
Testing of Uncustomized Segmented Channel

Field Programmable Gate Arrays

Tong Liu Wei Kang Huang Fabrizio Lombardi

Dept. of Computer Science Dept. of Electronic Engineering Dept. of Computer Science

Texas A&M University Fudan University Texas A&M University

College Station, TX 77843 Shanghai 200433, P.R. China College Station, TX 77843

Abstract

This paper presents a methodology for production-time

testing of (uncustomized) segmented channel �eld pro-

grammable gate arrays (FPGAs) such as those manu-

factured by Actel [1]. The principles of this methodol-

ogy are based on con�guring the uncommitted modules

(made of sequential and combinational logic circuits)

of the FPGA as a set of disjoint one-dimensional ar-

rays similar to iterative logic arrays (ILAs). These

arrays can then be tested by establishing appropriate

conditions such as constant testability (C-testability).

A design approach is proposed. This approach is based

on adding a small circuitry (consisting of two tran-

sistors) between each pair of uncustomized modules in

a row for establishing the ILA con�guration as a one-

dimensional unilateral array. It also requires the addi-

tion of a further primary pin. Features such as num-

ber of test vectors and hardware requirements (mea-

sured by the number of additional transistors and pri-

mary input/output pins) are analyzed; it is shown that

the proposed design approach requires a considerably

smaller number of test vectors (a reduction of more

than two orders of magnitude) and hardware overhead

for the testing circuitry (a reduction of 13.6%) than

the original FPGA con�guration of [1]. The proposed

approach requires 8+2nf vectors for testing the un-

committed FPGA of [1], where nf is the number of

ip-
ops (equal to the number of sequential modules

for the FPGA of [1]) in a row of the FPGA.

Index terms: testing, FPGA, constant testability,

manufacturing.

0This research supported by a grant from the Texas ATP.

1 Introduction.

Field Programmable Gate Arrays (FPGAs) are widely

used for rapid prototyping and manufacturing digital

systems using ASIC design [3, 4]. FPGAs are avail-

able commercially and two general types can be distin-

guished: SRAM-based and segmented channel FPGAs

[1, 2]. Research in FPGAs has encompassed many as-

pects, such as technology mapping, routing and place-

ment [4, 8].

Recently, interest in yield and fault tolerance by re-

con�guration has been reported in the technical liter-

ature [5, 6, 7, 11, 12]. These approaches implement

placement in the presence of faulty modules such that

a FPGA can be still utilized. However, they rely on

an e�ective diagnosis procedure such that the status

of all modules can be assessed prior to recon�guration.

Testing of FPGAs has not been analyzed in depth

in the literature []16,19]. In [15], testing of segmented

channel FPGA has been discussed. This approach re-

lies on a modi�ed scan procedure to test sequentially

every module in a FPGA, thus guaranteeing 100%

fault coverage under a single stuck-at fault assump-

tion. This requires a large number of tests and does

not fully exploit the modularity in the FPGA to fur-

ther reduce testing at production-time.

The objective of this paper is to propose a new

methodology for testing segmented channel FPGAs.

This methodology is based on connecting the mod-

ules on each row of a FPGA as a one-dimensional

unilateral array such that the FPGA can be tested

as a set of disjoint one-dimensional arrays, each array

tested by establishing appropriate conditions such as

C-testability [13, 14]. This results in a considerable

reduction in both number of test vectors and testing

circuitry.

This paper is organized as follows. Section (2) in-

troduces the preliminaries, inclusive of notation and

assumptions. Section (3) describes the basic principles

of the proposed approach. Sections (4) and (5) deal

with testing of a combinational and sequential mod-

I ISS S CC SI I B S S CC C S C

Figure 1: A Row in the FPGA of [1].

ule respectively. Section (6) introduces the design for

constant testability in an array made of combinational

modules. Section (7) and (8) extend this design to an

array with sequential modules as well as to a FPGA.

Conclusions inclusive of a comparison with the design

of the FPGA of [1], are presented in the last section.

2 Preliminaries.

A �eld programmable gate array (FPGA) can be

thought as an homogeneous two-dimensional array in

which modules can be programmed to implement com-

binational as well as sequential logic functions [4, 9].

Modules are separated by a programmable intercon-

nection network; the interconnection network may

consists of either programmable connector and switch-

ing modules [2], or a series of horizontal/vertical rout-

ing tracks and segments with programmable devices

(usually in an antifuse con�guration) [8, 9]. Cus-

tomization is achieved by connecting the desired mod-

ules and programming the augmented interconnection

network.

In this paper the FPGA con�guration of [1] is

analyzed and in particular, testing of this type of

FPGA prior to customization is considered, i.e. test-

ing at production-time for manufacturing purposes.

In this FPGA, every row consists of I/O modules

(generally denoted as I-modules), programming mod-

ules, C-modules and S-modules (as shown in Fig-

ure 1). The C-module implements the following com-

binational function:

Y = S1 � S0 �D00 + S1 � S0 �D01 +

S1 � S0 �D10 + S1 � S0 �D11 (1)

where S0 = A0 � B0 and S1 = A1 + B1. Note that +

(�) stands for the logical OR (AND) operator.

The C-module is shown in Figure 2 and consists of

a multiplexer with four data inputs. Figure 3 gives

the logic and block diagrams of multiplexers with two

data inputs; Figure 4 shows the block diagram of mul-

tiplexers with four data inputs.

The S-module implements the same Y function (ex-

cept that S0 = A0 only, because B0 is used as the

reset input) followed by the sequential block. The se-

quential block implements either a D-type
ip-
op,

or a transparent latch [1]. This block can be fully

transparent such that the S-modules can be used to

implement purely combinational functions as for the

C-modules.

10

11

01

00

D

D

D

D

A1 1B 0

Y OUT

1

A B0

0SS

Figure 2: Block Diagram of a C-Module.

M Y

C

D

D

0

1

C

1

2
0100

1000

Y

D

D 0

1

X110

0101

1100
1010

1X01

Figure 3: Logic and Block Diagrams of a Multiplexer

with Two Data Inputs.

The following assumptions are made throughout

this paper.

(a). The single stuck-at fault is assumed. This may

occur in the modules (S- and C-modules) as well

as any additional circuitry required for testing (note

that faults in the interconnection network inclusive of

bridging faults, can be fully diagnosed using relatively

simple test sets due to its regularity [15]). Note that

this assumption can be relaxed to multiple faults as a

single stuck-at fault per row of the FPGA with no im-

plication on the correctness of the proposed approach.

(b). The array is uncommitted, i.e. prior to cus-

tomization and the programming process.

(c). The proposed approach tests only the logic mod-

ules (C- and S-modules) of the FPGA.

3 Basic Principles.

The proposed approach is based on the following two

considerations:

0

1

D

C

C

M
CD

D 00

D 01

D 10

11

D 0

D 1

 2

M 1

 3M
1D

0DD

D

1D

0
Y

Y Y

Y

1S S 0

Figure 4: Block Diagram of a Multiplexer with Four

Data Inputs.

1. If the Y output of a module (either C- or S-

module) is connected to some inputs of the right

(or left) neighbor module along the row, then

the whole row of modules in the FPGA becomes

a one-dimensional (unilateral) array. This array

can be tested using established techniques as ap-

plicable to ILAs [14].

2. As each row of modules is the same in a FPGA,

then they can be tested disjointly, i.e. the FPGA

can be fully tested by testing all rows of modules

at the same time.

The above considerations under a single stuck-at

fault assumption are used to prove that a row of mod-

ules in the FPGA recon�gured as a one-dimensional

array, is C-testable (using a constant number of tests

irrespective of the number of modules, i.e. constant

testability) [13] provided all S-modules are used to

implement the same combinational function as the

C-modules and rows are slightly modi�ed to accom-

modate two transistors between each pair of modules.

The total number of test vectors required for fully test-

ing this type of array is 8. Also, it is proved that in

general, the one-dimensional array (made of the mod-

ules in the FPGA) can be tested by pipelining the

test vectors (for a pipeline made of S-modules). In

this case, the total number of vectors to fully test the

row is (8+2ns), where ns is the number of S-modules

in a row of the FPGA. This is the same number of

vectors to test the whole FPGA.

4 Testing of the C-module.

Testing of a C-module can be analyzed by �rst con-

sidering the testing of a multiplexer. A multiplexer

with two data inputs can be fully tested using only

four vectors under a single stuck-at fault assumption

[17]. These four vectors are given in Table (1), where

Table 1:

Test Vector t1 t2 t3 t4

C 0 1 0 1

D0 1 x 0 1

D1 x 1 1 0

Y 1 1 0 0

Table 2:

Test Vector t1 t2 t3 t4 t5 t6 t7 t8

S1 0 0 1 1 0 0 1 1

D00 0 1 1 x 1 x x x

D01 1 x 0 1 x x x x

D10 1 x x x 0 1 1 x

D11 x x x x 1 x 0 1

S0 0 0 0 0 1 1 1 1

D0 0 1 0 1 1 x x x

D1 1 x x x 0 1 0 1

Y 0 1 0 1 0 1 0 1

the test set T=ftig, i=1, ... , 4. When t2, t3 and

t4 are applied to the two inputs, the test sequence

(11,01,10) is applied to the AND gate G2. The upper

input of the OR gate (the same as the output of the

AND gate G1) is (0,0,0). The e�ect of a stuck-at fault

can be propagated through the OR gate. Therefore,

the AND gate G2 is fully tested. The AND gate G1

is tested similarly when t1, t2 and t3 are applied (the

NOT gate is also tested at this time). The OR gate

is tested when t1, t2 and t3 (or t1, t2 and t4) are ap-

plied and the test sequence (10,01,00) appears to its

two inputs. Note that a stuck-at fault on the primary

input C can be detected by t3 and t4, because only

one sensitized path exists from C to Y .

Equivalently, it is well known that a multiplexer

with four data inputs can be fully tested by eight test

vectors under the single stuck-at fault assumption [17].

These vectors are given in Table (2). When t1, t2, t3
and t4 are applied, then in Figure 4 (C;D0; D1) =

(001; 01X; 110;1X1), where X stands for don't care;

these are required to fully test a multiplexer with two

data inputs and are applied to the multiplexer 1 (de-

noted as M1). At the same time, 0 is applied to S0
(the C input of multiplexer 3, M3) such that Y = D0

(the output ofM1). Therefore, the e�ect of a stuck-at

fault can be propagated to the Y output and M1 is

fully tested. When t5, t6, t7 and t8 are applied, M2

is fully tested in a similar fashion. Note that faults

on the primary input S1 can be detected by either

t1 and t3, or t5 and t7, because only one sensitized

path from S1 to the primary output Y exists. When

t1, t2, t5 and t6 are applied, M3 is fully tested be-

cause (C;D0; D1) = (001; 01X; 110; 1X1) as required

to fully test a multiplexer with two data inputs.

The above considerations can be used to prove that

Table 3:

Test Vector t1 t2 t3 t4 t5 t6 t7 t8

A1 0 0 0 1 0 0 1 0

B1 0 0 1 0 0 0 0 1

D00 0 1 1 x 1 x x x

D01 1 x 0 1 x x x x

D10 1 x x x 0 1 1 x

D11 x x 1 x 1 x 0 1

A0 0 1 1 0 1 1 1 1

B0 1 0 0 1 1 1 1 1

D1 0 1 0 1 0 1 0 1

00

01

10

11

1 0

0

0

11A B

A

SS
D

D

D

D

Y
Y

D

CLK

Reset
OUT

B

Figure 5: Block Diagram of a S-module.

to fully test a C-module under the single stuck-at fault

assumption, only 8 vectors are required (as shown in

Table (3)). Note that there is a sensitized path fromS1
to Y for t1, t3, t5 or t7 to test a multiplexer with four

data inputs. In a C-module, S1 = A1+B1. Therefore,

the only requirement for testing the OR gate in a C-

module is to apply the test sequence (00; 01; 10) to

(A1; B1) for t1, t3, t5 or t7 to test the multiplexer. The

AND gate in the C-module can be tested by applying

the test sequence (10; 01; 11) to (A0; B0) for t1, t3, t5
or t7 to test the multiplexer. However in t3, D11 must

be 1 instead of X such that D1 = 1 in M3. This is

required for establishing a sensitized path from S0 to

Y in M3.

5 Testing of the S-module.

As mentioned previously in Section (3), the S-module

implements the same Y function as the C-module (ex-

cept that S0 = A0 because B0 is used for reset) and the

Y output is connected to the sequential block as shown

in Figure 5. The sequential block can implement ei-

ther a D-type
ip-
op or a transparent latch [1]. It can

also be fully transparent such that the S-modules can

be used to implement purely combinational functions

as the C-modules.

The S-module (whose block diagram is given in Fig-

Table 4:

Test Vector t1 t2 t3 t4 t5 t6 t7 t8

A1 0 0 0 1 0 0 1 0

B1 0 0 1 0 0 0 0 1

D00 0 1 1 x 1 x x x

D01 1 x 0 1 x x x x

D10 1 x x x 0 1 1 x

D11 x x 1 x 1 x 0 1

A0 0 0 0 0 1 1 1 1

OUT 0 1 0 1 0 1 0 1

ure 5) can also be tested by eight vectors given in Ta-

ble (4). Note that B0 is not present in Table (4) and

S0=A0 in Figure 5. Therefore, the eight vectors can

fully test the C-module block in a S-module. The Y

output of the C-module block takes both boolean val-

ues when the eight vectors are applied. Therefore, the

sequential block (acting as either a D-type
ip-
op, or

latch) can be tested using the above vectors as long as

a clock signal is applied to the module for every vector

in T . To test the reset function, a reset signal must be

applied to B0 after the eighth vector (note that at this

time, the output is 1). In the following discussion, for

sake of simplicity the reset function is not explicitly

considered.

6 C-Testable Design of a C-

Module Array.

A C-module (one-dimensional) array can be con-

structed by connecting the Y output of each ith

module to one of the inputs of the (i + 1)th mod-

ule (i = 1; 2; :::; nc � 1, where nc is the number of

C-modules). However, this type of array is not C-

testable because there is no single input which always

has a sensitized path from the input to the primary

output of the C-module when any of the eight vectors

is applied to the C-module [15]. Hence, controllabil-

ity and observability cannot be guaranteed within the

array to satisfy the conditions for constant testability

[14]. Therefore, an arrangement is proposed to allow

the Y output of each ith module to be connected to

either A0 or B0 of the next module, thus accomplish-

ing C-testability of this array. Figure 6 shows such

arrangement. The A0 and B0 inputs of a module can

be connected to the output of the previous module

by using two transistors and an appropriate signal to

control them. When one input of a module is con-

nected to the output of the previous module, then all

other inputs of this module are considered as inputs

in the vertical direction (through the vertical routing

tracks of the FPGA [10]). Note that the additional

transistors are ON during testing only.

The vectors given in Table (3) must be modi�ed to

A 0 B 0 A 1 B 1 D 10D 01D 00 D 11

A 0

A 0 B 0 A 1 B 1 D 10D 01D 00 D 11

A 0

A 0 B 0 A 1 B 1 D 10D 01D 00 D 11

A 0

B 0 B 0 B 0
Y Y Y1 2 nC

Figure 6: Construction of the C-Module Array.

Table 5:

Test Vector t1 t2 t3 t4 t5 t6 t7 t8

A1 0 0 0 1 0 0 1 0

B1 0 0 1 0 0 0 0 1

S1 0 0 1 1 0 0 1 1

D00 0 1 1 0 1 x x x

D01 1 0 0 1 x x x x

D10 1 x x x 0 1 1 x

D11 x x 1 x 1 x 0 1

D0 0 1 0 1 1 x x x

D1 1 0 x x 0 1 0 1

A0 0 1 0 1 1 1 1 1

B0 1 0 1 0 1 1 1 1

S0 0 0 0 0 1 1 1 1

Y 0 1 0 1 0 1 0 1

test an array made of C-modules. In t2, the value

of D00 is changed from X to 0 so that there exits a

sensitized path from S1 to the primary output Y . In

t3, the values of (A0; B0) are changed from (1,0) to

(0,1) such that Y =0 when A0=0. In t4, the values of

(A0; B0) are changed from (0,1) to (1,0). such that

Y=1 when B0=0. The new test vectors are given in

Table (5). For convenience, some of the signal val-

ues inside a module are also presented. When the

A0 of a module is connected to the Y output of the

next module, then t1, t3, t6 and t8 must be applied.

As A0 and Y of the same module are equal (that is,

the Y output of the module can regenerate the input

value required for testing its neighbor module), then

the same test vector can be applied to all modules in

the array, thus satisfying the controllability require-

ment for C-testability [13]. When the B0 of a module

is connected to the Y output of the next module, then

t2, t4, t5 and t7 are applied. As B0=0 and Y=1 (when

t2 or t4 is applied) and B0=1 and Y=0 (when t5 or

t7 is applied), therefore t2 and t4 (t5 and t7) are ap-

plied to the even numbered modules, while t5 and t7
(t2 and t4) are applied to the odd numbered modules

(the Y output of the module can also regenerate the

correct input value as required for testing its neighbor

module). Observability is also satis�ed. Therefore, all

modules can be tested simultaneously using a constant

number of tests irrespective of their number, thus the

array is C-testable [13, 14].

7 Testable Array Design.

In Section (6), testing of an array made of only C-

modules, has been described. It is obvious that if all

S-modules in a row of the FPGA implement the same

combinational functions, then the row can be tested as

a C-module array. A further feature for the array with

S-modules is that S0 = A0, i.e. there is no AND gate

and A0 is directly connected to S0. Note that during

the testing process of the C-module array, the S0 of

a module is connected to the A0 of the next module

for t1, t3, t6 and t8 and is connected to B0 of the next

module for t2, t4, t5 and t7. Therefore, for testing

a row in the FPGA with C-modules and S-modules,

the array can be constructed by connecting A0 (S0) of

every S-module to the Y output of its neighbor module

(S-module or C-module) through a transistor, while

the A0 and B0 of the C-modules are connected in the

same way as in the construction of the C-module array

of Section (6).

For testing the one-dimensional array consisting of a

row of C-modules and S-modules in the FPGA (pro-

vided the S-modules implement combinational func-

tions), the test set is the same as for testing the one-

dimensional array made of a row of C-modules. How-

ever, the transistors which connect the S0 of the S-

modules to the Y output, must be ON during the

test process. The only di�erence in the testing pro-

cedure is to account for the sequential function of the

S-modules. If the D-type
ip-
ops (or transparent

latches) of the S-modules are enabled, then the row

of the FPGA can be tested using a pipeline technique.

Assume that there are nf
ip-
ops in a row of the

FPGA. Let the C-modules and combinational blocks

in the left (right) of ith
ip-
op (or latch) be referred

to as the ith ((i+1)th) combinational cluster. Testing

of this type of one-dimensional array is accomplished

in phases.

Testing of Combinational Modules and Blocks.

a In the �rst phase, the A0 of every C-module is

connected to the Y output of its neighbor module

and t1, t3, t6 and t8 are applied.

b In the second phase, the B0 of every C-module is

connected to the Y of its neighbor module and t2,

t4, t5 and t7 are applied.

Testing of Sequential Modules.

c The S-modules are tested by pipelining the tests.

For simplicity, the vectors in each of the above

phases are reordered and generically denoted as as v1,

v2, v3 and v4. When pipelining is employed for test-

ing the one-dimensional array, vj is applied to the ith

cluster, while vj�1 is applied to the (i+1)th cluster at

time t and vj+1 is applied to the ith cluster (in the a

same fashion, vj is applied to the (i+1)th cluster) at

time (t+1).

Let the number of test vectors in Phase 1 (2) be de-

noted as n1v(n2v); then, the test time for applying the

n1v(n2v) vectors to every cluster in a row for Phase 1

(2) is (n1v + nf) + ((n2v + nf) clock periods. There-

fore, the total time required to test a row in the FPGA

is (n1v + n2v + 2 � nf), or (nv + 2nf) clock periods,

where nv = (n1v + n2v) is the total number of vectors

for testing an array.

8 FPGA Testing.

In the previous section, it was shown that a row (made

of C- and S-modules) in the FPGA can be tested as a

one-dimensional array in (nv+2nf) clock periods. As

all rows in the FPGA can be tested in parallel, then

they can also be tested in (nv + 2nf) clock periods.

Note that the additional circuitry between modules is

disabled once testing is completed and the FPGA can

be customized; also this circuitry does not a�ect the

performance features of the original FPGA of [1].

In the original FPGA design [1], the testing pro-

cedure consists of testing the FPGA row by row us-

ing a modi�ed scan [15]. The vectors are applied to

each module (C-module or S-module) in parallel. The

output of each module is loaded through a shift regis-

ter placed at the top of the FPGA (as in the original

FPGA design of [1]), then the outcomes of the tests

are shifted out to a primary output pin, as shown in

Figure 7. The total test time required for testing a

row in a FPGA, is (nv � (nc + ns)) or nm � nv clock

periods, where nc and ns are the number of C-modules

and S modules respectively, and nm=(nc+ns), i.e. the

total number of C-modules and S-modules in a row of

the FPGA. Assume there are nr rows in the FPGA.

Note that as nm is approximately equal to 2nf , then

the total time for testing the FPGA of [1, 15] is given

by nm � nv � nr clock periods.

It is then possible to compare the time required for

testing the proposed testable FPGA with the time re-

quired to test the original FPGA of [1]; it is easy to

prove that the proposed testable design can save test

time by a factor of (nm � nv � nr)=(nv + 2nf). Note

Module

Module Module

ModuleModule

Module Module

Module

Module

Shift Register

Row Selector

Row Selector

Row Selector

Figure 7: Test Scheme in the Original FPGA.

that C-testability in the presence of a fault will guar-

antee that the output of the last module of the row will

be di�erent from the correct value, thus accomplishing

diagnosis of the FPGA.

Consider as an example, the FPGA chip A1280A of

Actel 2 [1]; this FPGA has 18 rows and 82 columns.

Note that four columns are used for I-modules and

a column is for B-modules (these modules are not

logic modules and are not tested by the proposed

approach). Therefore, nr = 18, nm = 77. As

nf = ns = nm=2, then (nm � nv � nr)=(nv + 2nf) =

(77� 8� 18)=(8 + 77) = 130, i.e. a saving by a factor

of almost 130 times.

Consider now the average hardware overhead in a

module as modi�ed for testability purposes in the pro-

posed approach. In our testable design, two transis-

tors are required for each C-module and a transistor

for each S-module. The total number of transistors re-

quired in the proposed approach is (2nc + ns)� nr or

(nc+nm)�nr. Three pins are needed to control these

transistors (if a OR gate is used, the number of pins

is reduced to two). Assume that a NOT gate consists

of two transistors, an NAND and NOR gate consist

of 4 transistors respectively, a multiplexer and XOR

gate consist of 12 transistors respectively. A D-type

ip-
op consists of 22 transistors. Therefore, there are

44 transistors in a C-module and 62 transistors in a

S-module approximately. The hardware overhead for

the proposed testable design per module is almost 3%.

Note that in the original design, each C-module (or

S-module) requires two transistors to connect its out-

put to the shift register (as shown in Figure 7). Hence,

the total number of transistors required for testing the

FPGA is 2�nm�nr . The hardware overhead per mod-

ule is 4% approximately. Furthermore, there is an ad-

ditional shift register for storing and shifting out the

Table 6:

A1280A Proposed Design

of Transistors 87624 75690

of Test Vectors 11088 85

of Added Pins 2 3

test outcomes using a modi�ed scan procedure [15].

A control circuitry is also required for row selection;

this can be another register with nr
ip-
ops or a de-

coder and a register with log(nr)
ip-
ops. The shift

register on the top of the FPGA consists of (nc + ns)

or nm
ip-
ops. A
ip-
op used to construct registers

usually consists of eight transistors. Then the num-

ber of transistors required for this register is 8� nm.

A primary pin is required for the output of the shift

register. If another register with nr
ip-
ops is re-

quired, then the total number of transistors is 8� nr
(a primary input pin is also required for this register).

The total number of transistor required for testing the

FPGA is (8� nr + 8� nm +2� nm � nr). Hence, the

proposed testable design requires also a considerably

smaller number of transistors than the original design

of [1].

9 Conclusions.

In this paper, a testable design method for uncus-

tomized segmented channel FPGAs has been pro-

posed. In Table (6), a detailed comparison of hardware

overhead and test time is given using the A1280A of

[1] as an example. As the exact data on the internal

detailed structure and layout of the A1280A are not

available outside the manufacturer, the results given

in Table (6) are only a good approximation based on

a transistor count and the number of required clock

cycles.

However, it is clear that the proposed design method

can signi�cantly reduce the testing time, while requir-

ing less hardware too (albeit one more primary pin is

needed). In the analysis, the total number of tran-

sistors includes only the transistors in C-modules, S-

modules and the circuits to test them. It does not

include the transistors in I-modules, B-modules and

other circuits such as probe related circuits and clock

circuits. Note that these modules and circuits must

be present in the proposed testable design as in the

original FPGA con�guration of [1].

References

[1] Actel Corporation, FPGA Data Book and Design

Guide, Sunnyvale, 1994.

[2] Xilinx Inc., Programmable Gate Array Data

Book, San Jose, 1991.

[3] Chan, P.K. and M.D.F. Schlag, \Architectural

Tradeo�s in FPGA-based Computing Systems,"

Proc. IEEE Workshop for Custom Comp. Ma-

chines, pp. 152-161, 1993.

[4] Brown S., R.J. Francis, J. Rose and Z.G.

Vranesic, \Field Programmable Gate Arrays,"

Kluwer Academic Publishers, Boston, Mass.

1992.

[5] Hatpori, F., et all, \Introducing Redundancy in

FPGAs," Proc. IEEE CICC, pp. 7.1, 1993.

[6] Kelly, J. L. and P. A. Ivey, \A Novel Approach

to Defect Tolerant Design for SRAM Based FP-

GAs," Proc. ACM 2nd Int. Work. on FPGAs,

Berkeley, 1994.

[7] Narasimhan, J., K. Nakajima, C.S. Rim and A.T.

Dahbura, \Yield Enhancement of Programmable

ASIC Arrays by Recon�guration of Circuit Place-

ments," IEEE Trans on CAD of ICAS, Vol.

CAD13, No. 8, pp. 976-986, 1994.

[8] Green, J., V. Roychowdury, K. Kaptanoglu and

A. El Gamal, \Segmented Channel Routing,"

Proc 27th IEEE/ACM DAC, pp. 567-572, 1990.

[9] El Gamal, A., \Field Programmable Integrated

Circuits, Overview and Future Trends," Proc

IEEE Int. Conf. on Comp. Des., pp. 2, 1992.

[10] El Gamal, A. et all., \An Architecture for Elec-

trically Con�gurable Gate Arrays," IEEE Jour-

nal of Solid State Circuits, Vol SSC24, No. 2, pp.

394-398, 1989.

[11] Fawcett, B.K., \Taking Advantage of Recon�g-

urable Logic," Proc. ACM 2nd Int. Work. on FP-

GAs, Berkeley, 1994.

[12] Durand, S. and C. Piguet, \FPGA with Self-

repair Capabilities," Proc ACM 2nd Int. Work.

on FPGAs, Berkeley, 1994.

[13] Lombardi, F. and W-K Huang, \On an Improved

Design Approach for C-testable Orthogonal Iter-

ative Arrays," IEEE Trans. on CAD of ICAS,

Vol. CAD7, No. 5, pp. 609-615, 1988.

[14] Friedman, A.D., \Easily Testable Iterative Ar-

rays," IEEE Trans on Comput, Vol. C22, NO.

12, pp. 1061-1064, 1973.

[15] Al-Ayat K, R. Chan, C.L. Chan and T Speers,

\Array Architecture for ATPG with 100% Fault

Coverage," Proc. IEEE Int. Work. on DFT in

VLSI Systems, Hidden Valley, pp. 213-226, 1991.

[16] Ghewala, T., \CrossCheck: a Cell Based VLSI

Testability Solution," Proc. IEEE/ACM CAD,

pp. 706, 1989.

[17] Makar, S.R. and E.J. Mc Cluskey, \On the Test-

ing of Multiplexers," Proc. IEEE Int. Test Conf.,

pp. 669-679, 1988.

	Compendium95
	FPGA95
	Front Matter
	Table of Contents
	Session Index
	Author Index

