Synthesis of Signal Processing Structured Datapaths for FPGAs
Supporting RAMs and Busses

Baher Haroun and Behzad Sajjadi

Department of Electrical and Computer Engineering, Concordia University
1455 de Maisonneuve Blvd. W., Montreal, Quebec H3G 1M8
e-mail: [haroun,behzad]@ece.concordia.ca

_ABSTRACT)] a RAM instead of as a register. The use of SRAM instead of
A novel approach is presented for transforming a given egisters in variable storage can result in significant savings

scheduled and bound signal processing algorithm for a muly,, storage area(c) CLBs are composed of programmable

tiplexer based datapath to a BUS/RAM based FPGA datapagic (LUT) followed by a register. Hence, datapaths which
ath. A datapath model is introduced that allonaximum iijize this property of having registers in front of logic,

flexibility in scheduling bus transfers independent of opera- g;and to maximize the usage of the FPGA resources.
tion schedulingA novel integer linear programming (ILP)

formulation that optimally selects and assigns data-transfers | N€re are a number of synthesis approaches targeting a
to bussesvhile schedulinghe bus transfers to minimize a andom topologynultiplexer based datapaths, i.., a point to
linear combination of the number of busses, bus loading inPCiNt connectivity model using muxes and registers.
terms of tristate drivers and fanout, registers and register fil&-xa@mples are: Cathedral-Ill[8] which uses heuristics, or
storage (RAM) locations. We demonstrate that our resultingUSing optimal approaches (ILP), €.g. [1], [S], [9], [3] and [6],
optimal datapaths compare favorably to others for signaltN€S€ approaches can be suitable rfuritiplexer based
processing synthesis benchmarks such as: single and multEPGA architectures but do not explicitly address the above

ple elliptic filter and fast discrete-cosine-transform (FDCT). thrée concems for FPGAs supporting busses and RAMs.
While others targeting bus based architectures, (e.g.

1 Introduction Cathedral-Il [7], HYPER[16], SPAID-X[13], STAR[4], and

FPGAs are being used in signal processing applicationg15]) use an architecture model that has bus/RAM access
as re-configurable computation accelerators. Two of thetime in series with functional unit delay in one cycle. For
families of FPGAs that is specifically suitable for such such architectures cycle times are long and may be more
applications are the Xilinx XC4000 series and the ORCA suited for ASIC like implementations were special
ATT2C series, which support fast arithmetic functions astechniques can be used to reduce the effects of bus /RAM
well as efficient storage of variables in SRAMs [2]. delay[12] but not in the case of FPGAs.

Morgover, the;e FPGAS have glopal Wire_s that can be dri\{en 2 Synthesis System Overview
by tri-state drivers to implement either wide muxes or chip) o

wide busses. Other structural characteristics that influence 1 n€ following aspects synthesizing FPGA datapaths are
the structure of a datapath are: the contributions of this paper:

(a) The limited interconnection resourcder FPGAS. 1- To present an architectural model that can be us_,e_d for
This makes interconnection a primary resource for pus/RAM bgsed FPGA data-paths that_ allows for efﬁment
optimization especially for large bit-width datapaths. interconnection gnd data storage with an architecture
Otherwise, larger (more costly) FPGAs may be required.cOmmensurate with the FPGA logic blocks.

Also for FPGAs, the interconnection delay is large due to the 2- To show that the complexity of architectural search for
configurable series switch resistance and capacitive effectssPGA bus/RAM based architectures can be effectively
Hence, limiting interconnection loading is critical in handled as follows; a first step fecheduling and operation
improving the cycle time of the architecturéh) The binding as done with multiplexer based architectures,
abundance of registers and of storage RAM bits (in relationfollowed by a second step fbus transfer scheduling and
to the number of logic gates that implement the assignmenand then the last and third step for performing
computational functional units (FUs)). Two hardware interconnection and storage bindinghis is performed
mechanisms can be used to store data in an XC4000 FPGAarovided that:a “structural complexity” [1] is minimized in

1) Using registers at the output of each combinational logicthe first step, register and RAM cost together with bus
block (CLB) (two look-up tables (LUTs) and two registers loading are minimized in the second step and physical
per CLB), and 2) Using RAMs by re-configuring the LUTs. floorplanning, routing and delay modeling (system clock
One CLB can store up to 32 bits of data. Therefbré|.B cycle duration) is optimized in the last step [10]. An
can potentially store 16 times as much if it is configured asoverview of the synthesis system is shown in Figure 1.

of the CLBs implementing the FU module. On the other
hand, when the number of mux inputs is large, extra mux
sub-modules are implemented using extra CLBs.

A two phase clocki{l and®2) can be usetb define the
data transfers between the register-file (RAM) and the
registers of the data path. For data transfers between the
registers of the data path only one clock phadgié used.

STEP-1:ILP; Paper [

STEP-2: ILP; this paper

-Bus xfer creation and
allocation

-Bus transfer
scheduling

-Storage Minimizatio
-Bus loading Minim.

CDFG
+ Scheduling
and binding
Constraints

- Scheduling & binding
with Structuring:
Structuring= minim.
[interconnection +
mux+ storage +
#var (life-time<2)]

(sTEP-3: Stochastic: [10]) The data moves from a data path register to the FU input
| Data Path through a FU output, then the data moves from the FU output
- Data Storage .
Assignment to one omoreof the data path registers.
-interconnect minimization. . .
-bus loading minimization Hierarchical For the transfers between the registers and the register
routing - Actual Floorplanning file,®1 and ®2, are used. The data path registers are
constraints and routing (constrained) Controller - “ " ;
considered as “master” registers and the slaves are the

-Clock cycle minimization.

Figure 1: Our Tool,OSTA, uses an ILP approach for Scheduling storage .Iocatlon.s m.SIde. the register-file (RAM). Thl.s
and bus assignment followed by a stochastic storage andclocking is explained in Figure 3 (b). Note that the RAM is

interconnection binding. &ber [1] describes the scheduling and written in the beginning of the cyol@1) and read at the end

binding for structured multiplexer based architectures for 7 ; ; ; ;
FPGAs. Structuring increases the existence of data transfers With(cp2 (or @1)). Hence, the cycle time is determined by either

life time > 2 that are specifically suitable to be assigned to bussesthe critical path between any of the data path registers or the
hence reducing the number of local interconnections by mergingread and write time plus the bus delays of a register file.

them with busses in step-2 of the synthesis. In [10], the ;
interconnection and storage binding is done in conjunction with Input /output ports to the system can be considered as

floor planning to ensurdrue physical constraints of the registers (R).
implementation technology are taken into account F

ne of the Pipelined Buss

3- To present an ILP formulation, teoncurrently
minimize number of busses, bus loading and data storag
while optimally assigning bus transfers to busses, schedulin
these transfers and minimally allocating busses. Ou
proposed architectural model (see 1 above and Section
allows this flexible bus transfer scheduling.

4- To show that ILP handlesmall/medium size

i i i i i FU O/P Register MuxtV Mux Interconnect
appllcat!ons and is a viable approach to architecture et Y Mux (Optidhal)
synthesis of bus/RAM based architectures. On the othe FU Mux Tristate Bus FU
hand, for large problems heuristic/stochastic approaches Sub-Module A Driver DModu|e Dﬁg Ister

may be suitable. In this case, this paper provides proof th Figure 2: A typical connections of 2 FUs with busses, Igpcal

our flexible bus transfer datapath and synthesis modefconnections with registers and a chaining connection. All nfuxes
producing structured architectures, is an effective approachjand tri-state drivers may not necessarily be present |nn|very

Hence our introduced model. the constraints and thd@rchitecture. The clocking scheme is shown in Figure 3.b.
optimizaFion crite.ria can be suitable for other search (e.9.3 2 RAM and Bus Support
stochastic) techniques.

Our architecture model allows both individual registers

Section 3 presents the architectural model and the : . . : .
nd grouped storage in register files which are implemented

synthesis data transfer model used in our optimization of bud . .
transfers. Section 4 presents the ILP formulation and Sectiot> RAMSs, hence reducing storage area. Support of RAMSs is

5 shows the effectiveness of our bus/RAM based datapatﬁssemial’ especially in the case of handling signal processing
synthesis approach algorithms requiring large storage (e.g. multi-channel

filters). Figure 3 (a) shows the conventional register file

3 Modeling and Optimization Criteria model (a) where the register file is accessed by a non-
3.1 Underlying Architectural Model Supporting ~ Pipelined bus(e.g in [3][12][13] and [15]). Figure 3 (b)
RAMs and Busses shows our proposed clocking scheme where a register file

based on RAM implementation is accessed by a pipelined

The model of the architecture that is used in our synthesidus. In case of the non-pipelined bus access (conventional

technique follows the general structure of Figure 2. For ancase), the read and write time of the register file array are part

example of a full data path see Figure 6. Different types ofof the system cycle. Chaining the read and write time in one

modules used are: register module, register-file modulecycle increases the cycle time which reduces the clock rate
(implemented as a RAM), functional unit (FU) module and and hence may result in a large performance reduction.

2

respectively. The decision then to store the data in a largéegister binding is made, only the scheduling of the bus
RAM can only be done if the life time of a variable is at least transfers and selecting which transfer goes on a bus and

two cycles. which bus that transfer uses..

By allowing any variable to exist in more than one storage REGISTER FILE o2 A

location, that is in a register and in a register file location, Registet inside paian g]

and by supporting flexible bus transfers, our approach has |,

removed the bus delay from the critical path. The busses and g Data Ou U
their associated register files are, hence, treated as functional * Address latch
units and their influence on the clock cycle duration is teom

independent of other functional unit delays. Therefore, the [>Pass gate or Tristate buffer (a) Conventional
clock cycle of the datapath is controlled by either a critical %2 ¥

path through a FU or through a register file and a bus but not RSElfvfiTnER eF'LE (@2
by adding both, as is the case in conventional bus based TZ'&- ata Bus, o =y

datapaths. Hence, our architecture model has faster clock ‘|

rates than conventional approaches and also uses less busses AFi’:Y £ -

i dd (.®2 :
and resources as will be shown. pAddress b) Glrs: two phase clock
3.3 The Register and Bus Binding Model Figure 3:(a) A non-pipelined bus with a register file where read

and write access delays are chained in one cycle. (b)Our Clocking

; ; scheme: A pipelined bus and register file (note the two phase
Given the above architectural model, there are a numbeclocking) where a write is followed by a read in one cycle. The bits

of different cases for which an edge in the Data Flow Graphzs generated from the controller are “AND"ed with the clocks (

(a data transfer) can be bound. These cases are encompassé.thL 1-4;2) tg indicate 'thte |?_t|0hltn9htlme- Oll_Jff St_Cheme rethIrt(;:‘]S that
H H H : ata stored In a register file to have a lire tme greater than or

by the two generic transfers shown in Figure 4. Notice thateqUIaI t0 2 cycles.

the bus in Figure 3. (b) (see also Figure 6.b) communicate

only with registers. In Figure 4, a bubble indicates the clock @ clockicHDs (®) Clom
cycles at which the data is transferred from a registgrnéR IRy (iok) cl

the bus and the square indicates the cycle where the data |s — red—lockt [>t>s
read from the register file through a bus to a registg). (R I file clockk

These cycles are determined in step-2 of Figure 1, togethey clockk storage !

with bus allocation. In a sense, a scheduling of bus transferf clockj (FOy clock]

is performed at step-ZLhis flexibility of scheduling bus |Figure 4: (a) Shows a data transfer using local interconnegtions

. : : . through individual register Rn. (b) Shows a data transfer uding a
transfer as shown in Figure 4 is very different from all pipelined bus. Rn and Rp do not have to be different, but hgve to

previous architecture models in the literature using busses}have at least a life time of one cycle. The variable is storedl in a

All other models have to transfer data immediately at the enqregister file between clock cycle s and k throughgBus

of an operation, or upon its start. Our model allows relaxing e3 opl opl

this constraint which is one of the contributions of this paper. Bas WBM, 4 Reguseqy
. T B3, [RB; , fWBM; 4RBM; , liRegused

This relaxation in using busses can result in significant Bs3|RBg 3]WEM JRBM, s [IRegused s

reduction in the number of busses required (see Section 5),

B3 4|RB3 4 iWBM; 4RBM; 4 liRegused 4
RB3 5 RBM; 5 fReguseds
4 STEP-2: ILP Search for an Optimal Bus Based
Architecture FFigure 5: The list of Z-O variables generated for an operftion

. . with multiple edges at the output.
4.1 The ILP Bus Assignment and Scheduling . . , ,
. The following are the notations and variables used in our

We assume that operation scheduling and binding have beelhP formulation given in Table 1 for the bus scheduling and
performed (step-1, Figure 1) while minimizing inter- binding.E: set of edges with lifetime >= 2cyclddg: Max.
connections and maximizing the number of transfers withnumber of buses allowe®(Bus): Represents the delay of
life-time > 1 using the structural complexity measure [1]. the busMultoutput: Set of operations with multiple edges
The objective of step-2 is to minimize: (a) the number of at their outputSingle: Set of edges that do not belong to
parallel bus transfers which reduces the number of bussedlultiple output operationsEdgeOverlap(s): Set of edges
allocated, (b) the maximum overlap in registers which that overlap at each cycl/B s nj =1 only if clock cycle
reduces the number of registers allocated, (c) the maximums” is used to write the variable (edge) “e” in the register file
overlap in life-times of variables assigned to busses whichthrough bus “n”, otherwise = ®Bg 5 »j =1 only if clock
reduces register file storage locations, (d) the number oftycle “s” is used to read the variable (edge) “e” from the
registers having tri-state access to the busses henceegister file through bus “n”, otherwise 2WBM (g, s oy =1
minimizing tri-state output loading on each bus and (e) theonly if clock cycle “s” is used to write any of the variables
number of destination registers that a bus is connected to(edges) at the output of operation “op” in the register file

this also minimizes bus loading. Note that in step-2, nothrough bus “n”, otherwise = &BM o 5 nj =1 only if clock
cycle “s” is used to read any of the variables (edges) at the

output of operation “op” from the register file through bus on the number of registers needed to implement the
“n”, otherwise = ORange(g): The cycles in which the Z-O architectureTotReg: An integer variable used to count the
varlables “X" exists (“x” could be RB or WB or..). maximum lifetimes of all the registerblaxRegFile,: an
Reguseg,, sy =1 only if any of the edges at the output of integer variable used to count the maximum required number
operation “op” is alive at clock cycle “s”, otherwise = 0. of RAM locations per register filfristate: This number of
MinReg: An integer variable used to count the lower boundtristate drivers for every bus is calculated and the maximum

lable 1
NB
g WB, (=1 OeOE z g RB, snsl CeOE
=1 S n=1 S
Range(g (1) Range(gg) (2)
WB, ¢~ RB,sn=0 DeOE On = 1..Ng (3)
sO Rangg gg) sO Rangdg gg)
ALAP G Mo s ALAP(g,) +D (Bug —1>s> ASAR g,)
Z ZWB&P”+ z ZRB 0 OedE (4)
p= n=1 p= n=1 S e
s-D(Bug +1 ASAP(gg)
Oop O Multoutput OeO op
— <
WBe,S n WBMOP s nT 0 On OsO Rangq ﬁ/B) (5)
OopO Multoutput CeOo
RB, . ,—RBM, . <0 P P P (6)
» S P s On Os0O Rang€ gp)
Z WB, | .+ MZ WBM,, (.1 On s (7)
el Single ' op O MuTtoutput '
OEdgeOverlag »
3 RE,gn® 5 RBMpg,s1 D0 Os (8)
el Single ' op O MuTtoutput
OEdgeOverlaf »
Ne N Ne s Oop O Multoutput OeO op 9
1- Z Z WEB pn* Z Z REBp n—Regusegp‘SsO OsO (Rangd gp O Range gp)) ()
n=1 p= n=1 p-=
Asap(&) Asap(gg)
H Ng s Ng s H
g Hl z z WE, |t z z RB, , rH+ % Reguseg, s+ reg;—MinRegs 1 (10)
e =1 p= n=1 = op
Single o Asap(g, Asap(gp) U Multoutput Us
OEdgeOverlafd »
H Ng S Ng S H
ZDl— z z Bypnt Z Z RB, , (- TotRegs 1 (11)
e H n=1 p= n=1 p-= H
Asap(G, Asap(&g
O D
0 Os (12)
g 0 z WB, , — z RB, nnD—MaxRegFlI(;<0 -
€ O = n
EdgeOverlag)SDAsap(& Asap(gy D
Alap (&g Alap (0pgw)
Z z RB, , o+ wz z RBM,, ¢ ,< Tristate On Os (13)
el Single p=s opOd toutput p=g
OEdgeOverlafd »

DbjectiveFunction— Mi

nimize Ng

(C1xMinReg + (C2x TotReg +DCS>< z MaxRegFlI%D+ (C4 x Tristate

n=1
0 O 0
+DCS>< >y ZWB Oper+ HCGX >y ZRBMOps D+E|C7x ZZRegusegip’SE
op Snp=1 O opsS pn=1 0O op s 0
O Multoutput O Multoutput O Multoutput

4

of them is assigned to this integer variable. independently determining a register binding followed by a

The first two constraints of Table 1 ensure that only oneflo0rplanning. It uses a stochastic (simulated annealing)
clock cycle is used to write the variable in the register file search while continuously minimizing the critical paths that

through one bus and one cycle to read it back from thedetermine the clock cycle for the datapath together with
register file through one (same or another) bus. layout area.

The third constraint ensures that every variable assigned 5 Results
to a bus transfer is written in and read from the same registeElliptic Filter : We use the 5th order elliptic filter to
file through one bus. Without constraint 3, use of multi- demonstrate a number of points regarding our architecture
ported register files are enabled where one variable is writtedeatures of pipelined busses, the operation binding using the
through one port (from one bus) and read from another porstructuring approach and our bus transfer scheduling. Figure
(and another bus). 6 (a) shows a 2 adder one multiplier schedule with 17 cycles.

Inequality 4 ensures that a read occurs after a write to a;Fheoperatlonschedule is very similar to the one obtained by

register file for any variable. Constraint 5 and 6 are intendeofa‘l‘PS [3] (this filter is retimed). Our ILP tool, OSTA

for operations with multiple edges at its output. We assign gunning on a SPARCIO, produced a scheduling and

new set of zero-one (0-1) variables (WBM, RBM) for these operatiqn binding (ste;p-l) in 21.3 CPU seconds. The bus
output edges (as shown in Figure 5). These 0-1 variables a%chgdullng :?md bmdlpg (step-2) tool'< L7 §ecqnds. The
forced to “1” if there is a read from a register file or a write etailed rgglster binding was done in conjunction with
to a register file at any cycle for any of the multiple output gc;ggplannlfng (step-3) and took 210 CPU seponds[lO] (and
edges. For instance in Figure 5, WBMs set to “1” when Secs for I.LP[17])'.AI| results proven optimal, !\Iote that
at least one of the variables WB WB, ,, WB, , is equal only one pipelined busis useq compared to an optimal7of
“1". The same argument apblies to the RB and RBM bussesfor the OASICI5] archltectural mpdel, andauss.es '

of the SPAID-X style architecture used in [13][15] which is

variables. To ensure that at every cycle only one data

. 0 A
variable can be read and only one data variable writterSduivalent of a 400% saving in the number of busses.

through any one specific bus, we enforce constraints 7 and é?;ecause these busses require global wires which are not

In these constraints we use WB and RB as 0-1 variables foﬁbundant in FPGAs, such a saving which is a direct

edges that do not belong to multiple output operations anocontsiql!“t'en?ce Sf tourtﬁpproach Is very significant in the
WBM and RBM as 0-1 variables for the edges of the routability of a datapaih. .

multiple output operations. #eycl | #TS #mx | #Bus | #Regs | #CLB
To account for the register cost in the cost function, edges of es | (#BC) | ifps | (nets) | (#c) | /bit
multiple output operations are assigned a set of 0-1 variale§ASlc[12] 18 na na 7(na)| 9 45
(Reguseg, § per cycle “s”. These 0-1 variables are set

“1” using constraint 9, when any of the multiple edges for annSyn [6] | 19 na na | 4(na)] 8+(5)| 65

operation is alive in cycle “s”. Constraint 10 determines|a
. . . 13] | 19 19 18 5(3 -(21 5

lower bound (integer variable MinReg) on the number SPAIDX[13] ® (21)

registers that can be assigned in step-3. Constraint |1P [15] 19 12(23)| 11 4(10)| (10) 4

=

indirectly ensures that the total register life-time is reduced:

Constraint 12, counts the maximum required number pf17l-iml 19 6(12) | 19 3@ | 11 55

RAM locations per register file. For all the busses, constraint17}- Lm2 | 19 na 25 -(11)| 11 55

13 counts the maximum bus loading due to tri-state drivers

per bus. STAR[4] | 19 16(28)| 17 | 5(na) 13 6.5
The objective function to be minimized has sevenosta(ours) | 17 2 (6) 22 17| 7(6) 4

components. The first four terms contribute directly to tt

e : — .
final datapath structure. The last three terms are essential f8P€ 2 Architecture for EWF, 2 adders 1 pipelined multi-
the correct assignments of the Z-O variables in the |Lpdier. Only nets with fanout > 1 are counted. Our estimate for

the number of CLBs for storage includes recursive storage. If

formulation. . .

)) o) recursive edges are added to the others solutions, up to an
4.2 Register and Multiplexer Binding with extra four registers or 2 CLB/bit of word length are needed.
Datapath Generation #TS= #tristate drivers, #8C= # of Bus Connections as in [15].

In thi h . bindi btained #CLB/bit is the # of CLBs used per bit of the word width of
n this paper, we report the register bindings obtained gy, datapath. #lc is the number of latches or RAM locations.

using the tool in [10]. In summary, the tool used performs the . .
9 [10] y P To show how our model and synthesis compares with others,

register binding while at the same time performing a hiahliah ber of) ber of b b
floorplanning of the datapath to be able to compute theVe Nighlight a number of measures: number of busses, bus

routing delay and area cost and its effect on the clock cycléoad'ng’ 'f‘“mber of rjetworks with fanogt >1 (indicates
duration. Such a tool produces better results thancomplex interconnections), number of tristates, fanout of

networks, and components of delay on the critical path.

Table 2 compares different synthesized datapaths for theéur architecture has a maximum loading of three drivers on

EWF. the bus and 3 outputs (mux inputs). The maximum fanout of
”Ee 2l (aﬂj[p?h 'I—TF any register output is 4. The maximum number of mux inputs
' is 4. These values are the best values for any published EWF
1 Ups architecture.

Cascaded-Elliptic Filter: An alternative example that
requires significantly more storage and is suitable to
highlight the advantages of RAM/bus based architectures is
a filter composed of two elliptic filters connected in cascade
(output of first is directly the input of the second). The

: k\g /\ operation scheduling and binding (solution time 58 sec.) as
R5 well as the bus scheduling (solution time 33 sec.) are shown
1 2 \j in Figure 7. For storing all variablesciuding the recursive
g) edgespur resulting datapath uses 11 registers at a cost of --
g A* . \R (1/2 CLB/bit/register) and 11 register file (RAM) locations
at a cost of (1/2 CLB/bit for all 11 locations). In comparison,
1 ﬂﬁ) O R a multiplexer based solution would use 18 registers at a cost
1 RGR“*R (\ of (1/2 CLB /bit/register). Hence, the bus based solution
I U X %U saves an equivalent of 3 CLBs per bit of the word length.
RS |~y a bced fgh k1l mmo pqrrr
= : { ® o e -
o 2 D = =
1 A 0 O HHeN— e
N e RF1 Write throug ,’ éle (\3 Z .” \\) ,l
1 o4 = = RF1 Read through I 1 1] — = I
1 RS =7 T6\/ \ g F' : }[l *® - \\ Il
(& m [eroteitiom 0 ur ; Sl I T ————
Figure 6: (a) Details of the scheduling and bindings for the| 7 = |'-:< ¥ ,'
elliptic filter example. (b) The resulting architecture schematic.| } (] A \ [
This architecture accounts for all recursive variable storage. 1 R _ b
[N]
For the EWF architecture shown in [15], the maximu % L 5 ’! IH\ ~ T zH'__
bus loading is 3 inputs and three tri-state drivers, which is the23 1 1]
same for the architecture in Figure 6. Note that, in th é 1 ,’ &C,l <‘3 » % ;'
architecture in [15] bus delays and RAM access time afe49 . alr «# !
added to the delay of a functional unit and registers to obtgirs = L Lo Ot
the critical path determining the cycle time. While for th 3 J b
architecture in Figure 6, the RAM access and FU delay e,;é_‘] E o
independent as discussed before. It is evident that our3Z 1 ® —<
architecture is simpler and uses less interconnections. a b ¢ defgh kI miopq rout

: : -Figure 7: This is the scheduling and binding of two elliptic filfers
Regarding storage cost, our architecture uses a total o lconnected in series (output of the first is the input of the secpnd).

registers and 6 register file locations (4 CLBs per bit of The architecture uses two adders and one pipelined multiplief The
datapath width), compared to an optimum of 9 registers f¢roperation schedule and binding was done using our |ILP
o o based (ihour busses) datapath wich f omlaton for 3ep 1 e bis tandlr shecng s foe
equivalent to using 4.5 CLBs per bit of data path width fo — -

storage. It is important to note that we include the cost of ~ FOr & 32 bit width data path our estimate for our datapath
storage of all recursive variablesi(delays in the EWF filter 1S: (64 CLBs for the adders and their multiplexers, 206 CLB

specification) unlike almost all other published solutions fOr & 12x16 booth re-coded multiplier (synthesized), and 192
(the 8 recursive variables i-b, Figure 6 are not bound toCLBS for storage, total of 462 CLBs). An extra 3x32=96

storage in other references). The result by Li & Mowchenko CLBS are required for a multiplexer based solution with a
[18] accounts for the recursive edges and uses 11 registers @l of 558 CLBs. A saving of 20% in terms of the total
5.5 CLBs per bit of data path width for storage. This dataNumber of CLBs required for our datapath. Since our
path can either be viewed as a bus based architecture (legrchnecture uses less interconnections and only one bus, the
1) or a multiplexer based architecture (LM-2) in Table 3. We €fficiency due to routing is higher.

use less multiplexer inputs (> 12%), less CLBs for storageFor a two bus solution (not shown) the number of registers
(>40%) and 300% less for the number of busses. used in our solution was 8 and the number of total register

files locations are 14. This results in a saving of 4 CLBs perrunning times for larger problems. Future research will focus
bit of the word length. For a 32 bit width datapath our on addressing very large memory required for loop
estimate is 430 CLB and the saving is 30% in terms of theexecution and multiple FPGA computation accelerator
total number of CLBs required for this datapath. Note that if systems as well as methods of relegating some of the bus
a more efficient multiplier is used, these percentage gaindinding decision to step-3 (the register binding and
can be increased. floorplanning) of our synthesis approach.

Fast Discrete Cosine TransformThis example is used

to demonstrate that ILP can handle medium size graphs that

have high parallelism (parallelism is limited in EWF

ciampl). Sl ok 33 seconcs Forsamixbased SOl & varoun, . Sajad, L Syt of SgnalProcesn
o . . ! rchitectures with minimum Structural Complexity”, CICC, May

binding using one bus which took 1.3 seconds), thejggs np 237-240.

architecture uses 8 registers and 4 register file locations. Thi®] . Rose, A. EIGamal, A.Sangiovani-Vincentelli, “Architecture

results in a saving of 1 CLB per bit of the data path width of Field Programmable Gate Arrays”, Proc. IEEE, Vol. 81, No. 7,

over a multiplexer based datapath that does not use busses .y 1993.

RAMs. More details about this and the values of the cost[3] C.T. Hwang, J.H. Lee, Y.C. Hsu, “A Formal Approach to the

function coeficcients used can be found in [17]. Scheduling Problem in HLS",|IEEE Tran. CAD, VoI-10, No.4,
. N . April 1991, pp464 475.
It is to be noted that the running time of the ILP solution [4] F.S.Tsai, Y.C. Hsu: “STAR: An Automatic Data Path Alloca-

for the bus scheduling and assignment is very smalli,» |EEE Tr. CAD. Vol11, No9, September 1992.

(compared to operation scheduling and binding). This is dugs) c. Gebotys, M.I. Elmasry, “Optimal Synthesis of High Per-
to 3 factors; 1- The range of each bus transfer is less than th@rmance Architecture:” JSSC, March 1992, pp 389-397.

original graph since all operations are already scheduled. 2fs] M. Rim, R. Jain, R. Deleone, “Optimal Allocation & Binding
All edges with life time <2 are eliminated from the bus in HLS”, DAC-92, pp.120-123.

search, 3- The ILP formulation used is tight. This is evident[7] G. Goosens, J. Rabaey, J. Vandewalle, H, De Man: “An Effi-
from the number of branch and bound trials did not exceedcient Microcode Compiler for Application Specific DSP Proces-
tens of branches taken in all preceding examples. In som&2's’. IEEE Transaction on CAD, Vol 9, No. 9, pp.925-937,1990.
instances where the register costs are not added to the co S- Note, W. Geurts, F. Catthoor, H. De Man, “Cathedral-IiI

- . . . rchitecture-Driven High-Level Synthesis for High Throughput
function, no branching was observed and the integer optima o . i

. SP Applications”, 28th Design Automation Conference, 1991,
solution is obtained directly from the linear program

References

" pp.597-602.
solution. [9] C.Gebotys, M. I. Elmasry, “Global Optimization Approach
6 Conclusion for Architectural Synthesis”, IEEE Tr. on CAD, Vol-12, No.9,

) i Sept. 1993, pp.1266-1278.
@] th h wh lied to bench - i
ur synthesis approach when applied to benchmarkig o. safir, B. Haroun, “A Floorplanner for Datapath Optimiza-
examples produces architectural solutions that outperformsion” submitted to Tr. VLS| Systems.
all other published architectures regarding both its structure[11] B. Haroun et. al. “VLSI Architecture Synthesis and Imple-
loading (hence, performance) as well as resourcesTisisd. mentation of HiFl Digital Filters” Proc. Canadian Conference on
result is due to flexible data transfers on pipelined busses invLSl, pp.107-114, Oct. 1989.
our architectural model, and also due to the synthesis[12] C. Gebotys “Synthesizing Optimal Application Specific DSP
approach that “structures” the architecture and efficiently Architectures”, in: *VLSI Design Methodologies for DSP Archi-
schedules the bus transfers while minimizing bus loadingtectures” ed. M. Bayoumi, pp.43-92, Kluwer Academic Publishers,
We have demonstrated that any schedule and binding for £0S0N MA, 1994. . . .
. 3] B. Haroun et.al “Synthesis of Multiple Bus Architectures For
multiplexor based data path can be transformed to support T . :
. SP Applications”, in: “VLSI Design Methodologies for DSP
bus/RAM based datapath by properly scheduling the bus-,

i rchitectures” ed. M. Bayoumi, pp.93-130, Kluwer Academic
transfers. In our methodology, by using structural p piishers Boston. MA. 1994.

complexity reduction during scheduling and binding, we [14] C. Gebotys, “Synthesizing Optimal Register file Architec-
have shown that bus binding and storage allocation can beures for FPGA Technology”, CICC, May 1994, pp, 233-236.
delayed to later steps of synthesis and produces good resulti5] J. J. Rabaey, et.al. “Fast Proto-typing of data path Intensive
Hence, we have proposed an efficient split of the Architecture.” IEEE Design & Test, Vol.8, No.2, pp.4051, 1991.
architectural synthesis procedures. We have also shown thdt6] B. Sajjadi, “Architectural Synthesis for FPGA Based Signal
ILP techniques can be effectively used in conjunction with Proc_essing Systems”, M.Sc. Thesis in preparation, Concordia Uni-
complex cost functions, for small to medium size DFGs, tovle;]SI'tl'y,L]i-g-?SMOWChenko Applying Simulated Evolution to High
ge tpgether different levels and various tasks in arcr_ntectura{evel Synthesis’, IEEE Tr. CAD, March 1993, pp.389-409.

esign. We have also shown by our low running times the
tightness of the formulation we have presented. Moreover,
our constraints and cost functions can be extended to other
heuristic architecture search techniques that may have better

7

	Compendium95
	FPGA95
	Front Matter
	Table of Contents
	Session Index
	Author Index

