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Abstract
This paper presents three novel aspects of system-

level hardware design: A graphical speci�cation lan-
guage called STD (Symbolic Timing Diagrams), a de-
sign methodology with formal veri�cation of each de-
velopment step, and a powerful automatic veri�cation
tool, which owes its e�ciency to sophisticated opti-
mization techniques exploiting the properties of the
speci�cation language STD. The techniques are fully
implemented in ICOS (interface controller synthesis
and veri�cation system). We present a \real{life"
case{study to demonstrate the feasibility of the ap-
proach.

1 Introduction
The ICOS-project aims at an integrated environ-

ment for interface controller synthesis from high-level
speci�cations combined with a design methodology
which supports formal veri�cation of each develop-
ment step. Notable in the approach of ICOS is the
use of a graphical speci�cation language called STD,
which is close to the designers intuition thanks to its
visual appeal, and at the same time has a rigorous
semantics de�nition [3].

An important property of the semantics is that a
translation from STD to (linear) temporal logic exists
(the principle concepts of this translation appeared in
[17]). While this logic should normally be hidden from
the designer, it is the interface to powerful automatic
veri�cation tools, in particular symbolic model checker
(as employed in the ESPRIT project \FORMAT" [5,
6]) and tautology checker for temporal logic.

As depicted in �gure 1, a complex, hierarchically
structured design is veri�ed in a sequence of so-called
property-veri�cation steps, inferring at each level of
the design relevant properties at that level from the
speci�cation of its subcomponents. For each property-
veri�cation step it is shown that the conjunction of
(the formulae generated from) the component spec-
i�cations in conjunction with a formula character-
izing the structural body implies (the formula gen-
erated from) the properties to be shown (property-
implication). The drawback of this idea is that
the tautology-checking complexity for linear tempo-
ral logic is in general exponential in the size of the
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Figure 1: Veri�cation of an hierarchically structured
VHDL-design

property-implication to be established. The tautology
checker included in ICOS overcomes this problem by
knowledge of the structure of formulae generated from
STD-speci�cations.

In some cases - as for the case study described
in this paper - a (natural) system decomposition is
known or given, e.g. if the system to be described
consists of di�erent physical entities. This suggest
a bottom-up development of the veri�cation, where
component interface-speci�cations are developed �rst,
which can be synthesized with ICOS

1 and validated
by testing as usually done with VHDL-based designs.
During this �rst phase of the development, mistakes
in the speci�cation are easily detected. In the second
phase, crucial properties of the design are formally ver-
i�ed. It is common experience that during this phase
subtle errors in the speci�cation (or, sometimes, in
the formulation of the properties) are unrevealed and
eliminated.

For the case study `Production Cell' described in
section 2, the synthesis part of the veri�cation was
already described in [10]. For this particular exam-
ple, a graphical simulation was available, which made
debugging of the initial component speci�cation very
easy. The case study is well documented in [12], where

1Either to C- or to VHDL-code.



a catalogue of relevant properties to be proved of the
system is given. [12] is also an excellent synopsis on
the use of most known formal methods applied to the
case study.
Related work. Most of the known approaches to

use timing diagrams in a formal sense ([2, 8, 15, 4])
di�er from our approach in that they have built-in
means to specify control structures such as iteration
and concatenation (sequencing). This implies that
timing diagrams are interpreted in a way similar to
the statements of an imperative language such as C or
VHDL. By contrast, the semantics of STD associates
with each diagram a constraint on the set of admissi-
ble behaviors of a component, which is analogous to
the statement of facts in PROLOG.
Since the semantics of STD with �nite data types can
be expressed using the linear time temporal logic PTL
([17, 3]), the property veri�cation kernel of ICOS is
based on the decision procedure for PTL formulae.
While in principal any PTL tautology checker, like a
tableau based one, may be used as veri�cation kernel
[16, 18, 20], the practical applicability is limited by the
fact that the decision procedure for PTL formulae is
exponential in the size of the formula. Within ICOS
an automaton based PTL tautology checker, which
is optimized for STD input, is used. As shown in
[9] our approach reduces the veri�cation complexity
drastically by exploiting the special structure of the
characteristic formulae describing the semantics of a
STD{speci�cation. In contrast to other automaton
based veri�cation tools like COSPAN [11], ICOS uses
automata only as internal representation of PTL for-
mulae.

The rest of this paper is structured as follows: Sec-
tion 2 explains the veri�cation of a typical property
for the case study `Production Cell' and the design
methodology which is supported in ICOS. Section 3
describes the components of ICOS, which have been
used in the case study. Section 4 explains the main
steps of the veri�cation process. The complexity of our
veri�cation approach is discussed in section 5. Section
6 summarizes some results of the case study; �nally,
section 7 points out future developments planned for
the ICOS-project.

2 Example: Veri�cation of a safety{

critical property
In this section we describe the veri�cation of a typ-

ical property of the `Production Cell' (PC) described
in [12], which models a real physical system. First
we give a short introduction to this particular system:
The PC is composed of two conveyor belts (feed- and
deposit-belt), a two-armed robot, a press, and a trav-
elling crane. Metal blanks inserted into the cell via
the feed belt are moved to the press. There they are
forged and then brought out of the cell via the deposit
belt and the travelling crane (�gure 2). As can be seen
from �gure 2, the feed belt transports the blanks to an
elevating rotary table (table, for short). This table has
to be between the feed belt and the robot in order to
bring the blanks into the right position for the robot
to pick them up with its arm 1.
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Figure 2: Physical layout of the Production Cell.

Our initial (synthesizable) speci�cation describes
the behaviour of a (distributed) software controller
of the PC [10]. The properties to be shown about
the controller fall into several groups, one of which is
entitled \Keep blanks su�ciently distant". One par-
ticular property (in the following termed the `goal')
we wanted to prove in this group was the property de-
scribed by the statement: \It is never the case that the
loaded table (signal T load loaded = '1') is in its top
vertical position (signal T V top pos = '1'), while arm
1 of the robot is loaded (i.e. the magnet at the end of
arm1 is on, signal R A1M On = '1') and in the posi-
tion ready to pick a blank from the table (not in a safe
position with respect to the table, signal R R safe4T
= '0')." This invariant property is described by the
STD-diagram noCollision shown in �gure 3, which
has as main part the state assertion

T load loaded = '1' and T V top pos = '1' and
R A1M On = '1' and R R safe4T = '0'

The diagram claims that this assertion is required to
hold at the start of each system run and may never
be violated. A violation of the property would mean
a possible crash between two blanks.

noCollision

R_A1M_On = ’1’  and R_R_safe4T = ’0’
false

T_load_loaded = ’1’ and T_V_top_pos = ’1’ and

Figure 3: STD{diagram noCollision.

In the following we give a short introduction to STD;
a detailed exposition can be found in [5] and [3]. An
STD-speci�cation is associated with a VHDL-entity
declaration , which declares a number of ports with
their associated value domains as visible at a com-
ponent's boundary. Each STD-speci�cation consists
of a set of STD-diagrams. A STD-diagram consists
of a number of symbolic waveforms. Each waveform



has several regions which are separated by edges. The
regions are labelled by predicates (denoted by VHDL-
boolean expressions over the signals observable at the
components interface) For a two-valued signal x (e.g.
of type `Bit'), the waveform is depicted as a line which
toggles between levels `LOW' and `HIGH', if the mean-
ing of these levels is clear from the context (e.g. to
represent the assertions x = '0' and x = '1', respec-
tively).

b0 b1 b2 bk

(a)

x

(b)

Figure 4: Symbolic waveforms, (a) general form and
(b) abbreviated denotation for two- valued signals.

Between any two edges on di�erent waveforms there
may be constraints used to express a required partial
ordering of these edges.
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Figure 5: Two-level derivation of the goal.

The proof of the property noCollision follows the hi-
erarchical veri�cation methodology described in the
introduction (cf. �gure 1). It involves only the spec-
i�cations of two components of the system (the table
and the robot), and in addition the speci�cation of the
assumptions to be made on the behaviour of the phys-
ical environment of the controller (which is observed
through sensors). In order to reduce the complexity
of the proof obligation it was necessary to group the
speci�cation diagrams into related sets, from which in-
termediate properties were derived (�gure 5). E.g., it
can be derived from the speci�cation of the robot's
behaviour, that the rotation of the robot follows a
simple sequential, cyclical behaviour (�gure 6). This
behaviour is speci�ed by the intermediate property
speci�ed by the STD-diagram ASM R MaTsiPaD
shown in �gure 7. We note that intermediate proper-
ties not only help to overcome complexity problems,
but also support the reusability of those veri�ed prop-
erties within other proofs.

The other two intermediate properties describe the
behaviour of the arm 1 of the robot (STD-speci�cation
ASM R MaTsiPaD) . Note that the proof of our
goal relies on assumptions to be made about the be-

(d) (e) (f)

(c)(a) (b)

Figure 6: Phases of the rotation of the robot.
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Figure 7: STD-diagram ASM R MaTsiPaD de-
scribing the rotation of the robot.

haviour of the (physical) environment of the system.
E.g., it is never the case in the physical system that
the table is at the same time in its top- and its bottom-
position.

Due to the complex interaction of the controller
components, especially the e�ect of `hazards' is criti-
cal, which often arise from an `under{speci�cation' of
the environment. ICOS detects such problems with a
diagnostic result giving a graphical error{path. This
debugging aid naturally leads to a methodology, where
speci�cations are developed incrementally in a highly
modular fashion.

3 Using ICOS for the production cell

case study
ICOS- an acronym for Interface Controller Synthe-

sis and Veri�cation System - has been used to ver-
ify critical aspects of the distributed controller of the
production cell (section 2). The current section intro-
duces the veri�cation components of ICOS, which has
been within the case study.

Design Capture. As shown in Fig. 8 ICOS is built
around three data bases:

� a data base for STD

� a data base for PTL formulae

� a data base for Rabin automata



The designer primarily works on the STD data base.
Using an integrated editor for STD the designer can
create and modify a diagram. The design browser car-
ries out two tasks:

1. The design browser connects a diagram to an en-
tity. Each entity has an interface speci�cation
given as VHDL entity declaration [7]. Each phys-
ical component of the production cell is an en-
tity listed in the design browser. The interface of
such a controller module collects the actors, sen-
sors and internal signals of the production cell,
which will be used by this controller module.

2. The design browser administers properties which
has been derived during the property veri�cation
process (section 2).

Proof Manager. This tools supervises the proofs
done with ICOS. Some typical task of the proof man-
ager are:

� The proof manager stores whether a property has
been veri�ed or not.

� The proof manager stores the properties and
STD-speci�cations which have been used within
a proof.

� If a property or STD-speci�cation changes, the
proof manager invalidates all proofs which are
based on these informations.

Property Veri�cation. This tool will be used to
verify that a property will be guaranteed by a list
of (proved) properties and STD speci�cations. It is
based on a PTL tautology checker which supports
STD in a very e�cient way (section 4).

Model Checking. This veri�cation facility will be
used to verify that the VHDL behavioral speci�ca-
tion of a component satis�es the STD-speci�cation
bounded to this component. Up to now no model-
checker is embedded in ICOS. Thus the model-checker
designed within the ESPRIT project FORMATwill be
used. This model-checker supports in particular STD.
Using the synthesis tools of ICOS, it is guaranteed by
construction that the VHDL behavioral speci�cation
of a component satis�es its STD-speci�cation [10].

Error Trace. If a proof fails, ICOS generates a
counter example, which will be represented by an error
trace. This graphical representation goes well together
with the graphical representation of STD.

Synthesis. From the STD-speci�cation specifying a
controller module ICOS synthesizes a set of submod-
ules, which satisfy the requirements given by these
diagrams. [10] explains the synthesis path in more
detail.
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Figure 8: The structure of ICOS

4 The veri�cation kernel of ICOS
The current section explains the property veri�ca-

tion within ICOS in more detail.

Veri�cation Task. Given a set of individual re-
quirements of the STD speci�cation of some compo-
nents (S1; : : :Si) and a set of properties which has al-
ready been proved (Si+1; : : :Sn). The property veri�-
cation of ICOS has to verify whether S1; : : :Sn guar-
antee a selected goal G.
In generalS1; : : :Sn; Gmay be represented as PTL for-
mulae [13], !-automata (Rabin, B�uchi automata [19]),
or Symbolic Timing Diagrams. Thus the semantics of
S1; : : :Sn; G are !-regular languages L(S1); : : :L(Sn);
L(G).
If STD is used as input format the veri�cation process
can be e�cient due to the inherent structure of the
formulae generated from STD-diagrams.
If S1; : : :Sn guarantee G the property veri�cation re-
turns true. Otherwise a counter example will be gen-
erated.

Abstract intermediate model We use Rabin au-
tomata [19] as abstract intermediate model within the
veri�cation process. Rabin automata recognize the
class of !-regular languages. A Rabin automaton A is
a �nite automaton on in�nite words. L(A) is the set
of in�nite words accepted by A.

Veri�cation Technique The property veri�cation
has to check, whether L(S1) \ : : : \ L(Sn) � L(G).
The veri�cation task will be reduced to the following
emptiness problem:

L(S1) \ : : :\L(Sn) \ (L(G))C = ;



where (L(G))C is the complement of L(G) with re-
spect to the alphabet of L(S1); : : :L(Sn); L(G). The
property veri�cation process will be done within three
steps:

Veri�cation step 1 This veri�cation step generates
out of each STD Si(1 � i � n) a Rabin automatonAi,
which accepts the semantics of the diagram (L(Si) =
L(Ai)). For goal G a Rabin automaton AGC , which
accepts the complement of L(G) will be generated.
This will be done in two steps:

1. The STD will be translated into a PTL formula,
which de�nes the semantics of this diagram [17].
The formula belonging to G will be negated.

2. The PTL formula will be translated into a Rabin
automaton, which accepts the semantics of the
formula.

In the average case the size of the Rabin automaton is
linear in the number of edges of the STD [9]. For all
STD-diagrams used in the production cell case study
this complexity result holds.

Veri�cation step 2 Within this step the property
veri�cation tool checks whether \n

i=1L(Ai) 6= ; (other-
wise very property could be veri�ed out of S1; : : :Sn).
Thus an ad{hoc realisation of this step would do the
cross product of A1; : : :An and check whether the re-
sult automaton is not empty. The size of this automa-
ton can grow exponentially in n. To overcome this
state explosion problem this veri�cation step gener-
ates the cross product of A1; : : :An on the y.
In more detail: the cross product of A1; : : :An will be
done in parallel. The construction stops as soon as the
(incomplete) result automaton contains an accepting
path. The incomplete automaton guarantees that the
intersection of L(A1); : : :L(An) is not empty.

Veri�cation step 3 Within this step the prop-
erty veri�cation tool checks whether (\n

i=1L(Ai)) \
L(AGC ) = ;. Otherwise the proof failed and each ele-
ment of (\n

i=1L(Ai)) \ L(AGC ) is a counter example.
Analogous to veri�cation step 2 the cross product of
A1; : : :An;AGC will be done on the y. This technique
guarantees that a counter example will be generated
extremely fast, if the proof failed.

5 Discussion of the complexity
The veri�cation process is based on the decision

procedure for PTL which is exponential in the size of
the formula. In general this would limit the practical
application of our approach. However the techniques
used in the veri�cation process reduce this complexity
drastically.
Ad veri�cation step 1: If the STD-diagram is

deterministic and its structure guarantees that two in-
stantiations of the same diagram cannot be active in
parallel, the size of the corresponding Rabin automa-
ton is linear to the number of edges of the diagram

[9]. Hence for this kind of STD-diagrams no complex-
ity problems arise.

Ad veri�cation step 2 & 3: Since the property
veri�cation tool does the cross product on the y in
general no complexity problem arises. In particular a
counter example will be generated extremely fast.

On the other hand if the proof does not fail, veri�-
cation step 3 has to generate the complete representa-
tion of the automaton representing the cross product
of A1; : : :An;AGC . Although this automaton accepts
the empty language, its size might grow exponential
in n + 1. In general the following situations must be
distinguished:

� If only safety properties exclude each other, the
result automaton will be very small.

� If liveness properties are responsible for the
emptiness of the result automaton, its size might
grow fast.

This problems can be attached by a technique which
base on the algorithm for the detection of strongly
connected components within a directed graph. The
same technique will be used to check liveness proper-
ties within tableau based PTL tautology checkers.

6 Experimental results of the produc-

tion cell
The experimental results given in table 5 show the

feasibility of our approach to formal veri�cation as
implemented in ICOS. ICOS has been implemented
in the functional programming language ML [1] on a
SUN SPARC 10 workstation. The Rabin automata
module of ICOS is BDD-based.

Using ICOS a student speci�ed the distributed pro-
duction cell controller, synthesized the controller, and
performed the proofs of some interesting veri�cation
tasks within two month. During the veri�cation he
detected several subtle errors in the speci�cation.

7 Conclusion
In this paper we showed the application of a novel

graphical speci�cation language (STD) with an incre-
mental design and veri�cation methodology. The case
study demonstrated several points:

� STD is a natural method to specify the behaviour
of a distributed controller and its properties.

� The veri�cation approach leads to a natural incre-
mental veri�cation methodology with fast `turn-
around' times.

� Due to an veri�cation kernel, which is optimized
for STD-speci�cations, the veri�cation procedure
can cope with the complexity of realistic case
studies.

� Speci�cations are easy to write, test, debug and
verify. In an industrial context we expect that
this method can reduce the time to market signi�-
cantly. The method already received considerable
interest from industrial partners.



Goal used intermediate # of used speci- veri�cation
properties �cation STDs time (sec.)

ASM R MaTsiPaD 7 33

ASM RA1 MaTok 11 29

ASM T LOkOkTopBot 15 149

noCollision ASM R MaTsiPaD
ASM RA1 MaTok

ASM T LOkOkTopBot 8 509

Currently ICOS is evaluated for the speci�cation and
veri�cation of pipelined RISC designs. The current
version of ICOS is thoroughly tested and ready for
demonstration and performance-evaluation. Some re-
strictions apply, however, for the current version. The
next major release of ICOS will include support of
user-de�ned VHDL-datatypes and structural bodies.
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