An FPGA Based Reconfigurable Coprocessor Board
Utilizing a Mathematics of Arrays

H. Pottinger, W. Eatherton, J. Kelly, T. Schiefelbein
Department of Electrical Engineering

L. R. Mullin, R. Ziegler
Department of Computer Science
University of Missouri - Rolla

Abstract -- Work in progress at the University of Mis-
souri-Rolla on hardware assists for high performance
computing is presented. This @search consists of a
novel field programmable gate array (FPGA) based
reconfigurable coprocessor board (the Chameleon
Coprocessor)being used to evaluate hardware architec-
tures for speedup of array computation algorithms.
These algorithms are developed using a Mathematics of
Arrays (MOA). They provide a means to generate ad-
dresses for data transfers that require less data move-
ment than more traditional algorithms. In this manner,
the address generation algorithms are acting as an in-
telligent data prefetching mechanism or special purpose
cache controller. Software implementations have been
used to provide speedups on the order df00% over
classical methods to thesolution of heat transfer equa-
tions on a uniprocessor. We extend these methods to
application designs for the Chameleon Coprocessor.

1. Introduction
The coprocessor architecture presentedhiis paper

is based uporthe concept of usinghe FPGAs as re-
progammableand intelligentache controller in place of

By implementing the generation of addresses in
hardware, nobnly can methods of optimizing theain
memory addrespatterns be explored, but the size of the
cache being used can be taken into account

Classical array accessing provides unnecessary com-
putational overhead. Use of MOA for hardware or software
algorithms means that tregldress generation overhead of
array referencing is reducexthd arrayaccess is speeded.
MOA provides a formaway ofdescribing array opera-
tions. Generally, these expressi@ans at a higlevel and
contain cartesian referencing. These expressions can be
reduced to a normal fortiat only contains the informa-
tion needed to generate a linear access pattethdarray
in physical memory. Thesgmatterns arejuickly comput-
able since they contaionly additionsand multiplies and
they are fastbecause they accetise array minimally to
carry out the operation at hand.

2. An Introduction to MOA

A Mathematics of Arrays can besed to describe
mathematical array operations regardlessheir shape,
size, or dimensionality. MOA describes an array calculus
containing a set of operator definitions, shape definitions,

the general purpose cache controllers found in current mi-andreduction rules albased on a singledexing opera-

croprocessors. The argumentor the need of apecial
purpose cache controllers for array processinthas for

tor, . For this reason, MOA is often referred to as the Psi
Calculus. Algebraic operators are included in the Psi Cal-

large multidimensional arrays the cache is not utilized culus to form a broad set of operators needed to describe

efficiently atall and hadrequent misses. Additionally for
most workstations with virtuamemory references, the
TranslationLookaside Buffer (TLB)can only accommo-
date severahundred KB of data [1]. Therefore TLB
missesand cache misses will result in more time being
spent on address generatiand memory accesghan on

complex array operations. Atthe operators amextended
for scalars, vectors, and multi-dimensional arrays.

MOA is defined in [2]and isbased on Abramsiork
on the simplification of array expressions [3]. The advan-
tages of expression reductiomsd thecorrespondence
betweencartesian and lineareferenced arraysare de-

the actual operation being performed on the array. Onescribed in [4].

such example, a MC88100 RISC processor required 9 in-

structions to compute an addresslonly 3instructions to
computeand assign the dafar that address. Each in-
struction in thdoop took one clockycle tocomplete. In

this casethree times longewas spent on address genera-

tion than the computation.

Table | lists some adhe moreuseful Psi Calculus op-
erators together with an example usage on the array,

oo 23
B 5 6]

Table I. Some MOA Operators

Operator | Function Example
o) Dimensionality 0, =2
p Shape p¢e=(2 3
A Take (subarra =
(VIag =(1 2 3
a Drop (subarray) 10¢, =(4 5 §
rav Ravel (flatten) | ra,=(12345§
[lota (count) 15=0012340
U Psi (index) (1O)gE =4

From Table I, dimensionality returns a scalar indicat-
ing the total number oflimensions of an array. Shape
returns avector describinghe length along each dimen-
sion. Takeand Drop return subarrays by taking or drop-
ping datafrom theright hand argumerdrray by using the
left hand shape vectoargument. Ravel forms a vector
from an array, filling it with data indexed in &ancre-
mentalrow major fashioneffectively flattening the array.
lota produces a vectaontaining a cardinal string of n

suring property. Any expressiomepresenting thenigh
level description othe array computation will reduce to
the same SNF.

The SNF is a representation thie array expression
thatusesthe least amount ahemory, memory access, and
computational redundancy. Since, referencing in the SNF
is cartesian, it is uncledrow toimplement thisform in
software orhardware. An application of the Psi Corre-
spondence Theorem [4] will transform tIB&NF into the
Operational Normal Form (ONF). At this point, the arrays
are flattenedand ardandexed linearly as would be neces-
sary in a physical linear memory. In fact, the Psi Compiler
doesthis with the startstop,and stride indexing. In a
software implementatiothe number ofoop variables is
constant, regardless of dimension. Thisaiso what is
desired for a hardware representation.

MOA, then, offers a method to systematically
derive address generation mechanisms. The alternative
would be tohandderive an algorithnthat isprone to er-
rors. It is also difficult to incorporate architecture depend-
encies like data paths, caches, memoges, other archi-
tectures. With MOA, aigh level expression may allow

elements starting from zero. lota implies time referencing for cache sizes or burst transf@odes byrepartitioning

or looping if it is used fomdexing. Thus iota is essential
for generating array access patterns.

Psi is a generalized indexing functiohat takes a
vectorright hand argumemepresenting, usually, a carte-

array data into smaller managealpleces automatically.
Many of these optimizations could be donehand, but
what is really needed is a formal methibht keeps the
whole picture in perspective which MOA provides.

sian reference to data in the right hand argument array and

returns that datavhich may be ascalar or a subarray.
Every Psi Calculus operator is defined tarms of psi,
therefore, through these of reduction rules, an array ex-

3. An Application Example: 2D Heat Transfer

Heattransfer is a dynamiprocess usuallyequiring

pression can be simplified to pure indexing using psi alongthe solution tacomplexpartial differential equations. An

with any necessary arithmetic operations.
There are dew general procedures follow to ob-
tain animplementable form of an array expression. First,

alternative solution is to use a numerical technignd a
time simulation. Heatransfer can be simulated with a
guantized mesh model using finite difference time domain

an array operation is described at a high level using the Psinethods. For large problems involving huge meshes and

Calculus operators. Thiexpression is usuallthe most
understandabl@and straighforward to the designer. It
also describethe operation holistically without regard to

many iterations in timeevery bit of computational per-
formance counts in a system. Any optimization on such a
system would be beneficial. [6], the Psi Calculus was

how the arrays actually get referenced. For example, theused to derive a softwaralgorithm thatoutperformed

expressionB = A + 1 implies that every element ofA

traditional heat transfer algorithnbgcause it took advan-

should be incremented by 1 although no indication of how tage of non-random array access patterns.

this isdone is described. It is thab ofthe PsiReduction
Rules to describe ho#v andB get ultimately referenced.

This work will be extended bthe implementation of
the heat transfer algorithm on the Chameleon Coprocessor.

Next, the expression is reduced to the Semantic Nor-Results here are projected but will be conclusively obtained

mal Form(SNF). To dahis, the definitions of thepera-
tors areused to calculatthe resultant shape of the expres-

sion. Thenfyeduction rules are applied to the expression,
using the definitions of the operators, to obtain an expres-

sionthatonly useghe psi operatoand arithmetics if nec-
essary. Athis point, referencing is cartesian. Thi®c-
esscanbecomdengthyandcomplex but is partially auto-
mated in the Psi Compiler [5]. After compilingremory
access is implementetth starts, stopsandstrides. It is
important to noteghat thePsi Calculushasonevery reas-

pending the completion of the board. An example deriva-
tion andcomparison will be done for &wo dimensional
version of the heat transfer algorithm.

For 2D heat transfer, @vo dimensional array repre-
sents a surface about whiblkat carflow. The value at
each point is the relative temperature of the point at a fixed
time. As time progresses, the heat v until an equi-
librium is established determined by the conskemindary
conditions. Consider the situation of Fig. Here a sinu-
soidal distribution of temperature is initialized with the z-

axis representing the relative temperature at each point.

As time progresseand more iterations are applied, the
heat transfers out of theystem as it reaches eventually a
state of constant temperature. Thiglie to the constant
boundary conditions of zero relative temperature which are
not displayed.

iteration = 200

iteration = 0

AN _
lﬁli’..-_ /".z‘
/Il\\‘".“\ vl .“\\
QAW

R

\

iteration = 400 iteration = 600

T

Fig. 1 Time Dynamics of Heat transfer

Due tothe nature of the equatiottzat describeheat
transfer and what iphysically observedheat transfer is
really then an averaging function. Durioge iteration, a
new value foreveryinterior point is calculatetbased on
the average of iand itsadjacent neighbors. This new
value is placed in temporary storagetbat it does not
effectthe computation of its next neighbor. All points on
the surfaceare averaged ithis manner toccomplete the
iteration. When the finiteifference between oriteration
and the next iteration iselow somepredefined threshold,
a solution is said to be found. From [a], discrete solutions
to the PDEghatdescribeheat transfeyield the averaging
function,

W= U @=a) A (U + Uy + Yt Y L)
Eqg. 1

whereu’ is the iterations resuld, is the heat transfer
rate constant, and the othariables represent the current
values of the central element and its neighbors as indicate
by Fig. 2.

ij-1
([] ([] o
j Yo Y Y
([]
Ui+l

Fig. 2 Central Element and Neighbors

Traditionally, Eq. 1 is used to accdbs array data to
perform the heat transfer algorithm. Performance is gen-
erally poor since each element is accesfeel times
(whenever it or its adjacent neighbor is being computed)
during thecourse of one iterationThis assumes no form
of data caching is present. If a general data cache is pres-
ent, each element Bccessedhree times since there will
cachehits for data in the same row. There is a method to
accessthe data sucthat each element is onlpccessed
once frommain memory acrosshe SBus. This access
pattern is not random and canfband by utilizing the Psi
Calculus.

To describeheat transfer, first, &igh level descrip-
tion must be created using tMOA operators. This de-
scription mustembodythe mathematics of the solution to
the PDEs as Eq. 1 does. One such description is,

_ ba((12)0A))+ (ba((100A)) +0
* 7 "Hba(200A))+ (ba((0d0A)) &

Eq. 2

(bA((1DOA)) = (bA((120A))(1- A) +A,
Eq. 3

whereb is the shap&ector ofthe interior ofA (without
boundaries).

The 2D arrayA; in Eq. 2is a temporary holding the
sum of four partitions othe original data arrag multi-
plied by the rate constat, Thisexpression describes the
computation involving théour adjacent neighbors of each
central element all abnceand isanalogous to the one

(ilement computation of thecmdpart of Eq. 1. Next, in

g. 3 the interior partition of is multiplied by the rate
expression as ikqg. 1 and isummed with the intermedi-
ate result arrayA, to complete the iteration.

It can be seen dhis level that A is being accessed
linearly and not in thenore complexpattern implied by
Eq. 1. Because ofhis, features like a data cache or burst
transfer modes can be taken exploited on a bus.

The next step to be taken is to red&ee 2 and Eq. 3
to SNF. This isdone by the PdReduction rulesand only
the results will be shown here.

Ois.t. <" i< b
i + 12))WA + (i +(10)wA +0

qu[AZ] =A i+ (2D)WA + (i +(0D)wA E
Eq. 4
[(i+@D)wa] =i +(1D)wa](4)+i A,
Eq. 5

Notice, the only MOA operator present i¢/ for in-

dexing. Thebounds on imply two nested loops to carry
out the operation. An application of the RXrrespon-

sor card. The simplest implementation of suawoproces-

sor cardwould bethe generation of addressesdascribed
aboveand then the loading of thest workstations pri-
mary cache. However, as suggested abawest current
microprocessors incorporatdhe CPU, cache controller,
and primarycache on the same die or MCMaking it
impossible to externally contréhe cache. Therefore, to
achieve significant speedupser currentmicroprocessors
through this method of speeding up address generation, it
is necessary fathe coprocessor board to genertite ad-
dresses, fetch the data from the host memory, dodbes-
sary computationsandreplace the date in the host mem-
ory. To perform these series of functidhe Chameleon
Coprocessor board needed to have a reconfigurable address
generator, an interface to a relativaigh bandwidth bus,
a method of doingpigh speed floating point computations,
and highspeed on board memorytliis would be the
board's "cache").

dence Theorem is necessary to uncover how memory ac-

cess should be performed. The result is,

b=n-2

(ravAE)[l(b)+(@[|(k)]] :)\[(ravAll br2+ 1 b+
(ravA)ib+ r{t b+1)] +(ravAl br1+ § br]+
(ravA)[ib+1+rfi k)]]

Eq. 6

(ravA)ib+1+ n(i b)] = (ravA)i b+ 1+ i B]
@-4n)+ (ravA,)ib+ b(b)]

Eq. 7
The iotasprovidethe means of indexing at this point

and caneasily be implemented as loops in software or
counters in hardware. The ravedsnply indicatebase

addresses of respective arrays on which they operate

What is left is simple arithmetics.

Thus, through thaise of MOA, an implementation
for intelligent address generatidrasbeen systematically
derivedthat isprovably correct. This algorithm will gen-
erate address streantisat aresimple starts, stops, and
strides. Again, this mearkat architecturatlements like
local caches or burst transfer modes can be exploited.

4. Hardware Acceleration

While the ideal architecturéor exploring address
optimizations would involvelacing theCPU for a system
on the same die or in the same Multi-Chip Module (MCM)
as a reconfigureable cache controller, edieve signifi-
cantspeed upgan still beachieved at much legaitial
cost byimplementing thelevice as geripheralcoproces-

4.1 Reconfigurable Address Generator

The primary component of ttedprocessor board de-
scribed above ighe reconfigurable address generator.
After investigating the results of usifdOA to simplify
several array algorithms, the end resudts twonested
loops regardless @ahe number of dimension in the array
as seen irEg. 6 and Eq. 7.However ,therewere many
variations in the size and bounddrgndling oftheseloops
due to the number of dimensioasd the nature of the
operation being performed. Therefore a standard cell im-
plementation of an address generator to handleuah
possibilities would not be practical. Many general purpose
processors would be capable g#nerating theaddresses
but would take several cloayclesand notallow signifi-
cantspeedups over conventional techniques. FPGAs how-
ever would be ideal fahe purpose of the address genera-
tion since each array application could haveoitsy spe-
cial address generator. The large number of fibps in
Xilinx FPGAs [7] for example, makdke large counters
necessary for each loapdex feasibleand theavailability
of 10,000 gates or more allows constructionthef adders
and othercombinational structures necessary Handle
array boundary conditions. Additionalthe flexibility of
the FPGAs allowsyou toseparate the generation of the
input andoutput addresses for each calculation. tHis
way the board can support block processing of data.

4.2 Interface to High I/O Bus

The next item needédr the board is an interface to
a relativelyhigh bandwidth bus. Th&Bus used on many
Sun Workstationsvas chosen fahe target bus. While
initially it was thought that a highelbandwidth bus sup-
porting multiprocessors like th#IBUS would bemore
desirable, it was decidafiat thewider availability of the
SBus(at least to usand the simpleprotocol was more

important. One major point of intereaboutthe SBus tectures in these papers achieve speedups by using varying
implementation on most Sun Workstations is a half mega-degrees of parallelismHowever,without software assis-
bytelimit on the amount o§pacethat can beallocated to tance in designing thEPGAs used in these systems, the
any peripheral master on the SBus at one time. partitioning andayout is a monumental task. It is due to
The requirements of the interface to tBBUS was this lack ofsoftware supporthat FPGAs werenot chosen
that itfirst be able to fetcldata from the addresses gener- to perform the actual computations for the board.
ated on the boardThen itneeded to be able to direct the What isideally needed to perforrthe computations
fetcheddata to the appropriate destination which turned for the board is &PU that iseasy tocontrol, and does
out not to be the address generating chip. Finally, ithigh speed multiplicationand addition. For available
needed to be able to takee computation resulend the FPUs like the Cyrix 83D87, the multiplication of two
appropriate addressaadwrite the data tanain memory. floating point numbers takes 18ock cycles. Even for
Additionally the interface to thEBUS waseeded to sup- some ofthe highcost chips likehe Weitek 4167 a multi-
port awide variety oftransfer sizes, both slaamd master ply takes 3 clockcyclesand an addition 2lock cycles
mode of operation, have fasternalbuffering,andfinally [13]. The lack ofpowerful, standalonarithmetic units
detectandrecord botitSBUSandboard errors for retrieval ~ with features likeinternal registers halseen documented
by the host workstation. To maximize performance of the previously [14] . Thereforthe ADSP2102@vas selected
board it was also hopeatiat the data transfeperations due to thefact that it notonly can performall desired op-
could be performed iparallel in order to modully satu- erations in a singleycle but can simultaneously doith-
rate theSBUS. While there aresome fineoff the shelf metic operationgandmemory accesses. By creatively pro-
components for interfacing the SBUS, nonewere found gramming the DSP, the DSP cldan be utilized as laigh
to posseghe flexibility and data transfer patterneces- speed FPWnder the control of a FPGA. thisway a
sary to fit these requirements. OragainFPGAs, specifi- DSP prograntan be creatednce for each application and
cally the Xilinx 4013-4was found posses bdtfie size then theFPGA will handle changes in dimensionality and
andspeed to meet our requirementBhe presentersion size.
of the interface chip utilizes approximately 85% of the
chip and isable to meeSBUStiming specs at up to 20 4.4 Board Cache Selection
MHz. While theSBUS specsall for a compliance of the
specs up to 25 MHzhe workstations the board will be
tested orrun at 20MHz or below. Additionallycurrent
work on the optimization of the interface desigiil
hopefully soon yield compliance at up to 25 MHz.

The final major design area to be explored is the task
of selecting what memory storage should be included on
the board. First oéll a 48bit wide block of memory is
needed to hold thBSP progranandtherefore a bank of 6
128Kx8 SRAMs was placed othe DSP chips program
memory bus.The important decision is the siaadtype
of memory storage fahe on board cacheSome choices
for the form of the cacheerelarge FIFOs, dual ported

Beforedeciding on how to go about performing the SRAMSs,standardSRAMs,and drams. lorder torun the
actual array computation, the form of the algorithms being DSP chipselected ait's top speed of 33 MHz, an access
implemented should be defined. Most array operationstime of 15nsvas neededThis requirement eliminates the
being considered for optimizatidghus far, are of an aver- DRAM choiceand most dual portedSRAMs. Addition-
aging naturewere eachpoint in the next iteration is a ally in order to allowthe DSP chip tceasily reusedata
weighted average of the its last valra the lastalues of within the "block" loaded ontathe board, th®SP chip
the bounding points. This type of calculation includes heatneeds to be able to accélse data in a non-linear pattern
transfer through time asbserved irthis paper ananany eliminating the FIFO option. This leaves standard SRAMs
other applications like electromagnetic field calculations for the memory implementation. With the 15nsaccess

4.3 Computation Implementation

on a printed circuit board. These calculatiapgically time requirement, the largest sisasily available was
involve multiplication ofthe input operands by the appro- 128Kx8. Since there is a hatfegabyte DVMA allocation
priate weight constangnd theraccumulationand multi- limit for the SBUS, a cache 32 bits widmade up of

plication by the averaging factor like (24from Eq. 7. 128kx8 SRAMSs is juskarge enough to fit the entilgpace

Another notable characteristic of these calculations is sev-addressable with DVMA at one tim&henbefore moving

eral input operands and only one output operand. data from the board, the hgsbcessor needs to reallocate
It hasbeen shown fothatfor a wide variety of com- a new portion of memory to write the new array.

putations, FPGAsan provide substantial speedupser

general purpose processors. Examples simplearith- 4.5 Chameleon Coprocessor Data Flow

metic operations [8], image processing algorithms [9] [10]

[11], andsequence comparisons [12], Mostiioé archi- Fig. 3showsthe datdlow for the final desigrbased

upon the requirements aescribedthus far. The first

step in running an iteration of a computation like the heatthe more traditional address generation method. nber;

transferinvolves several writes bihe host workstation to
the board inslave mode. These writes accése X1
FPGAandidentify the sizeand pasbly the dimensional-
ity of the applicatiorthat the X0 and XFPGAs have al-
ready been configured for. Sint¢be board when in mas-
termode utilizes virtuamemory addressing , it it nec-
essary to exchangthe starting addreder the initial and
final array. The boardiould simply as aule assume the
arrays begin at addressa@id it is up to théost processor
to perform the correct memory mapping.

Once the boartias thenecessary configuratictata,

the X1 FPGA begins address generation. The transfers are

grouped into 16vord bursts when possibnd the inter-

facechip would retrievethe data as the addresses are gen-

erated. Once hlock ofdata haseen retrievednto a on
chip buffer constructed fronthe LUT lookup tables, the

interface chip controls the movement of data to the X0

only projections of results will be compared.

X0 A1
®lomg-z08] 4 - oy
LEP Crotral was F1 PP Joturiher Cotrod
Lty Jwwcery Pragrivs Mty
sl Lopslag
- Cada Flo
I Interface Chip
*© L ALmgal 2
. - B‘@
— S e
LUT SR by baaddy
4
cppe v Gl B ,F‘

FPGA. The order of the data as far as variables in the

computationhasbeen pre-determinegrior to FPGA con-
figuration. An important note ithat since the interface

Fig. 3 Data Flow Block Diagram

chip does have three separate busses and two 16x32 buffers

as shown in Fig. 3, it ipossible to simultaneously receive

an address from the X1 FPGA, fetch data from3SB&S
into onebuffer, and load data to the XGPGA from the
second buffer.

Two assumptions are made ¢@ain insight on pre-
dicted performance. First, the bandwidth predi¢tedhe
SBus is about 20 MB/sThis is aworst case possibility
and isdue to the interrupgervice routine ofhe sun op-

Once the data has been loaded into the X0 FPGA, theerating system Sustained bandwidth could theoretically

next step is the intelligent loading of the date@mory
SRAMs bythe X0 FPGA. The X®&PGA does need to
load theSRAM in linearly but can do so in an intelligent
fashion suctthat theDSP chip expendsinimal effort in
its address generation. Whilenwbuld be possible to have
the DSP fetchthe data directly from the XBPGA and
eliminate the neetbr any board cachthis would involve
a DSP wait state , create a bottlenekd eliminate the
advantages of doinglock processingvhich allows the
DSP chip to reuse operands. Aftee datanemory block
hasbeen fully loadedthe DSP chiprunning at 33 MHz
with no wait statesand performing multiple instructions
per clock cycle,canvery quicklyrun throughthe compu-
tations.

As the DSP completes each computatibe results
are written out to the XFPGA onthe progranmemory
bus.

reach 6MB/s if therewere no latency imnterruptservic-
ing. Second, with the board architecture, each generation
of data must be loaded, computaddstored back tanain
memory. Since inhe heat transfer application, there are
more operandthanresults per computation, it is assumed
the results can be written while the next data point is being
computed.

Therun times for a 160x160 2beat transfer simu-
lation for 500 iterationsvere compared. According [a],
a classical software approach oisan IPXtook an aver-
age of 535.80 seconds to compleded anMOA derived
softwarealgorithm on a Sun IPXhattook an average of
447 .55 seconds to complete, a 16.5% speed increase.

For a traditional heat transfer algorithm, eaubce
of data must béetched frommain memory in singlevord
transfermode 5 times. Wh anaverage single word bus

The XIFPGA stores up to sixteen results at a time transfer rate of 11.5 MB/s, the traditional heat transfer

an then generates the appropriate address for host memosimulation of a 160x160 (25,600 32 bit floating point

storageand thenpasseshe addressind data to the inter-
face chip.

5. Example Application Performance

For the Chameleon Boartthen, theFPGAscan be

numbers) will take 44.5 ms to compldtes bus transfer.
Additionally, the DSP and write cyclesadd another 4.66
ms for a single iteration.This requires 49.2 mfr one
iteration over all and 24.6 s teompletethe entire 500
iterations. Translating to hardwapeovides a 18.2 times
decrease imun time over the MOA derived software im-

used to implement the address generation algorithms. It igPlementation.

a goal of future work to implemetihe algorithms on the

With an average worst case busmnsfer rate of 20

boardand compare performance to software methods andMB/s in burst modethe MOA derivedheat transfer simu-

lation of a 160x160 (25,600 32 bit floating point numbers)

will take only5.12 ms to completthe bustransfer. The
DSPandwrites add another 4.66 ms fasfore. Thus, one
iteration require®nly 9.78 ms andb00 iterations require
only 1.77 s. This is morthan a Simes increase over the
traditional method in hardware. Thisdse to the reduc-
tion in the redundancy of data transterd thereuse of
data operands. If the IPZBus bandwidth reachés top
rate ofabout 60 MB/sthen performance would jump to
over 7.6 times that of the traditional hardware method.

6. Conclusion
A hardware accelerator forsun workstation, called

the ChameleorCoprocessor, consisting of an interface
FPGA, apair of applicatiorreconfigurable FPGAand a

high speed DSP is currently being fabricated to support

this effort. MOA will be used as a basis for a design
paradigmfor applications othe Chameleooprocessor.
FPGAs were selected ftine board in order to implement

[7] Xilinx, Inc, 2100 Logic Drive, SanJose, CA 95124 .
The Programmable Logic Databook, April 1994.

[8] Wo, D., Forward, K., “Compiling to the gateevel for
a Reconfigureable Co-Processor”, Proceedings of
FPGAs for custom computinghachines (1994), pp
147-154.

[9] Abbott, A., Athanas, P., Chen, L., Elliott, R., “Finding
LinesandBuilding Pyramids with SplasB”, Proceed-
ings of FPGAs for custom computing machines (1994),
pp 155-161.

[10] Gent, G., Smith, S., Haviland, R., “AfFPGA-based
Custom Coprocessor for Automatic Image Segmenta-
tion Applications”, Proceedings 6fPGAs for custom
compuing machines (1994), pp 172-179.

[11] Quenot, G., Kraljic)., Serot, J., Zavidovique B., “A
Reconfigureable Computéngine for Real-Time Vi-
sion Automata Prototyiping”, Proceedings FPGASs
for custom computing machines (1994), pp 91 - 100.

[12] Arnold, J., Duncan, Buell, A. , Hoang, D., “The

the large, fast state machines needed to realize the data Splash 2 Processaand Applications”, Proceedings

prefetch algorithmand toprovide a means for prototyping
many applications. Finally, anitial applicationbased on
the heat transfer algorithm has been designethé&dvoard
using the MOA hardware design paradigm.

It is important to notehat while the coprocessor ar-
chitecture presented in this pagwes projected perform-
ance gainver software implementationsthis architec-
ture is not presented as optimal.

dataflow. Replacing theDSP chip with a morpowerful
computationalunit like a parallelcomputing architecture
based on FPGAs could take advantageshefconcepts

suggested here while reducing computation time and

therefore reducing total processing time.
References

[1] Dowd, K., High Performance Computind'Reily &
Associates, Inc., Sebastopol, CA, first edition, 1993.
[2] Mullin, Lenore, "A Mathematics of Arrays"Ph. D.
dissertation, Syracuse University, December 1988.
[3] Abrams, P.S., "What's wrong witAPL", APL 75,
ACM, June, 1975.
[4] Mullin, L., “The Psi Correspondence Theorem: Array
Mapping Using the Psi Calculus”, Department of
Computer Science, University of Missouri - Rolla.
Mullin, L., Thibault, S., "A Reduction semantics for
array expressions: the PSI compiler”, TR CSC-94-05,
March 9, 1994, Department of Comput8cience,
University of Missouri - Rolla.
Coffin, Larry, “Designing aNew Programming Meth-
odology for Optimizing Array Accesses in Complex
Scientific Problems”, OURPaper, University of Mis-
souri - Rolla, 1994.

[5]

[6]

Instead the Chameleon
Coprocessor is a proving grounds in the area of optimizing

ICCD '93.
[13] Ferguson, W., “Selectiniflath Coprocessors”, IEEE
Spectrum, July 1991, pp 38-41.
[14] Bergmann, N., Mudge, J., “Comparing tRerform-
ance of FPGA -Based Custom Computers with General
-Purpose Computers for DSP ApplicationFroceed-
ings of FPGAs for custom computing machines (1994),
pp 164-171.

	Compendium95
	FPGA95
	Front Matter
	Table of Contents
	Session Index
	Author Index

