considerations. The elapsed times (not CPU time)
reported in Table 1 do not include the time taken
by an awk script to translate the partitioning results
generated by KPF into the Xilinx map format.

IV-B Routability prediction results

The routability of all the subcircuits are predicted be-
fore they are placed and routed, and the accuracy of

the pre-partitioning routability predictor is reported
in the last column of Table 2. As seen from the
second column in Table 2, the pins-to-cell ratios of
the MCNC benchmark circuits are relatively low. All
subcircuits predicted to be \routable" were automat-
ically routed in the �rst time by apr. On the other
hand, subcircuits predicted to be \marginal" didn't
complete the routing the �rst time by apr. Ten place-
ment and routing runs were applied to those subcir-
cuits and the average number of unrouted nets was
recorded.

The majority of the subcircuits are predicted to
be routable and this was later veri�ed, as given
in Table 2. Of particular interest is the circuit
s15850 with 3 partitions which was predicted to be
unroutable, so we increased the number of partitions
to 4, and the predictor predicts marginal routability.
The prediction was veri�ed to be correct, as depicted
in the �rst �ve entries, last column of Table 3. This
table also illustrates that spectral-based partitioners
can generate a wide variety of cuts, and hence
partitioning results. For instance, one of the 4
subcircuits generated by using the last 4 eigenvectors
(of the adjacency matrix) has 7.7 unrouted (average)
nets after 10 apr runs, and this subcircuit has higher
cell utilization than the others. Instead, by using
the 2nd to 4th eigenvectors our partitioner generates
slightly more balanced and routable subcircuits, as
indicated in the 4th entry of Table 3. Last, the star
net model generates 5 very routable subcircuits, but
the utilizations of the subcircuits are low.

We also include two hard-to-route circuits, alu4
and misex3 from the MCNC combinational cir-
cuit benchmark suite to test our partitioner and
routability predictor. Initially, the circuit alu4 uses
two XC3042PG132's and circuit misex3 uses two
XC3020PC84's to implement the subcircuits, respec-
tively. The routability predictor predicts the subcir-

6

Circuit pins/clb pins/net pins/clb pins/net CLB IOB # of # of unrouted nets pre-partition
predicted predicted actual actual % util % util partitions in subcircuits prediction
by eqn (2) by eqn (7) average average Average Minimum

c3540 5.56 2.94 5.58 3.05 66 99 3 0,0,0 0,0,0
p

c5315 5.59 3.29 5.68 3.15 65 94 4 0,0,0,0 0,0,0,0
p

c6288 4.53 2.46 4.53 2.50 93 77 4 0,0,0,0 0,0,0,0
p

c7552 5.36 3.10 5.35 3.05 85 99 4 0,0,0,0 0,0,0,0
p

s5378 5.24 3.13 5.23 3.19 60 72 2 0,4.55 0,0 M

s9234 5.11 3.11 5.05 3.15 71 69 2 0,0.5 0,0 M

s13207 4.70 2.68 4.83 2.79 58 98 11 0,0,...,0 0,0,...,0
p

s15850 4.87 2.93 4.90 3.07 66 91 4 2.8,0,0,0 0,0,0,0 M

s38584 5.08 3.27 5.15 3.38 81 95 16 0,0,...,0 0,0,...,0
p

alu4 6.45 3.20 6.45 3.18 58 80 2 3,15 1,11 M

misex3 6.49 3.36 6.49 3.30 90 89 2 0,10.55 0,6 M

Table 2: Routability results of the subcircuits produced by the partitioner KFP using the clique hypergraph
model. The predicted and measured (average) pins/net ratios of the benchmark circuits are reported; as
well as the prediction of the pre-partitioning routability predictor (

p
=routable, M=Marginal, U=Unroutable).

Subcircuits with zero average unrouted nets indicate successful �rst-time placement and routing completion.
Nonzero average unrouted nets are the averages of 10 placement and routing runs.

net number of eigenvectors # of CLBs avg. unrouted nets
model partitions in subcircuits in subcircuits

clique � last 2 � �

clique 3 last 3 300,299,243 10.3 ,2.5,0
clique 4 last 4 303,214,150,175 7.7 ,0,0,0
clique 4 last 2nd to 4th 294,191,230,127 1.4 ,0,0,0
clique 4 last 3rd to 5th 249,165,197,231 0 ,0,0,0
star 5 last 3 203,193,127,116,203 0,0,0,0,0

Table 3: Partitioning and routability results of
subcircuits of benchmark circuit s15850 generated
by using di�erent net models and eigenvectors of the
graph adjacency matrix.
Circuit package net subcircuit1 subcircuit2 avg. unrouted nets

model IOBs CLBs IOBs CLBs subcircuit1,subcircuit2

alu4 3042- clique 73 72 81 95 3.0, 15.0
alu4 PG132 star 90 77 96 90 0.6, 11.9

misex3 3020- clique 55 57 53 58 1.9, 6.5
misex3 PC84 star 64 56 64 59 0.5, 4.8

Table 4: Routability results of subcircuits of alu4 and
misex3 after 10 placement and routing runs, showing
the e�ect of increased cuts on routability.

cuits to be marginally routable, and this was veri�ed,
as shown in Table 2.
We repartition both circuits using the star net

model, the results are shown in Table 4. The number
of cuts (IOBs) produced by using the star net model
is higher than the clique net model. The subcircuits
are more \routable" with increased IOB usage, as
indicated by the drop in the average number of
unroutable nets in Table 4. We also applied the pre-
partitioning routability predictor to check to see if
the circuit misex3 would be routed using a di�erent
package type, say XC3030PQ100, which has 100
CLBs and 80 IOBs. The predictor predicts positive
results and this was veri�ed to be the case.

V Conclusion

In this paper, we have presented partitioning results
of a spectral-based partitioner targeted for homoge-
neous FPGA systems. The partitioner handles both
partition-size and cut-size constraints. Routability
of the partitioned subcircuits is the primary concern.
To assist the partitioner in assessing the routability of
the partitioned subcircuits, we have developed a the-
ory to predict the routability of the partitioned sub-

circuits prior to partitioning. We feel that routability
prediction is valuable and should play a pivotal role
in the partitioning for multiple-FPGA systems.

References

[1] XILINX: The Programmable Gate Array Data Book.
2100 Logic Drive, San Jose, CA 95124, 1993.

[2] C. J. Alpert and A. B. Kahng. Multi-way parti-
tioning via space�lling curves and dynamic program-
ming. 31st DAC, pg. 652{657, CA, June 1994.

[3] N. Bhat and D. Hill. Routable Technology Mapping
for LUT FPGAs. ICCD, pg. 95{98, Oct. 1992.

[4] P. K. Chan, M. Schlag, and J. Zien. On routability

prediction for �eld-programmable gate arrays. 30th

DAC, pg. 326{330, Texas, June 1993.
[5] P. K. Chan, M. Schlag, and J. Zien. Spectral k-way

ratio-cut partitioning and clustering. IEEE Trans.
on CAD, pg. 1088{1096, Sept. 1994.

[6] N.-C. Chou, L.-T. Liu, C.-K. Cheung, W.-J. Dai,
and R. Lindelof. Circuit partitioning for huge logic
emulation systems. 31st DAC, pg. 244{249, CA,
June 1994.

[7] W. Donath and A. Ho�man. Lower bounds for the
partitioning of graphs. IBM J. R & D, pg. 420{425,
1973.

[8] A. El Gamal. Two-Dimensional Stochastic Model for
Interconnections in Master Slice Integrated Circuits.
IEEE Trans. on CAS, pg. 127{138, Feb. 1981.

[9] J. Frankle and R. M. Karp. Circuit placements and
cost bounds by eigenvector decomposition. IEEE
ICCAD-86, pg. 414{417, Santa Clara, CA, Nov 1986.

[10] R. Kuznar, F. Brglez, and K. Kozminski. Cost

minimization of partition into multiple devices. 30th

DAC, pg. 315{320, Texas, June 1993.
[11] A. Pothen, H. D. Simon, and K.-P. Liou. Parti-

tioning sparse matrices with eigenvectors of graphs.
SIAM Journal of Matrix Analysis and Applications,
11(3):430{452, 1990.

[12] F. Rendl and H. Wolkowicz. A projection technique
for partitioning the nodes of a graph. Tech. report,
University of Waterloo, Apr. 1991.

[13] S. Trimberger and M.-R. Chene. Placement-
Based Partitioning for Lookup-Table-Based FPGAs.
ICCD, pg. 91{94, Oct 1992.

[14] N.-S. Woo and J. Kim. An e�cient method of parti-
tioning circuits for multiple-FPGA implementation.
30th DAC, pg. 202{207, Texas, June 1993.

7

	Compendium95
	FPGA95
	Front Matter
	Table of Contents
	Session Index
	Author Index

