
An FPGA Based Reconfigurable Coprocessor Board
Utilizing a Mathematics of Arrays

H. Pottinger, W. Eatherton, J. Kelly, T. Schiefelbein
Department of Electrical Engineering

L. R. Mullin, R. Ziegler
Department of Computer Science

University of Missouri - Rolla

Abstract -- Work in progress at the University of Mis-
souri-Rolla on hardware assists for high performance
computing is presented. This research consists of a
novel field programmable gate array (FPGA) based
reconfigurable coprocessor board (the Chameleon
Coprocessor) being used to evaluate hardware architec-
tures for speedup of array computation algorithms.
These algorithms are developed using a Mathematics of
Arrays (MOA). They provide a means to generate ad-
dresses for data transfers that require less data move-
ment than more traditional algorithms. In this manner,
the address generation algorithms are acting as an in-
telligent data prefetching mechanism or special purpose
cache controller. Software implementations have been
used to provide speedups on the order of 100% over
classical methods to the solution of heat transfer equa-
tions on a uniprocessor. We extend these methods to
application designs for the Chameleon Coprocessor.

1. Introduction

The coprocessor architecture presented in this paper
is based upon the concept of using the FPGAs as re-
progammable and intelligent cache controller in place of
the general purpose cache controllers found in current mi-
croprocessors. The argument for the need of a special
purpose cache controllers for array processing is that for
large multidimensional arrays the cache is not utilized
efficiently at all and has frequent misses. Additionally for
most workstations with virtual memory references, the
Translation Lookaside Buffer (TLB) can only accommo-
date several hundred KB of data [1]. Therefore TLB
misses and cache misses will result in more time being
spent on address generation and memory access than on
the actual operation being performed on the array. One
such example, a MC88100 RISC processor required 9 in-
structions to compute an address and only 3 instructions to
compute and assign the data for that address. Each in-
struction in the loop took one clock cycle to complete. In
this case three times longer was spent on address genera-
tion than the computation.

By implementing the generation of addresses in
hardware, not only can methods of optimizing the main
memory address patterns be explored, but the size of the
cache being used can be taken into account

Classical array accessing provides unnecessary com-
putational overhead. Use of MOA for hardware or software
algorithms means that the address generation overhead of
array referencing is reduced and array access is speeded.
MOA provides a formal way of describing array opera-
tions. Generally, these expressions are at a high level and
contain cartesian referencing. These expressions can be
reduced to a normal form that only contains the informa-
tion needed to generate a linear access pattern for the array
in physical memory. These patterns are quickly comput-
able since they contain only additions and multiplies and
they are fast because they access the array minimally to
carry out the operation at hand.

2. An Introduction to MOA

A Mathematics of Arrays can be used to describe
mathematical array operations regardless of their shape,
size, or dimensionality. MOA describes an array calculus
containing a set of operator definitions, shape definitions,
and reduction rules all based on a single indexing opera-
tor, ψ. For this reason, MOA is often referred to as the Psi
Calculus. Algebraic operators are included in the Psi Cal-
culus to form a broad set of operators needed to describe
complex array operations. All the operators are extended
for scalars, vectors, and multi-dimensional arrays.

MOA is defined in [2] and is based on Abrams' work
on the simplification of array expressions [3]. The advan-
tages of expression reductions and the correspondence
between cartesian and linear referenced arrays are de-
scribed in [4].

Table I lists some of the more useful Psi Calculus op-
erators together with an example usage on the array,

ξ e
2

1 2 3

4 5 6
≡

Table I. Some MOA Operators
Operator Function Example
δ Dimensionality δξe = 2

ρ Shape ρξe = 2 3

∆ Take (subarray) 1 1 2 3∆ξe =

∇ Drop (subarray) 1 4 5 6∇ =ξe

rav Ravel (flatten) rav eξ = 1 2 3 4 5 6

ι Iota (count) ι5 = 〈 0 1 2 3 4 〉
ψ Psi (index) 1 0 4ψξe =

From Table I, dimensionality returns a scalar indicat-
ing the total number of dimensions of an array. Shape
returns a vector describing the length along each dimen-
sion. Take and Drop return subarrays by taking or drop-
ping data from the right hand argument array by using the
left hand shape vector argument. Ravel forms a vector
from an array, filling it with data indexed in an incre-
mental row major fashion, effectively flattening the array.
Iota produces a vector containing a cardinal string of n
elements starting from zero. Iota implies time referencing
or looping if it is used for indexing. Thus iota is essential
for generating array access patterns.

Psi is a generalized indexing function that takes a
vector right hand argument representing, usually, a carte-
sian reference to data in the right hand argument array and
returns that data which may be a scalar or a subarray.
Every Psi Calculus operator is defined in terms of psi,
therefore, through the use of reduction rules, an array ex-
pression can be simplified to pure indexing using psi along
with any necessary arithmetic operations.

There are a few general procedures to follow to ob-
tain an implementable form of an array expression. First,
an array operation is described at a high level using the Psi
Calculus operators. This expression is usually the most
understandable and straight forward to the designer. It
also describes the operation holistically without regard to
how the arrays actually get referenced. For example, the
expression B = A + 1 implies that every element of A
should be incremented by 1 although no indication of how
this is done is described. It is the job of the Psi Reduction
Rules to describe how A and B get ultimately referenced.

Next, the expression is reduced to the Semantic Nor-
mal Form (SNF). To do this, the definitions of the opera-
tors are used to calculate the resultant shape of the expres-
sion. Then, reduction rules are applied to the expression,
using the definitions of the operators, to obtain an expres-
sion that only uses the psi operator and arithmetics if nec-
essary. At this point, referencing is cartesian. This proc-
ess can become lengthy and complex but is partially auto-
mated in the Psi Compiler [5]. After compiling, memory
access is implemented with starts, stops, and strides. It is
important to note that the Psi Calculus has one very reas-

suring property. Any expression representing the high
level description of the array computation will reduce to
the same SNF.

The SNF is a representation of the array expression
that uses the least amount of memory, memory access, and
computational redundancy. Since, referencing in the SNF
is cartesian, it is unclear how to implement this form in
software or hardware. An application of the Psi Corre-
spondence Theorem [4] will transform the SNF into the
Operational Normal Form (ONF). At this point, the arrays
are flattened and are indexed linearly as would be neces-
sary in a physical linear memory. In fact, the Psi Compiler
does this with the start, stop, and stride indexing. In a
software implementation the number of loop variables is
constant, regardless of dimension. This is also what is
desired for a hardware representation.

MOA, then, offers a method to systematically
derive address generation mechanisms. The alternative
would be to hand derive an algorithm that is prone to er-
rors. It is also difficult to incorporate architecture depend-
encies like data paths, caches, memories, and other archi-
tectures. With MOA, a high level expression may allow
for cache sizes or burst transfer modes by repartitioning
array data into smaller manageable pieces automatically.
Many of these optimizations could be done by hand, but
what is really needed is a formal method that keeps the
whole picture in perspective which MOA provides.

3. An Application Example: 2D Heat Transfer

Heat transfer is a dynamic process usually requiring
the solution to complex partial differential equations. An
alternative solution is to use a numerical technique and a
time simulation. Heat transfer can be simulated with a
quantized mesh model using finite difference time domain
methods. For large problems involving huge meshes and
many iterations in time, every bit of computational per-
formance counts in a system. Any optimization on such a
system would be beneficial. In [6], the Psi Calculus was
used to derive a software algorithm that outperformed
traditional heat transfer algorithms because it took advan-
tage of non-random array access patterns.

This work will be extended by the implementation of
the heat transfer algorithm on the Chameleon Coprocessor.
Results here are projected but will be conclusively obtained
pending the completion of the board. An example deriva-
tion and comparison will be done for a two dimensional
version of the heat transfer algorithm.

For 2D heat transfer, a two dimensional array repre-
sents a surface about which heat can flow. The value at
each point is the relative temperature of the point at a fixed
time. As time progresses, the heat will flow until an equi-
librium is established determined by the constant boundary
conditions. Consider the situation of Fig. 1. Here a sinu-
soidal distribution of temperature is initialized with the z-

axis representing the relative temperature at each point.
As time progresses and more iterations are applied, the
heat transfers out of the system as it reaches eventually a
state of constant temperature. This is due to the constant
boundary conditions of zero relative temperature which are
not displayed.

iteration = 0

T

iteration = 200

T

iteration = 400

T

iteration = 600

T

Fig. 1 Time Dynamics of Heat transfer

Due to the nature of the equations that describe heat
transfer and what is physically observed, heat transfer is
really then an averaging function. During one iteration, a
new value for every interior point is calculated based on
the average of it and its adjacent neighbors. This new
value is placed in temporary storage so that it does not
effect the computation of its next neighbor. All points on
the surface are averaged in this manner to complete the
iteration. When the finite difference between one iteration
and the next iteration is below some predefined threshold,
a solution is said to be found. From [a], discrete solutions
to the PDEs that describe heat transfer yield the averaging
function,

() ()′ = − + + + +− + − +u u u u u ui j i j i j i j i j i j, , , , , ,1 4 1 1 1 1λ λ
Eq. 1

where u’ is the iterations result, λ is the heat transfer
rate constant, and the other variables represent the current
values of the central element and its neighbors as indicated
by Fig. 2.

u
i,j

u
i,j-1

u
i-1,j

u
i,j+1

i

j
u

i+1,j

Fig. 2 Central Element and Neighbors

Traditionally, Eq. 1 is used to access the array data to
perform the heat transfer algorithm. Performance is gen-
erally poor since each element is accessed five times
(whenever it or its adjacent neighbor is being computed)
during the course of one iteration. This assumes no form
of data caching is present. If a general data cache is pres-
ent, each element is accessed three times since there will
cache hits for data in the same row. There is a method to
access the data such that each element is only accessed
once from main memory across the SBus. This access
pattern is not random and can be found by utilizing the Psi
Calculus.

To describe heat transfer, first, a high level descrip-
tion must be created using the MOA operators. This de-
scription must embody the mathematics of the solution to
the PDEs as Eq. 1 does. One such description is,

()() ()()
()() ()()A

b A b A

b A b A
2

12 10

21 01
=

∇ + ∇ +

∇ + ∇

λ
∆ ∆

∆ ∆

Eq. 2

()() ()()()b A b A A∆ ∆11 11 1 4 2∇ = ∇ − +λ
Eq. 3

where b is the shape vector of the interior of A (without
boundaries).

The 2D array A2 in Eq. 2 is a temporary holding the
sum of four partitions of the original data array A multi-
plied by the rate constant, λ. This expression describes the
computation involving the four adjacent neighbors of each
central element all at once and is analogous to the one
element computation of the second part of Eq. 1. Next, in
Eq. 3 the interior partition of A is multiplied by the rate
expression as in Eq. 1 and is summed with the intermedi-
ate result array A2 to complete the iteration.

It can be seen at this level that A is being accessed
linearly and not in the more complex pattern implied by
Eq. 1. Because of this, features like a data cache or burst
transfer modes can be taken exploited on a bus.

The next step to be taken is to reduce Eq. 2 and Eq. 3
to SNF. This is done by the Psi Reduction rules and only
the results will be shown here.

[] () ()
() ()

∀ ≤ <

=
+ + + +

+ + +

i i b

i A
i A i A

i A i A

 s. t. 0

12 10

21 01
2

* *

Ψ
Ψ Ψ

Ψ Ψ
λ

Eq. 4

()[] ()[]()i A i A i A+ = + − +11 11 1 4 2Ψ Ψ Ψλ
Eq. 5

Notice, the only MOA operator present is Ψ for in-
dexing. The bounds on i imply two nested loops to carry
out the operation. An application of the Psi Correspon-
dence Theorem is necessary to uncover how memory ac-
cess should be performed. The result is,

() () () ()[][] () ()[][
() ()[] () ()[]
() ()[]]

b n

A b b b A b n b

A b n b A b n b

A b n b

= −

+ = + + + +

+ + + + + + +

+ +

2

2 1

1 1 2

1

2rav rav

 rav rav

 rav

ι ι λ ι ι

ι ι ι ι

ι ι
Eq. 6

() ()[] () ()[]
() () ()[]

rav rav

 rav

A b n b A b n b

A b b b

ι ι ι ι

λ ι ι

+ + = + +

− + +

1 1

1 4 2

Eq. 7

The iotas provide the means of indexing at this point
and can easily be implemented as loops in software or
counters in hardware. The ravels simply indicate base
addresses of respective arrays on which they operate.
What is left is simple arithmetics.

Thus, through the use of MOA, an implementation
for intelligent address generation has been systematically
derived that is provably correct. This algorithm will gen-
erate address streams that are simple starts, stops, and
strides. Again, this means that architectural elements like
local caches or burst transfer modes can be exploited.

4. Hardware Acceleration

While the ideal architecture for exploring address
optimizations would involve placing the CPU for a system
on the same die or in the same Multi-Chip Module (MCM)
as a reconfigureable cache controller, we believe signifi-
cant speed ups can still be achieved at much less initial
cost by implementing the device as a peripheral coproces-

sor card. The simplest implementation of such a coproces-
sor card would be the generation of addresses as described
above and then the loading of the host workstations pri-
mary cache. However, as suggested above most current
microprocessors incorporate the CPU, cache controller,
and primary cache on the same die or MCM making it
impossible to externally control the cache. Therefore, to
achieve significant speedups over current microprocessors
through this method of speeding up address generation, it
is necessary for the coprocessor board to generate the ad-
dresses, fetch the data from the host memory, do the neces-
sary computations, and replace the date in the host mem-
ory. To perform these series of functions the Chameleon
Coprocessor board needed to have a reconfigurable address
generator, an interface to a relatively high bandwidth bus,
a method of doing high speed floating point computations,
and high speed on board memory (this would be the
board's "cache").

4.1 Reconfigurable Address Generator

The primary component of the coprocessor board de-
scribed above is the reconfigurable address generator.
After investigating the results of using MOA to simplify
several array algorithms, the end result was two nested
loops regardless of the number of dimension in the array
as seen in Eq. 6 and Eq. 7. However , there were many
variations in the size and boundary handling of these loops
due to the number of dimensions and the nature of the
operation being performed. Therefore a standard cell im-
plementation of an address generator to handle all such
possibilities would not be practical. Many general purpose
processors would be capable of generating the addresses
but would take several clock cycles and not allow signifi-
cant speedups over conventional techniques. FPGAs how-
ever would be ideal for the purpose of the address genera-
tion since each array application could have its own spe-
cial address generator. The large number of flip flops in
Xilinx FPGAs [7] for example, makes the large counters
necessary for each loop index feasible and the availability
of 10,000 gates or more allows construction of the adders
and other combinational structures necessary to handle
array boundary conditions. Additionally the flexibility of
the FPGAs allows you to separate the generation of the
input and output addresses for each calculation. In this
way the board can support block processing of data.

4.2 Interface to High I/O Bus

The next item needed for the board is an interface to
a relatively high bandwidth bus. The SBus used on many
Sun Workstations was chosen for the target bus. While
initially it was thought that a higher bandwidth bus sup-
porting multiprocessors like the MBUS would be more
desirable, it was decided that the wider availability of the
SBus (at least to us) and the simpler protocol was more

important. One major point of interest about the SBus
implementation on most Sun Workstations is a half mega-
byte limit on the amount of space that can be allocated to
any peripheral master on the SBus at one time.

The requirements of the interface to the SBUS was
that it first be able to fetch data from the addresses gener-
ated on the board. Then it needed to be able to direct the
fetched data to the appropriate destination which turned
out not to be the address generating chip. Finally, it
needed to be able to take the computation results and the
appropriate addresses and write the data to main memory.
Additionally the interface to the SBUS was needed to sup-
port a wide variety of transfer sizes, both slave and master
mode of operation, have fast internal buffering, and finally
detect and record both SBUS and board errors for retrieval
by the host workstation. To maximize performance of the
board it was also hoped that the data transfer operations
could be performed in parallel in order to most fully satu-
rate the SBUS. While there are some fine off the shelf
components for interfacing to the SBUS, none were found
to posses the flexibility and data transfer patterns neces-
sary to fit these requirements. Once again FPGAs, specifi-
cally the Xilinx 4013-4, was found posses both the size
and speed to meet our requirements. The present version
of the interface chip utilizes approximately 85% of the
chip and is able to meet SBUS timing specs at up to 20
MHz. While the SBUS specs call for a compliance of the
specs up to 25 MHz, the workstations the board will be
tested on run at 20 MHz or below. Additionally current
work on the optimization of the interface design will
hopefully soon yield compliance at up to 25 MHz.

4.3 Computation Implementation

Before deciding on how to go about performing the
actual array computation, the form of the algorithms being
implemented should be defined. Most array operations
being considered for optimization thus far, are of an aver-
aging nature were each point in the next iteration is a
weighted average of the its last value and the last values of
the bounding points. This type of calculation includes heat
transfer through time as observed in this paper and many
other applications like electromagnetic field calculations
on a printed circuit board. These calculations typically
involve multiplication of the input operands by the appro-
priate weight constant, and then accumulation and multi-
plication by the averaging factor like (1-4λ) from Eq. 7.
Another notable characteristic of these calculations is sev-
eral input operands and only one output operand.

It has been shown for that for a wide variety of com-
putations, FPGAs can provide substantial speedups over
general purpose processors. Examples are simple arith-
metic operations [8], image processing algorithms [9] [10]
[11], and sequence comparisons [12], Most of the archi-

tectures in these papers achieve speedups by using varying
degrees of parallelism. However, without software assis-
tance in designing the FPGAs used in these systems, the
partitioning and layout is a monumental task. It is due to
this lack of software support that FPGAs were not chosen
to perform the actual computations for the board.

What is ideally needed to perform the computations
for the board is a FPU that is easy to control, and does
high speed multiplication and addition. For available
FPUs like the Cyrix 83D87, the multiplication of two
floating point numbers takes 19 clock cycles. Even for
some of the high cost chips like the Weitek 4167 a multi-
ply takes 3 clock cycles and an addition 2 clock cycles
[13]. The lack of powerful, standalone arithmetic units
with features like internal registers has been documented
previously [14] . Therefore the ADSP21020 was selected
due to the fact that it not only can perform all desired op-
erations in a single cycle but can simultaneously do arith-
metic operations and memory accesses. By creatively pro-
gramming the DSP, the DSP chip can be utilized as a high
speed FPU under the control of a FPGA. In this way a
DSP program can be created once for each application and
then the FPGA will handle changes in dimensionality and
size.

4.4 Board Cache Selection

The final major design area to be explored is the task
of selecting what memory storage should be included on
the board. First of all a 48 bit wide block of memory is
needed to hold the DSP program and therefore a bank of 6
128Kx8 SRAMs was placed on the DSP chips program
memory bus. The important decision is the size and type
of memory storage for the on board cache. Some choices
for the form of the cache were large FIFOs, dual ported
SRAMs, standard SRAMs, and drams. In order to run the
DSP chip selected at it's top speed of 33 MHz, an access
time of 15ns was needed. This requirement eliminates the
DRAM choice and most dual ported SRAMs. Addition-
ally in order to allow the DSP chip to easily reuse data
within the "block" loaded onto the board, the DSP chip
needs to be able to access the data in a non-linear pattern
eliminating the FIFO option. This leaves standard SRAMs
for the memory implementation. With the 15ns access
time requirement, the largest size easily available was
128Kx8. Since there is a half megabyte DVMA allocation
limit for the SBUS, a cache 32 bits wide made up of
128kx8 SRAMs is just large enough to fit the entire space
addressable with DVMA at one time. Then before moving
data from the board, the host processor needs to reallocate
a new portion of memory to write the new array.

4.5 Chameleon Coprocessor Data Flow

Fig. 3 shows the data flow for the final design based
upon the requirements as described thus far. The first

step in running an iteration of a computation like the heat
transfer involves several writes by the host workstation to
the board in slave mode. These writes access the X1
FPGA and identify the size and possibly the dimensional-
ity of the application that the X0 and X1 FPGAs have al-
ready been configured for. Since the board when in mas-
ter mode utilizes virtual memory addressing , it is not nec-
essary to exchange the starting address for the initial and
final array. The board would simply as a rule assume the
arrays begin at address 0 and it is up to the host processor
to perform the correct memory mapping.

Once the board has the necessary configuration data,
the X1 FPGA begins address generation. The transfers are
grouped into 16 word bursts when possible and the inter-
face chip would retrieve the data as the addresses are gen-
erated. Once a block of data has been retrieved into a on
chip buffer constructed from the LUT lookup tables, the
interface chip controls the movement of data to the X0
FPGA. The order of the data as far as variables in the
computation has been pre-determined prior to FPGA con-
figuration. An important note is that since the interface
chip does have three separate busses and two 16x32 buffers
as shown in Fig. 3, it is possible to simultaneously receive
an address from the X1 FPGA, fetch data from the SBUS
into one buffer, and load data to the X0 FPGA from the
second buffer.

Once the data has been loaded into the X0 FPGA, the
next step is the intelligent loading of the data memory
SRAMs by the X0 FPGA. The X0 FPGA does need to
load the SRAM in linearly but can do so in an intelligent
fashion such that the DSP chip expends minimal effort in
its address generation. While it would be possible to have
the DSP fetch the data directly from the X0 FPGA and
eliminate the need for any board cache this would involve
a DSP wait state , create a bottleneck, and eliminate the
advantages of doing block processing which allows the
DSP chip to reuse operands. After the data memory block
has been fully loaded, the DSP chip running at 33 MHz
with no wait states and performing multiple instructions
per clock cycle, can very quickly run through the compu-
tations.

As the DSP completes each computation the results
are written out to the X1 FPGA on the program memory
bus. The X1 FPGA stores up to sixteen results at a time
an then generates the appropriate address for host memory
storage and then passes the address and data to the inter-
face chip.

5. Example Application Performance

For the Chameleon Board then, the FPGAs can be
used to implement the address generation algorithms. It is
a goal of future work to implement the algorithms on the
board and compare performance to software methods and

the more traditional address generation method. For now,
only projections of results will be compared.

Fig. 3 Data Flow Block Diagram

Two assumptions are made to gain insight on pre-
dicted performance. First, the bandwidth predicted for the
SBus is about 20 MB/s. This is a worst case possibility
and is due to the interrupt service routine of the sun op-
erating system Sustained bandwidth could theoretically
reach 60 MB/s if there were no latency in interrupt servic-
ing. Second, with the board architecture, each generation
of data must be loaded, computed, and stored back to main
memory. Since in the heat transfer application, there are
more operands than results per computation, it is assumed
the results can be written while the next data point is being
computed.

The run times for a 160x160 2D heat transfer simu-
lation for 500 iterations were compared. According to [a],
a classical software approach on a Sun IPX took an aver-
age of 535.80 seconds to complete and an MOA derived
software algorithm on a Sun IPX that took an average of
447.55 seconds to complete, a 16.5% speed increase.

For a traditional heat transfer algorithm, each piece
of data must be fetched from main memory in single word
transfer mode 5 times. With an average single word bus
transfer rate of 11.5 MB/s, the traditional heat transfer
simulation of a 160x160 (25,600 32 bit floating point
numbers) will take 44.5 ms to complete the bus transfer.
Additionally, the DSP and write cycles add another 4.66
ms for a single iteration. This requires 49.2 ms for one
iteration over all and 24.6 s to complete the entire 500
iterations. Translating to hardware provides a 18.2 times
decrease in run time over the MOA derived software im-
plementation.

With an average worst case bus transfer rate of 20
MB/s in burst mode, the MOA derived heat transfer simu-
lation of a 160x160 (25,600 32 bit floating point numbers)

will take only 5.12 ms to complete the bus transfer. The
DSP and writes add another 4.66 ms as before. Thus, one
iteration requires only 9.78 ms and 500 iterations require
only 1.77 s. This is more than a 5 times increase over the
traditional method in hardware. This is due to the reduc-
tion in the redundancy of data transfer and the reuse of
data operands. If the IPX SBus bandwidth reaches its top
rate of about 60 MB/s, then performance would jump to
over 7.6 times that of the traditional hardware method.

6. Conclusion

A hardware accelerator for a Sun workstation, called
the Chameleon Coprocessor, consisting of an interface
FPGA, a pair of application reconfigurable FPGAs and a
high speed DSP is currently being fabricated to support
this effort. MOA will be used as a basis for a design
paradigm for applications on the Chameleon Coprocessor.
FPGAs were selected for the board in order to implement
the large, fast state machines needed to realize the data
prefetch algorithm and to provide a means for prototyping
many applications. Finally, an initial application based on
the heat transfer algorithm has been designed for the board
using the MOA hardware design paradigm.

It is important to note that while the coprocessor ar-
chitecture presented in this paper has projected perform-
ance gains over software implementations, this architec-
ture is not presented as optimal. Instead the Chameleon
Coprocessor is a proving grounds in the area of optimizing
data flow. Replacing the DSP chip with a more powerful
computational unit like a parallel computing architecture
based on FPGAs could take advantages of the concepts
suggested here while reducing computation time and
therefore reducing total processing time.

References

[1] Dowd, K., High Performance Computing. O’Reily &
Associates, Inc., Sebastopol, CA, first edition, 1993.

[2] Mullin, Lenore, "A Mathematics of Arrays", Ph. D.
dissertation, Syracuse University, December 1988.

[3] Abrams, P.S., "What's wrong with APL", APL 75,
ACM, June, 1975.

[4] Mullin, L., “The Psi Correspondence Theorem: Array
Mapping Using the Psi Calculus”, Department of
Computer Science, University of Missouri - Rolla.

[5] Mullin, L., Thibault, S., "A Reduction semantics for
array expressions: the PSI compiler", TR CSC-94-05,
March 9, 1994, Department of Computer Science,
University of Missouri - Rolla.

[6] Coffin, Larry, “Designing a New Programming Meth-
odology for Optimizing Array Accesses in Complex
Scientific Problems”, OURE Paper, University of Mis-
souri - Rolla, 1994.

[7] Xilinx, Inc, 2100 Logic Drive, San Jose, CA 95124 .
The Programmable Logic Databook, April 1994.

[8] Wo, D., Forward, K., “Compiling to the gate Level for
a Reconfigureable Co-Processor”, Proceedings of
FPGAs for custom computing machines (1994), pp
147-154.

[9] Abbott, A., Athanas, P., Chen, L., Elliott, R., “Finding
Lines and Building Pyramids with Splash 2”, Proceed-
ings of FPGAs for custom computing machines (1994),
pp 155-161.

[10] Gent, G., Smith, S., Haviland, R., “An FPGA-based
Custom Coprocessor for Automatic Image Segmenta-
tion Applications”, Proceedings of FPGAs for custom
computing machines (1994), pp 172-179.

[11] Quenot, G., Kraljic, I., Serot, J., Zavidovique B., “A
Reconfigureable Compute Engine for Real-Time Vi-
sion Automata Prototyiping”, Proceedings of FPGAs
for custom computing machines (1994), pp 91 - 100.

[12] Arnold, J., Duncan, Buell, A. , Hoang, D., “The
Splash 2 Processor and Applications”, Proceedings
ICCD ‘93.

[13] Ferguson, W., “Selecting Math Coprocessors”, IEEE
Spectrum, July 1991, pp 38-41.

[14] Bergmann, N., Mudge, J., “Comparing the Perform-
ance of FPGA -Based Custom Computers with General
-Purpose Computers for DSP Applications”, Proceed-
ings of FPGAs for custom computing machines (1994),
pp 164-171.

	Compendium95
	FPGA95
	Front Matter
	Table of Contents
	Session Index
	Author Index

