
1

ABSTRACT
A novel approach is presented for transforming a given
scheduled and bound signal processing algorithm for a mul-
tiplexer based datapath to a BUS/RAM based FPGA datap-
ath. A datapath model is introduced that allowsmaximum
flexibility in scheduling bus transfers independent of opera-
tion scheduling. A novel integer linear programming (ILP)
formulation that optimally selects and assigns data-transfers
to busseswhile scheduling the bus transfers to minimize a
linear combination of the number of busses, bus loading in
terms of tristate drivers and fanout, registers and register file
storage (RAM) locations. We demonstrate that our resulting
optimal datapaths compare favorably to others for signal
processing synthesis benchmarks such as: single and multi-
ple elliptic filter and fast discrete-cosine-transform (FDCT).

1 Introduction
FPGAs are being used in signal processing applications

as re-configurable computation accelerators. Two of the
families of FPGAs that is specifically suitable for such
applications are the Xilinx XC4000 series and the ORCA
ATT2C series, which support fast arithmetic functions as
well as efficient storage of variables in SRAMs [2].
Moreover, these FPGAs have global wires that can be driven
by tri-state drivers to implement either wide muxes or chip
wide busses. Other structural characteristics that influence
the structure of a datapath are:

(a) The limited interconnection resources for FPGAs.
This makes interconnection a primary resource for
optimization especially for large bit-width datapaths.
Otherwise, larger (more costly) FPGAs may be required.
Also for FPGAs, the interconnection delay is large due to the
configurable series switch resistance and capacitive effects.
Hence, limiting interconnection loading is critical in
improving the cycle time of the architecture.(b) The
abundance of registers and of storage RAM bits (in relation
to the number of logic gates that implement the
computational functional units (FUs)). Two hardware
mechanisms can be used to store data in an XC4000 FPGA:
1) Using registers at the output of each combinational logic
block (CLB) (two look-up tables (LUTs) and two registers
per CLB), and 2) Using RAMs by re-configuring the LUTs.
One CLB can store up to 32 bits of data. Therefore,1 CLB
can potentially store 16 times as much if it is configured as

a RAM instead of as a register. The use of SRAM instead of
registers in variable storage can result in significant savings
in storage area.(c) CLBs are composed of programmable
logic (LUT) followed by a register. Hence, datapaths which
utilize this property of having registers in front of logic,
stand to maximize the usage of the FPGA resources.

There are a number of synthesis approaches targeting a
random topology multiplexer based datapaths, i.e., a point to
point connectivity model using muxes and registers.
Examples are: Cathedral-III[8] which uses heuristics, or
using optimal approaches (ILP), e.g. [1], [5], [9], [3] and [6],
these approaches can be suitable formultiplexer based
FPGA architectures but do not explicitly address the above
three concerns for FPGAs supporting busses and RAMs.
While others targeting bus based architectures, (e.g.
Cathedral-II [7], HYPER[16], SPAID-X[13], STAR[4], and
[15]) use an architecture model that has bus/RAM access
time in series with functional unit delay in one cycle. For
such architectures cycle times are long and may be more
suited for ASIC like implementations were special
techniques can be used to reduce the effects of bus /RAM
delay[12] but not in the case of FPGAs.

2 Synthesis System Overview
The following aspects synthesizing FPGA datapaths are

the contributions of this paper:

1- To present an architectural model that can be used for
bus/RAM based FPGA data-paths that allows for efficient
interconnection and data storage with an architecture
commensurate with the FPGA logic blocks.

2- To show that the complexity of architectural search for
FPGA bus/RAM based architectures can be effectively
handled as follows; a first step forscheduling and operation
binding as done with multiplexer based architectures,
followed by a second step forbus transfer scheduling and
assignment and then the last and third step for performing
interconnection and storage binding. This is performed
provided that: a “structural complexity” [1] is minimized in
the first step, register and RAM cost together with bus
loading are minimized in the second step and physical
floorplanning, routing and delay modeling (system clock
cycle duration) is optimized in the last step [10]. An
overview of the synthesis system is shown in Figure 1.

Synthesis of Signal Processing Structured Datapaths for FPGAs
Supporting RAMs and Busses

Baher Haroun and Behzad Sajjadi

Department of Electrical and Computer Engineering, Concordia University
1455 de Maisonneuve Blvd. W., Montreal, Quebec H3G 1M8

e-mail: [haroun,behzad]@ece.concordia.ca

2

3- To present an ILP formulation, toconcurrently
minimize number of busses, bus loading and data storage
while optimally assigning bus transfers to busses, scheduling
these transfers and minimally allocating busses. Our
proposed architectural model (see 1 above and Section 3)
allows this flexible bus transfer scheduling.

4- To show that ILP handlessmall/medium size
applications and is a viable approach to architecture
synthesis of bus/RAM based architectures. On the other
hand, for large problems, heuristic/stochastic approaches
may be suitable. In this case, this paper provides proof that
our flexible bus transfer datapath and synthesis model
producing structured architectures, is an effective approach.
Hence our introduced model, the constraints and the
optimization criteria can be suitable for other search (e.g.
stochastic) techniques.

Section 3 presents the architectural model and the
synthesis data transfer model used in our optimization of bus
transfers. Section 4 presents the ILP formulation and Section
5 shows the effectiveness of our bus/RAM based datapath
synthesis approach.

3 Modeling and Optimization Criteria

3.1 Underlying Architectural Model Supporting
RAMs and Busses

The model of the architecture that is used in our synthesis
technique follows the general structure of Figure 2. For an
example of a full data path see Figure 6. Different types of
modules used are: register module, register-file module
(implemented as a RAM), functional unit (FU) module and
FU multiplexer sub-module. If the number of mux inputs is
small, the FU multiplexer module can be part of the function

- Scheduling & binding

Structuring= minim.

- Data Storage
Assignment

- Actual Floorplanning
and routing (constrained)

Data Path

Controller

CDFG

Hierarchical

STEP-1:ILP; Paper [1]

STEP-3: Stochastic; [10]

STEP-2: ILP; this paper

-Bus transfer
scheduling

-Bus xfer creation and

-Storage Minimization
-Bus loading Minim.

-interconnect minimization.

-Clock cycle minimization.

-bus loading minimization

[interconnection +
mux+ storage +

allocation

FPGA
Floor-
plan
Seed &
routing

constraints

+ Scheduling
and binding
Constraints

Figure 1: Our Tool,OSTA, uses an ILP approach for Scheduling
and bus assignment followed by a stochastic storage and
interconnection binding. Paper [1] describes the scheduling and
binding for structured multiplexer based architectures for
FPGAs. Structuring increases the existence of data transfers with
life time > 2 that are specifically suitable to be assigned to busses
hence reducing the number of local interconnections by merging
them with busses in step-2 of the synthesis. In [10], the
interconnection and storage binding is done in conjunction with
floor planning to ensuretrue physical constraints of the
implementation technology are taken into account

#var (life-time<2)]

with Structuring:

of the CLBs implementing the FU module. On the other
hand, when the number of mux inputs is large, extra mux
sub-modules are implemented using extra CLBs.

A two phase clock (Φ1 andΦ2) can be usedto define the
data transfers between the register-file (RAM) and the
registers of the data path. For data transfers between the
registers of the data path only one clock phase (φ1) is used.
The data moves from a data path register to the FU input
through a FU output, then the data moves from the FU output
to one ormore of the data path registers.

For the transfers between the registers and the register
file,Φ1 and Φ2, are used. The data path registers are
considered as “master” registers and the slaves are the
storage locations inside the register-file (RAM). This
clocking is explained in Figure 3 (b). Note that the RAM is
written in the beginning of the cycle(Φ1) and read at the end
(Φ2 (or Φ1)). Hence, the cycle time is determined by either
the critical path between any of the data path registers or the
read and write time plus the bus delays of a register file.
Input /output ports to the system can be considered as
registers (R).

3.2 RAM and Bus Support

Our architecture model allows both individual registers
and grouped storage in register files which are implemented
as RAMs, hence reducing storage area. Support of RAMs is
essential, especially in the case of handling signal processing
algorithms requiring large storage (e.g. multi-channel
filters). Figure 3 (a) shows the conventional register file
model (a) where the register file is accessed by a non-
pipelined bus(e.g in [3][12][13] and [15]). Figure 3 (b)
shows our proposed clocking scheme where a register file
based on RAM implementation is accessed by a pipelined
bus. In case of the non-pipelined bus access (conventional
case), the read and write time of the register file array are part
of the system cycle. Chaining the read and write time in one
cycle increases the cycle time which reduces the clock rate
and hence may result in a large performance reduction.

By pipelining the bus, the read and writes are scheduled
in separate cycles preceding and following the operation

Figure 2: A typical connections of 2 FUs with busses, local
connections with registers and a chaining connection. All muxes
and tri-state drivers may not necessarily be present in every
architecture. The clocking scheme is shown in Figure 3.b.

FUi FUj

R

Chaining Register
InterconnectRegister MuxFU

Mux
FU O/P
Interconnects

Tristate Bus

One of the Pipelined Busses

Driver

Register File
(RAM) Modules

FU
Module Register

Module

Mux

FU Mux

Sub-Module

(Optional)

Φ1
Φ2

3

respectively. The decision then to store the data in a large
RAM can only be done if the life time of a variable is at least
two cycles.

By allowing any variable to exist in more than one storage
location, that is in a register and in a register file location,
and by supporting flexible bus transfers, our approach has
removed the bus delay from the critical path. The busses and
their associated register files are, hence, treated as functional
units and their influence on the clock cycle duration is
independent of other functional unit delays. Therefore, the
clock cycle of the datapath is controlled by either a critical
path through a FU or through a register file and a bus but not
by adding both, as is the case in conventional bus based
datapaths. Hence, our architecture model has faster clock
rates than conventional approaches and also uses less busses
and resources as will be shown.

3.3 The Register and Bus Binding Model

Given the above architectural model, there are a number
of different cases for which an edge in the Data Flow Graph
(a data transfer) can be bound. These cases are encompassed
by the two generic transfers shown in Figure 4. Notice that
the bus in Figure 3. (b) (see also Figure 6.b) communicates
only with registers. In Figure 4, a bubble indicates the clock
cycles at which the data is transferred from a register (Rn) to
the bus and the square indicates the cycle where the data is
read from the register file through a bus to a register (Rp).
These cycles are determined in step-2 of Figure 1, together
with bus allocation. In a sense, a scheduling of bus transfers
is performed at step-2.This flexibility of scheduling bus
transfer as shown in Figure 4 is very different from all
previous architecture models in the literature using busses.
All other models have to transfer data immediately at the end
of an operation, or upon its start. Our model allows relaxing
this constraint which is one of the contributions of this paper.
This relaxation in using busses can result in significant
reduction in the number of busses required (see Section 5).

4 STEP-2: ILP Search for an Optimal Bus Based
Architecture

4.1 The ILP Bus Assignment and Scheduling

We assume that operation scheduling and binding have been
performed (step-1, Figure 1) while minimizing inter-
connections and maximizing the number of transfers with
life-time > 1 using the structural complexity measure [1].

The objective of step-2 is to minimize: (a) the number of
parallel bus transfers which reduces the number of busses
allocated, (b) the maximum overlap in registers which
reduces the number of registers allocated, (c) the maximum
overlap in life-times of variables assigned to busses which
reduces register file storage locations, (d) the number of
registers having tri-state access to the busses hence
minimizing tri-state output loading on each bus and (e) the
number of destination registers that a bus is connected to,
this also minimizes bus loading. Note that in step-2, no

register binding is made, only the scheduling of the bus
transfers and selecting which transfer goes on a bus and
which bus that transfer uses..

. The following are the notations and variables used in our
ILP formulation given in Table 1 for the bus scheduling and
binding.E: set of edges with lifetime >= 2cycles.NB: Max.
number of buses allowed.D(Bus): Represents the delay of
the bus.Multoutput: Set of operations with multiple edges
at their output. Single: Set of edges that do not belong to
Multiple output operations.EdgeOverlap(s): Set of edges
that overlap at each cycle.WB(e,s,n): =1 only if clock cycle
“s” is used to write the variable (edge) “e” in the register file
through bus “n”, otherwise = 0.RB(e,s,n): =1 only if clock
cycle “s” is used to read the variable (edge) “e” from the
register file through bus “n”, otherwise = 0.WBM (op,s,n): =1
only if clock cycle “s” is used to write any of the variables
(edges) at the output of operation “op” in the register file
through bus “n”, otherwise = 0.RBM(op,s,n): =1 only if clock
cycle “s” is used to read any of the variables (edges) at the

Bus

Address

RAM
BusData

Bus

Address

ζ.Φ2

ζ.Φ2

Ρ
Ρ

ζ.Φ1

ζ.Φ1

Figure 3:(a) A non-pipelined bus with a register file where read
and write access delays are chained in one cycle. (b)Our Clocking
scheme: A pipelined bus and register file (note the two phase
clocking) where a write is followed by a read in one cycle. The bits
ζ’s generated from the controller are “AND”ed with the clocks (ι.ε.
ζ.Φ1, ζ.Φ2) to indicate the latching time. Our scheme requires that
data stored in a register file to have a life time greater than or
equal to 2 cycles.

(a) Conventional

(b) Ours: two phase clock

ζ.Φ2

Register inside

Slave inside

FU

FU

REGISTER FILE

REGISTER FILE

Pass gate or Tristate buffer

Data In

Data Out

ζ

ζ

ARRAY

ζ.Φ1

ζ.Φ2 ζ.Φ2

ζ

ζ.Φ1
latch

FUx

FUy

Rm(i↔k)

clock i

clock j
clockk

FUx

FUy

Rn
clock i

clock j

clock t j>t≥s>
Rp

clocks

Figure 4: (a) Shows a data transfer using local interconnections
through individual register Rn. (b) Shows a data transfer using a
pipelined bus. Rn and Rp do not have to be different, but have to
have at least a life time of one cycle. The variable is stored in a
register file between clock cycle s and k through Busq.

(a) (b)

clockk

reg.
file

storage

e3
e2

e1
WB1,1 WB2,1
WB1,2 WB2,2

WB3,1

WB2,3

WB3,4

WB3,3

WB3,2

op1

WBM1,1

WBM1,4

WBM1,3

WBM1,2

Regused1,1

Regused1,4

Regused1,3

Regused1,2

Regused1,5

e1 e2 e3 op1 op1

RB3,2

RB3,5

RB3,4

RB3,3

RB2,2
RB2,3
RB2,4

RB1,2
RB1,3

RBM1,2

RBM1,5

RBM1,4

RBM1,3

Figure 5: The list of Z-O variables generated for an operation
with multiple edges at the output.

4

output of operation “op” from the register file through bus
“n”, otherwise = 0.Range(eX): The cycles in which the Z-O
variables “x” exists (“x” could be RB or WB or...).
Regused(op,s): =1 only if any of the edges at the output of
operation “op” is alive at clock cycle “s”, otherwise = 0.
MinReg: An integer variable used to count the lower bound

on the number of registers needed to implement the
architecture.TotReg: An integer variable used to count the
maximum lifetimes of all the registers.MaxRegFilen: an
integer variable used to count the maximum required number
of RAM locations per register file.Tristate: This number of
tristate drivers for every bus is calculated and the maximum

 . .

WBe s n, ,
s ∈

Range eWB()

∑
n 1=

NB

∑ 1≤ e∀ E∈ RBe s n, ,
s ∈

Range eRB()

∑
n 1=

NB

∑ 1≤ e∀ E∈

WBe s n, ,
s Range eWB()∈

∑ RBe s n, ,
s Range eRB()∈

∑– 0 e∀ E∈ n∀ 1…NB==

WBe p n, ,
n 1=

NB

∑
p =

s D Bus()– 1+

ALAP eWB()

∑ RBe p n, ,
n 1=

NB

∑
p =

ASAP eRB()

s

∑+ 1≤
ALAP eWB() D Bus() 1–+ s ASAP eRB()≥ ≥

s∀ e∀ E∈

WBe s n, , WBMop s n, ,– 0≤
op∀ Multoutput∈ e op∈∀

n∀ s Range eWB()∈∀

RBe s n, , RBMop s n, ,– 0≤
op∀ Multoutput∈ e op∈∀

n∀ s Range eRB()∈∀

(1) (2)

(3)

(4)

(5)

(6)

WBe s n, ,
e Single∈

EdgeOverlap s()∧

∑ WBMop s n, ,
op Multoutput∈

∑+ 1≤ n∀ s∀

RBe s n, ,
e Single∈

EdgeOverlap s()∧

∑ RBMop s n, ,
op Multoutput∈

∑+ 1≤ n∀ s∀

1 WBe p n, ,
p =

Asap eWB()

s

∑
n 1=

NB

∑– RBe p n, ,
p =

Asap eRB()

s

∑
n 1=

NB

∑ Regusedop s,–+ 0≤
op∀ Multoutput∈ e op∈∀

s Range eWB() Range eRB()∪()∈∀

1 WBe p n, ,
p =

Asap eWB()

s

∑
n 1=

NB

∑ RBe p n, ,
p =

Asap eRB()

s

∑
n 1=

NB

∑+–

 
 
 
 
 

e ∈
Single

EdgeOverlap s()∧

∑ Regusedop s,
op ∈

Multoutput

∑ regs MinReg–+ + 1≤

1 WBe p n, ,
p =

Asap eWB()

s

∑
n 1=

NB

∑ RBe p n, ,
p =

Asap eRB()

s

∑
n 1=

NB

∑+–

 
 
 
 
 

e
∑ TotReg– 1≤

WBe p n, ,
p =

Asap eWB()

s

∑ RBe p n, ,
p =

Asap eRB()

s 1–

∑–

 
 
 
 
 

e ∈
EdgeOverlap s()

∑ MaxRegFilen– 0≤
s∀
n∀

RBe p n, ,
p s=

Alap eRB()

∑
e Single∈

EdgeOverlap s()∧

∑ RBMop s n, ,
p s=

Alap opRBM()

∑
op Multoutput∈

∑+ Tristate≤ n∀ s∀

(8)

(7)

(9)

(10)

(11)

(12)

(13)

s∀

ObjectiveFunction Minimize←
C1 MinReg×() C2 TotReg×() C3 MaxRegFilen

n 1=

NB

∑×
 
 
 

C4 Tristate×()+ + +

C5 WBMop s n, ,
n 1=

NB

∑
s

∑
op

Multoutput∈

∑×
 
 
 
 

C6 RBMop s n, ,
n 1=

NB

∑
s

∑
op

Multoutput∈

∑×
 
 
 
 

C7 Regusedop s,
s

∑
op

Multoutput∈

∑×
 
 
 
 

+ ++

Table 1

5

of them is assigned to this integer variable.

The first two constraints of Table 1 ensure that only one
clock cycle is used to write the variable in the register file
through one bus and one cycle to read it back from the
register file through one (same or another) bus.

The third constraint ensures that every variable assigned
to a bus transfer is written in and read from the same register
file through one bus. Without constraint 3, use of multi-
ported register files are enabled where one variable is written
through one port (from one bus) and read from another port
(and another bus).

Inequality 4 ensures that a read occurs after a write to a
register file for any variable. Constraint 5 and 6 are intended
for operations with multiple edges at its output. We assign a
new set of zero-one (0-1) variables (WBM, RBM) for these
output edges (as shown in Figure 5). These 0-1 variables are
forced to “1” if there is a read from a register file or a write
to a register file at any cycle for any of the multiple output
edges. For instance in Figure 5, WBM1,2 is set to “1” when
at least one of the variables WB1,2, WB2,2, WB2,2 is equal
“1”. The same argument applies to the RB and RBM
variables. To ensure that at every cycle only one data
variable can be read and only one data variable written
through any one specific bus, we enforce constraints 7 and 8.
In these constraints we use WB and RB as 0-1 variables for
edges that do not belong to multiple output operations and
WBM and RBM as 0-1 variables for the edges of the
multiple output operations.

To account for the register cost in the cost function, edges of
multiple output operations are assigned a set of 0-1 variables
(Regusedop,s) per cycle “s”. These 0-1 variables are set to
“1” using constraint 9, when any of the multiple edges for an
operation is alive in cycle “s”. Constraint 10 determines a
lower bound (integer variable MinReg) on the number of
registers that can be assigned in step-3. Constraint 11
indirectly ensures that the total register life-time is reduced.
Constraint 12, counts the maximum required number of
RAM locations per register file. For all the busses, constraint
13 counts the maximum bus loading due to tri-state drivers
per bus.

The objective function to be minimized has seven
components. The first four terms contribute directly to the
final datapath structure. The last three terms are essential for
the correct assignments of the Z-O variables in the ILP
formulation.

4.2 Register and Multiplexer Binding with
Datapath Generation

In this paper, we report the register bindings obtained by
using the tool in [10]. In summary, the tool used performs the
register binding while at the same time performing a
floorplanning of the datapath to be able to compute the
routing delay and area cost and its effect on the clock cycle
duration. Such a tool produces better results than

independently determining a register binding followed by a
floorplanning. It uses a stochastic (simulated annealing)
search while continuously minimizing the critical paths that
determine the clock cycle for the datapath together with
layout area.

5 Results
Elliptic Filter : We use the 5th order elliptic filter to
demonstrate a number of points regarding our architecture
features of pipelined busses, the operation binding using the
structuring approach and our bus transfer scheduling. Figure
6 (a) shows a 2 adder one multiplier schedule with 17 cycles.
Theoperation schedule is very similar to the one obtained by
ALPS [3] (this filter is retimed). Our ILP tool, OSTA
running on a SPARC10, produced a scheduling and
operation binding (step-1) in 21.3 CPU seconds. The bus
scheduling and binding (step-2) took 1.7 seconds. The
detailed register binding was done in conjunction with
floorplanning (step-3) and took 210 CPU seconds[10] (and
1700secs for ILP[17]). All results proven optimal. Note that
only one pipelined bus is used compared to an optimal of7
busses for the OASIC[5] architectural model, and4 busses
of the SPAID-X style architecture used in [13][15] which is
equivalent of a 400% saving in the number of busses.
Because these busses require global wires which are not
abundant in FPGAs, such a saving which is a direct
consequence of our approach is very significant in the
routability of a datapath. .

To show how our model and synthesis compares with others,
we highlight a number of measures: number of busses, bus
loading, number of networks with fanout >1 (indicates
complex interconnections), number of tristates, fanout of
networks, and components of delay on the critical path.

#cycl
es

#TS
(#BC)

#mx
i/ps

#Bus
(nets)

#Regs
(#lc)

#CLB
/ bit

OASIC[12] 18 na na 7(na) 9 4.5

InSyn [6] 19 na na 4(na) 8+(5) 6.5

SPAIDX[13] 19 19 18 5(3) -(21) 5

IP [15] 19 12(23) 11 4(10) (10) 4

[17]-lm1 19 6(12) 19 3 (8) 11 5.5

[17]- LM2 19 na 25 - (11) 11 5.5

STAR[4] 19 16(28) 17 5 (na) 13 6.5

OSTA (ours) 17 2 (6) 22 1 (7) 7(6) 4

Table 2: Architecture for EWF, 2 adders 1 pipelined multi-
plier. Only nets with fanout > 1 are counted. Our estimate for
the number of CLBs for storage includes recursive storage. If
recursive edges are added to the others solutions, up to an
extra four registers or 2 CLB/bit of word length are needed.
#TS= #tristate drivers, #BC= # of Bus Connections as in [15].
#CLB/bit is the # of CLBs used per bit of the word width of
the datapath. #lc is the number of latches or RAM locations.

6

Table 2 compares different synthesized datapaths for the
EWF.

For the EWF architecture shown in [15], the maximum
bus loading is 3 inputs and three tri-state drivers, which is the
same for the architecture in Figure 6. Note that, in the
architecture in [15] bus delays and RAM access time are
added to the delay of a functional unit and registers to obtain
the critical path determining the cycle time. While for the
architecture in Figure 6, the RAM access and FU delay are
independent as discussed before. It is evident that our
architecture is simpler and uses less interconnections.

Regarding storage cost, our architecture uses a total of 7
registers and 6 register file locations (4 CLBs per bit of
datapath width), compared to an optimum of 9 registers for
a mux based (without busses[1]) datapath which is
equivalent to using 4.5 CLBs per bit of data path width for
storage. It is important to note that we include the cost of
storage of all recursive variables (z-1 delays in the EWF filter
specification) unlike almost all other published solutions
(the 8 recursive variables i-b, Figure 6 are not bound to
storage in other references). The result by Li & Mowchenko
[18] accounts for the recursive edges and uses 11 registers or
5.5 CLBs per bit of data path width for storage. This data
path can either be viewed as a bus based architecture (LM-
1) or a multiplexer based architecture (LM-2) in Table 3. We
use less multiplexer inputs (> 12%), less CLBs for storage
(>40%) and 300% less for the number of busses.

(b)

Figure 6: (a) Details of the scheduling and bindings for the
elliptic filter example. (b) The resulting architecture schematic.
This architecture accounts for all recursive variable storage.

R4

IN

OUT

bus1

Regis
File

R1

R5R6R2R7R3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

OUT

INa b c d e f g h i

a b c d e f g h i

(a)

R3
R3

R4 R5
R6

R2

R4

R3
R3R7

R5

R3R3R7
R1

R1
R7

R4
R3
R2R2

R6
R5

R5
R6

R7R5R3
R3

R2

R3R4
R6R2

R2

R3

R7R5
R6

R3R1

R1

R1

R1R3

R6

R4

R3

R3

R7 R6 R5

R4

R6
R5 R7

R6

R5R7

R1

R1

R6 R5 R4

R7R6

R4R7R4

⊕1
⊕2
⊗1
RF1 Write through
RF1 Read through

Our architecture has a maximum loading of three drivers on
the bus and 3 outputs (mux inputs). The maximum fanout of
any register output is 4. The maximum number of mux inputs
is 4. These values are the best values for any published EWF
architecture.

Cascaded-Elliptic Filter: An alternative example that
requires significantly more storage and is suitable to
highlight the advantages of RAM/bus based architectures is
a filter composed of two elliptic filters connected in cascade
(output of first is directly the input of the second). The
operation scheduling and binding (solution time 58 sec.) as
well as the bus scheduling (solution time 33 sec.) are shown
in Figure 7. For storing all variables, including the recursive
edges,our resulting datapath uses 11 registers at a cost of --
(1/2 CLB/bit/register) and 11 register file (RAM) locations
at a cost of (1/2 CLB/bit for all 11 locations). In comparison,
a multiplexer based solution would use 18 registers at a cost
of (1/2 CLB /bit/register). Hence, the bus based solution
saves an equivalent of 3 CLBs per bit of the word length.

For a 32 bit width data path our estimate for our datapath
is: (64 CLBs for the adders and their multiplexers, 206 CLB
for a 12x16 booth re-coded multiplier (synthesized), and 192
CLBs for storage, total of 462 CLBs). An extra 3x32=96
CLBs are required for a multiplexer based solution with a
total of 558 CLBs. A saving of 20% in terms of the total
number of CLBs required for our datapath. Since our
architecture uses less interconnections and only one bus, the
efficiency due to routing is higher.

For a two bus solution (not shown) the number of registers
used in our solution was 8 and the number of total register

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

b c d e fgh ia j k l mn o p q r out

j

a b c de f g h i l n om p r r rqk

S
E
C
O
N
D

F
I
L
T
E
R

F
I
R
S
T

F
I
L
T
E
R

Figure 7: This is the scheduling and binding of two elliptic filters
connected in series (output of the first is the input of the second).
The architecture uses two adders and one pipelined multiplier. The
operation schedule and binding was done using our ILP
formulation for step-1. The bus transfer scheduling was done
using our step-2 ILP formulation for a one bus solution.

7

files locations are 14. This results in a saving of 4 CLBs per
bit of the word length. For a 32 bit width datapath our
estimate is 430 CLB and the saving is 30% in terms of the
total number of CLBs required for this datapath. Note that if
a more efficient multiplier is used, these percentage gains
can be increased.

Fast Discrete Cosine Transform: This example is used
to demonstrate that ILP can handle medium size graphs that
have high parallelism (parallelism is limited in EWF
example). Step-1 took 33 seconds. For a mux based solution
the number of registers used is 11, while for a step-2 bus
binding using one bus which took 1.3 seconds), the
architecture uses 8 registers and 4 register file locations. This
results in a saving of 1 CLB per bit of the data path width
over a multiplexer based datapath that does not use busses or
RAMs. More details about this and the values of the cost
function coeficcients used can be found in [17].

It is to be noted that the running time of the ILP solution
for the bus scheduling and assignment is very small
(compared to operation scheduling and binding). This is due
to 3 factors; 1- The range of each bus transfer is less than the
original graph since all operations are already scheduled. 2-
All edges with life time <2 are eliminated from the bus
search, 3- The ILP formulation used is tight. This is evident
from the number of branch and bound trials did not exceed
tens of branches taken in all preceding examples. In some
instances where the register costs are not added to the cost
function, no branching was observed and the integer optimal
solution is obtained directly from the linear program
solution.

6 Conclusion
 Our synthesis approach when applied to benchmark

examples produces architectural solutions that outperforms
all other published architectures regarding both its structure,
loading (hence, performance) as well as resources used.This
result is due to flexible data transfers on pipelined busses in
our architectural model, and also due to the synthesis
approach that “structures” the architecture and efficiently
schedules the bus transfers while minimizing bus loading.
We have demonstrated that any schedule and binding for a
multiplexor based data path can be transformed to support a
bus/RAM based datapath by properly scheduling the bus-
transfers. In our methodology, by using structural
complexity reduction during scheduling and binding, we
have shown that bus binding and storage allocation can be
delayed to later steps of synthesis and produces good results.
Hence, we have proposed an efficient split of the
architectural synthesis procedures. We have also shown that
ILP techniques can be effectively used in conjunction with
complex cost functions, for small to medium size DFGs, to
tie together different levels and various tasks in architectural
design. We have also shown by our low running times the
tightness of the formulation we have presented. Moreover,
our constraints and cost functions can be extended to other
heuristic architecture search techniques that may have better

running times for larger problems. Future research will focus
on addressing very large memory required for loop
execution and multiple FPGA computation accelerator
systems as well as methods of relegating some of the bus
binding decision to step-3 (the register binding and
floorplanning) of our synthesis approach.

References

[1] B. Haroun, B. Sajjadi, “ILP Synthesis of Signal Processing
Architectures with minimum Structural Complexity”, CICC, May
1994, pp. 237-240.
[2] J. Rose, A. ElGamal, A.Sangiovani-Vincentelli, “Architecture
of Field Programmable Gate Arrays”, Proc. IEEE, Vol. 81, No. 7,
July 1993.
[3] C.T. Hwang, J.H. Lee, Y.C. Hsu, “A Formal Approach to the
Scheduling Problem in HLS”,IEEE Tran. CAD, Vol-10, No.4,
April 1991, pp464 475.
[4] F.S. Tsai, Y.C. Hsu: “STAR: An Automatic Data Path Alloca-
tor”. IEEE Tr. CAD. Vol11, No9, September 1992.
[5] C. Gebotys, M.I. Elmasry, “Optimal Synthesis of High Per-
formance Architecture:” JSSC, March 1992, pp 389-397.
[6] M. Rim, R. Jain, R. Deleone, “Optimal Allocation & Binding
in HLS”, DAC-92, pp.120-123.
[7] G. Goosens, J. Rabaey, J. Vandewalle, H, De Man: “An Effi-
cient Microcode Compiler for Application Specific DSP Proces-
sors”, IEEE Transaction on CAD, Vol 9, No. 9, pp.925-937,1990.
[8] S. Note, W. Geurts, F. Catthoor, H. De Man, “Cathedral-III:
Architecture-Driven High-Level Synthesis for High Throughput
DSP Applications”, 28th Design Automation Conference, 1991,
pp.597-602.
[9] C.Gebotys, M. I. Elmasry, “Global Optimization Approach
for Architectural Synthesis”, IEEE Tr. on CAD, Vol-12, No.9,
Sept. 1993, pp.1266-1278.
[10] A. Safir, B. Haroun, “A Floorplanner for Datapath Optimiza-
tion” submitted to Tr. VLSI Systems.
[11] B. Haroun et. al. “VLSI Architecture Synthesis and Imple-
mentation of HiFI Digital Filters” Proc. Canadian Conference on
VLSI, pp.107-114, Oct. 1989.
[12] C. Gebotys “Synthesizing Optimal Application Specific DSP
Architectures”, in: “VLSI Design Methodologies for DSP Archi-
tectures” ed. M. Bayoumi, pp.43-92, Kluwer Academic Publishers,
Boston, MA, 1994.
[13] B. Haroun et.al “Synthesis of Multiple Bus Architectures For
DSP Applications”, in: “VLSI Design Methodologies for DSP
Architectures” ed. M. Bayoumi, pp.93-130, Kluwer Academic
Publishers, Boston, MA, 1994.
[14] C. Gebotys, “Synthesizing Optimal Register file Architec-
tures for FPGA Technology”, CICC, May 1994, pp, 233-236.
[15] J. J. Rabaey, et.al. “Fast Proto-typing of data path Intensive
Architecture.” IEEE Design & Test, Vol.8, No.2, pp.4051, 1991.
[16] B. Sajjadi, “Architectural Synthesis for FPGA Based Signal
Processing Systems”, M.Sc. Thesis in preparation, Concordia Uni-
versity, 1995.
[17] T. Li, J. Mowchenko, “Applying Simulated Evolution to High
Level Synthesis”, IEEE Tr. CAD, March 1993, pp.389-409.

	Compendium95
	FPGA95
	Front Matter
	Table of Contents
	Session Index
	Author Index

