
Abstract

This paper describes two methods to specify timing con-
straints in behavioral VHDL for high-level synthesis
purposes. The first method specifies timing constraints on
sequences of statements by using predefined procedures.
The second method provides support for specification of
timing constraints across process borders based on concur-
rent assert statements on signal events. The paper discusses
also an approach to synthesize hardware with timing con-
straints and concentrates in particular on how to ensure
consistency between the behavior of the simulation model
and that of the synthesized hardware.

1. Introduction

A high-level synthesis (HLS) system performs two main
tasks: resource allocation and operation scheduling [6]. The
time schedule of operations in the final hardware implemen-
tation generated by a HLS algorithm is determined by the
optimization decisions made during synthesis. Therefore, a
high level algorithmic description accepted for HLS very
often contains no timing information. Some design require-
ments can, however, impose certain timing restrictions on
the functionality of the specified system [10].

Requirements on the timing aspects of a design can be
incorporated astiming constraints(TCs) in the behavioral
specification submitted to the synthesis system. Verification
of consistency and operation scheduling under timing con-
straints are discussed in [2] and [9]. In this paper we propose
a notation for TC specifications in behavioral VHDL and
discuss some aspects concerning synthesis with such con-
straints. We consider the following main requirements for a
notation capturing TCs for high-level synthesis with VHDL:

• specification of minimal, maximal, exact, and range
constraints between arbitrary statements;

• specification of nested TCs;
• simulation of the VHDL design before synthesis, with

some estimated values for the TCs;

This work has been partially sponsored by the Swedish National Board for
Industrial and Technical Development (NUTEK).

• high-level synthesis with TCs, preserving correspon-
dence between the behavior of the synthesized
hardware and that of the simulation model;

• back-annotation of the synthesized times for post-syn-
thesis behavioral simulation;

• simplicity, readability, and clarity of the notation, and
integration into the overall language concept.

The proposed notation is implemented in the VHDL front-
end of the CAMAD high-level synthesis system designed at
Linköping University [12, 4]. In Fig. 1 we show the overall
structure of the system, including high-level synthesis from a
behavioral VHDL specification with TCs to a register-trans-
fer level hardware structure and back-annotation of the input
specification for post-synthesis simulation. One important
aspect of CAMAD is its ability to synthesize VHDL specifi-
cations consisting of several interacting processes [5].
Accepting for synthesis TCs in the context of VHDL pro-
cesses interacting through signals generates difficult semantic
problems. Some solutions will be presented for preserving
correspondence between the behavior of the synthesized
hardware and that of the simulation model, while accepting
both TCs and interacting VHDL processes for synthesis.

This paper is divided into six sections. Section 2 dis-
cusses possible solutions for TC specification and evaluates
their advantages and shortcomings. Section 3 presents our
approach to TC specification with predefined procedures.
Section 4 explores the problems concerning VHDL simula-

VHDL
front-end

VHDL simulator

back-annotated
VHDL model

synthesized times
for back-annotation

RT level
structure

back-annotated
model generator

HL synthesis

internal design
representation

VHDL
specification

timing analysis
&

Fig. 1. High-level synthesis with timing constraints.

Timing Constraint Specification and Synthesis in Behavioral VHDL

Petru Eles*, Krzysztof Kuchcinski†, Zebo Peng†, and Alexa Doboli*

* Computer Science and Engineering Department
Technical University of Timisoara

Romania

† Dept. of Computer and Information Science
Linköping University

Sweden

tion semantics in the context of synthesis with TCs and
presents our solutions. In section 5 we introduce a mecha-
nism for TC specifications across process borders. Finally,
section 6 presents our conclusions.

2. Specification of TCs

Some hardware description languages, such as Hard-
wareC [9] and DSL [2], include as part of their definitions a
notation for TC specification. There is, however, no provi-
sion in VHDL [8] for the specification of a minimum,
maximum or range of acceptable TC values for synthesis.
According to VHDL standard semantics bothafter clauses
in signal assignment statements andwait statements with
time clauses are used to express strict simulation timing.
Thus, if VHDL is used as an input language for high-level
synthesis, some conventional notation has to be adopted for
the TC specification.

Some HLS systems accepting VHDL as an input lan-
guage, such as CALLAS [1], rely onexact synthesis of a
user specified number of clock cycles between certain oper-
ations. In the VHDL subset accepted by CALLAS, timing
specification is based on a set of predefined procedures. The
CALLAS approach in fact requires scheduling decisions to
be taken by the designer and thus limits the freedom for syn-
thesis optimization. In [7] a similar approach to timing
specification is proposed. In addition, the so called “inter-
face procedures”, for the specification of the interface part
of the circuit, are introduced. They are synthesized by spe-
cialized tools, and signal assignments andwait for
statements are accepted only inside such a procedure. The
use of predefined procedures for TC specification is also
advocated in [11].

Synopsis VHDL tools use both commented lines and
attributes to specify TCs [13]. The main drawback with
these two methods is that no simulation of the behavioral
model is possible, either before or after synthesis. The TCs
are ignored by VHDL simulators and are recognized only
by the synthesis tools.

3. Predefined Procedures for TC Specification

In order to express TCs in a behavioral VHDL descrip-
tion for high-level synthesis, a conventional notation is
needed to specify restrictions on the execution time of a
sequence of statements after synthesis. According to our
requirements we consider the following restrictions on the
execution of a sequence of operations:

• Minimal delay: it has to take at least a certain time;
• Maximal delay: it has to take at most a certain time;
• Range delay: it has to take a time between two limits;
• Exact delay: it has to take exactly a given time.
For each of the above TC specifications a predefined pro-

cedure is implemented. To specify a certain restriction the
user calls the corresponding predefined timing procedure

passing as an argument the value of the time interval asso-
ciated with the constraint. The location of the call
determines the end point (thesink) of the constrained
sequence. The starting point of the statement sequence is
defined by ananchor. To refer to the anchor, each call to a
predefined timing procedure contains a second argument
representing a variable of typetime. The anchor point is
defined by the precedent call to a timing procedure that con-
tains as an argument the same time variable. An example of
TC specifications is given in Fig. 2, where the constrained
sequences are indicated by arrows.

The predefined packagetime_restrict, implemented as
part of our design environment, exports the timing proce-
dures anchor, range_time, min_time, max_time, and
exact_time. It is natural that both the anchor and the sink of
a TC have to be located in the same branch of anif statement,
variant of acase, and body of aloop, procedure, orprocess.

The time values associated with the constraints are spec-
ified as constants of a subtype of typetime. Similar to the
approach proposed in [3], at synthesis the ranges of these
subtypes are identified as the constraint limits. The values of
the time constants are ignored by the synthesis tool.

For simulation, the constraint associated with a time con-
stant (the range corresponding to its type) is not relevant, but
its value is considered. This value is passed as a parameter
to the procedure exported by the packagetime_restrict and
is considered by the VHDL simulator. In our example these
values are specified in the body of packageconstraints. For
pre-synthesis simulation the values are estimated by the

PACKAGE constraints IS
SUBTYPE time_1 IS TIME RANGE 150 ns TO 150 ns;
SUBTYPE time_2 IS TIME RANGE 0 ns TO 200 ns;
SUBTYPE time_3 IS TIME RANGE 100 ns TO TIME’HIGH;
SUBTYPE time_4 IS TIME RANGE 100 ns TO 1200 ns;
CONSTANT constr_1:time_1;
CONSTANT constr_2:time_2;
CONSTANT constr_3:time_3;
CONSTANT constr_4,constr_5:time_4;

END constraints;

PACKAGE BODY constraints IS
-- the values are estimated for pre-synthesis simulation;
-- they will be back-annotated after synthesis.
CONSTANT constr_1:time_1:=150 ns;
CONSTANT constr_2:time_2:=100 ns;
CONSTANT constr_3:time_3:=130 ns;
CONSTANT constr_4:time_4:=500 ns;
CONSTANT constr_5:time_4:=650 ns;

END constraints;

. . .
PROCESS

VARIABLE anchor1, anchor2: TIME;. . .
BEGIN. . .

ANCHOR(anchor1);. . .
EXACT_TIME(constr_1, anchor1);. . .
IF cond THEN

ANCHOR(anchor2);. . .
MAX_TIME(constr_2, anchor2);

ELSE. . .
ANCHOR(anchor2);. . .
MIN_TIME(constr_3, anchor2);. . .

END IF;. . .
RANGE_TIME(constr_4, anchor1);. . .

END PROCESS;. . .
Fig. 2. Timing constraints on sequences of statements.

designer; after synthesis they are automatically replaced at
back-annotation with the synthesized times which are then
considered for post-synthesis simulation.

At simulation the four proceduresrange_time, min_time,
max_time, andexact_time act in a similar way. We illustrate
this with a sequence from the package bodytime_restrict in
Fig. 3. Simulation of the delay on the constrained sequence is
solved by thewait for statement in the procedurewait_delay.
The actual wait is for the amount of time (to_wait) left after
previous waits executed inside the constrained sequence cor-
responding to the specified anchor. This solution supports,
according to our requirements, nested TCs.

The synthesis tool ignores the body of the predefined tim-
ing procedures. The procedures are recognized by their name
and the corresponding constraint is translated into the inter-
nal design representation, with time limits corresponding to
the range of the subtype associated to the time constant.

4. Simulation/Synthesis Correspondence

The most difficult issues concerning hardware synthesis
of VHDL specifications originate from the VHDL seman-
tics of signal assignments, wait statements, and the timing
model, which are specified in terms of simulation. We have
developed and implemented two strategies for high-level
synthesis of behavioral VHDL descriptions containing
interacting concurrent processes [5]. These strategies pre-
serve the partial ordering relation of operations on signals
and ports from the simulation model to the synthesized
hardware structure. Thus we achievesimulation/synthesis
correspondence which means that the simulation model and
the synthesized hardware react with the same values
(sequences of values) of the signals and ports to identical
sequences of stimuli applied at the inputs.

For VHDL specifications containing TCs, simulation/
synthesis correspondence implies the conditions stated
above and the correspondence between the timing behavior
of the constrained sequences in the synthesized hardware

PACKAGE BODY time_restrict IS
PROCEDURE wait_delay(delay: TIME; t_anchor: INOUT TIME) IS

VARIABLE to_wait: TIME;
BEGIN

to_wait:=delay-(NOW-t_anchor); -- time left for wait
IF to_wait>=0 THEN

WAIT FOR to_wait;
ELSE

ASSERT FALSE--already more time spent then expected
REPORT "timing restriction error"

SEVERITY WARNING;
END IF;
t_anchor:=NOW; -- set time for anchor

END wait_delay;

PROCEDURE range_time(delay: TIME; t_anchor: INOUT TIME) IS
BEGIN

wait_delay(delay, t_anchor);
END range_time;. . .
PROCEDURE anchor(t_anchor: OUT TIME) IS
BEGIN

t_anchor:=NOW; -- set time for anchor
END anchor;. . .

END time_restrict;

Fig. 3. Part of the package time_restrict.

and in the back-annotated simulation model.

4. 1. Design Representation

The internal design representation of CAMAD, called
ETPN (Extended Timed Petri Net) [12], has been developed to
capture the intermediate results during the high-level synthesis
process. The ETPN representation, which VHDL specifica-
tions are translated to, consists of a control part and a data path.
The control part is represented as a timed Petri net with
restricted transition firing rules. Transfer of data in the data
path is controlled by control signals coming from the control
part. A control signal is generated when a token is deposited at
a Petri net place. A Petri net transition may be guarded by one
or several conditions produced from the data path. It may be
fired when it is enabled (all its input places have a token) and
the guarding condition is true. In Fig. 4 we show an ETPN
control part and its corresponding VHDL sequence.

TCs are captured by the ETPN representation as additional
arcs in the control part (represented as dotted lines in Fig. 4).
They are attributed with the time limits associated to the con-
straint and with an identifier corresponding to the respective
time constant (the identifier is provided for back-annotation).
Such an arc is placed between the control places corresponding
to the start and to the end of the constrained sequence.

4. 2. Synthesis of Concurrent VHDL Processes

In [5] we presented two models for specifying interacting
VHDL processes, the unrestricted model and the reduced
synchronization model. Theunrestricted model offers the
freedom to express process interaction at the level of signal
assignments and wait statements. From the point of view of
synthesis the model implies practically the hardware imple-
mentation of the simulation cycle in order to preserve
simulation/synthesis correspondence. This means that pro-
cesses have to wait for each other, until all of them are
executing a wait statement, before updating the signal values.

The synthesis strategy corresponding to thereduced syn-
chronization model does not reproduce the simulation cycle
in hardware, while maintaining simulation/synthesis corre-

[1
00

 n
s,

 1
20

0
ns

, c
on

st
ra

in
ts

.c
on

st
r_

4]

[1
00

 n
s,

 -
1,

 c
on

st
ra

in
ts

.c
on

st
r_

3] . . .
ANCHOR(anchor1);
x:=z+1; -- S1
IF x>0 THEN -- S2

ANCHOR(anchor2);
x:=a+2; -- S3
y:=x-b; -- S4
MIN_TIME(constr_3,anchor2);

ELSE
x:=a*2; -- S5

END IF;
y:=y*x; -- S6
RANGE_TIME(constr_4,anchor1);
. . .

Fig. 4. An ETPN controll part and its corresponding VHDL code.

S1

S2

S5

S3

S4

S6

C C

spondence. According to this model VHDL processes
interact using a synchronous message passing mechanism
with predefinedsend/receive commands. Communication
channels are represented by VHDL signals. Assignment of
a value to a signal is done with asend command. Processes
that refer to the signal will wait until a value is assigned to
it, by calling areceive command.

The correct behavior of the hardware described conform-
ing to the reduced synchronization model does not rely on
the implicit synchronization enforced by the simulation
cycle. Thus the synthesis strategy corresponding to this
model does not need to implement the simulation cycle in
the synthesized hardware [5].

4. 3. Simulation/Synthesis Correspondence with
the Unrestricted Model

The consequence of the synthesis strategy entailed by the
unrestricted model on the behavior of a hardware specifica-
tion with TCs is illustrated by processesP1 andP2 with their
control part depicted schematically in Fig. 5. Both processes
consist of a statement sequence constrained by an exact TC.
At simulation, according to VHDL semantics, the statement
sequences will be executed in 0 (simulation) time before the
processes are stopped in the wait state (as result of the wait
statement executed in procedurewait_delay defined by
packagetime_restrict); processP1 will be restarted after 3 ns
simulation time and thus the constrained statement sequence
inside its body will be activated four more times before reac-
tivation of processP2 (after 15 ns simulation time).

After synthesis the generated structure needs 3 ns and 15
ns respectively for the execution of the sequences inP1 and
P2. However, as result of the synthesis strategy discussed in
the previous section, after reaching the wait statement, pro-
cessP1 will have to wait for processP2 to reach the same
state. Hence, both processes will execute their sequences
stepwise the same number of times. A shorter execution
time for P1 will result in a longer time to wait for global
synchronization with processP2. It is obvious that such a
circuit works differently both from simulation behavior and
from the designer’s intuitive expectation. The difference is
due to the delay time interpretation at simulation and at syn-
thesis: at simulation the prescribed time is entirely spent in
the wait state while the synthesized hardware spends this
time along the constrained sequence and thus prevents all
other processes from leaving a wait state. The consequence
for our synthesis strategy, if we are accepting TCs, has to be

anchor(t1);

exact_time(3 ns, t1); exact_time(15 ns, t2);

P1: P2:

[...]

anchor(t2);

Fig. 5. Parallel processes with timing constraints.

[...]

the following:
Inside a constrained sequence a process should behave as
if it would be in a wait state; this means that, from the point
of view of global synchronization, the process executing a
constrained sequence should not prevent the update of sig-
nal values and reactivation of other processes.
This relaxation of the global synchronization of pro-

cesses can produce a nondeterministic behavior of the
synthesized hardware, if no restrictions on the use of signals
in specifications containing TCs are introduced. We use pro-
cessesQ1 and Q2 in Fig. 6 to illustrate this problem.
According to the simulation semantics, the value of signals
will be updated only when both processesQ1 andQ2 are
executing a wait statement; the first two references to signal
s in processQ2 will always result in the same value. If pro-
cesses are synthesized according to the rules discussed
above, the value ofs will be updated ifQ1 executes the wait
andQ2 executes any statement in the constrained sequence.
Thus the behavior of the synthesized circuit differs from
that of the simulation model and, inQ2, the value of signal
s in the second reference can differ from that in the first one;
this will happen if at the moment thatQ1 reaches the wait,
Q2 executes a statement of the constrained sequence pre-
ceding the reference to signals.

Determinism in standard VHDL semantics is based on
the fact that process interaction is strictly concentrated to
the states when all processes are executing a wait. To pre-
serve such a determinism in the circumstances of our
synthesis strategy with TCs we have to exclude any opera-
tion that is related to process interaction from the
constrained sequences. This results in the following restric-
tion on the TC specifications:

No access to signals is allowed inside a constrained
sequence; these sequences execute internal operations
with local variables, which neither influence nor are
affected by other processes. Interaction between processes
(signal assignments, references to signals, wait statements)
should be executed outside the constrained sequences.

4. 4. Simulation/Synthesis Correspondence with
the Reduced Synchronization Model

As mentioned in section 4.2, synthesis with the reduced
synchronization model does not implement global synchro-
nization in hardware. The correct behavior of a hardware
specified in VHDL according to this model does not rely on

Q1: Q2:

s <= ...;
. . .
wait ...;

Fig. 6. Operations on signals in constrained sequences.

[...]

anchor(t2);

exact_time(15 ns, t2);

x := ...s...;

x := ...s...;

x := ...s...;

...

...

the global synchronization imposed by the simulation cycle,
but only on the synchronization explicitly stated with the
send/receive operations. As a consequence, the synchroniza-
tion mechanism and timing are orthogonal and no additional
rules or restrictions have to be introduced in order to guar-
antee simulation/synthesis correspondence with TCs.

This results in no restriction on the statements in a con-
strained sequence. However, if some of these statements
(like send andreceive, for instance) require a data dependent
delay, it is possible that synthesis which satisfies the required
constraints under any circumstances has to be rejected [9].

5. Specification of TCs Across Process Borders

The previous sections have focussed on TC specifica-
tions on sequences of statements inside a process. However,
design restrictions can also be expressed as constraints on
the time interval between certain events on signals and it is
likely that these events are produced by different processes.

In order to reason about synchronization and communi-
cation across process borders, and specifically about the
relative timing of operations, process interaction has to be
specified at a higher level than that using VHDL signal
assignment and wait statements. Hence, we have based the
mechanism for timing specification across process borders
on our reduced synchronization model.

We have decided to use for our notation theconcurrent
assert statement and to specify constraints as follows:

ASSERT condition
REPORT "timing constraint violation"

SEVERITY WARNING;

The condition has to be a call to one of the four prede-
fined boolean functions exported by packagetime_restrict:
range_assert, exact_assert, min_assert, ormax_assert. The
function will be selected according to the kind of the con-
straint that has to be specified; function parameters define
the two signals affected by the constraint and the constraint
limits. In the example presented in Fig. 7, theassert state-
ment specifies that a transaction on signalb has to come not
earlier than 100 ns and not later than 800 ns after a transac-
tion on signala. It has to be mentioned that in the reduced
synchronization model, a transaction or event on a signal
can be produced only as result of asend operation.

During simulation the concurrentassert statement will be
triggered at eachsend executed on signala orb, and an assert
violation occurs if the constraint is not satisfied. We present,
for illustration, the predefined functionrange_assert, as
defined in the body of packagetime_restrict:

FUNCTION range_assert (SIGNAL a,b:IN BIT; t1,t2:IN TIME)
RETURN BOOLEAN IS

BEGIN
RETURN NOT b’ACTIVE OR

(NOW-a’LAST_ACTIVE>=t1 AND NOW-a’LAST_ACTIVE<=t2);
END range_assert;

The synthesis tool translates theassert statement into a
constraint represented as one or several edges in the internal
design representation. If a time constraint has been expressed

between signalsa and b then an arc has to be generated
between each control place corresponding to asend ona and
each place corresponding to asend onb. In Fig. 8 we show a
representation corresponding to the example in Fig. 7.

A VHDL design that contains no other TCs than those on
signals (specified byassert statements) results in a correct
synthesis, according to the specified timing requirements (if
timing analysis and operation scheduling are possible), but
no simulation with the TCs can be performed. During such
a simulation, theassert statement would report a violation
after eachsend on the constrained signals, because there is
no operation in the VHDL model that produces any progress
of the simulation time.

Such a shortcoming will be eliminated with a complete
design, like that in Fig. 7. Both TCs on sequences of state-
ments inside the processes and constraints on signals have

Fig. 7. Timing constraints across process borders.

ARCHITECTURE synth OF synthesis IS
USE constraints.ALL; -- package constraints is defined in Fig. 2
USE time_restrict.ALL;
SIGNAL a,b: INTEGER;

BEGIN
ASSERT RANGE_ASSERT(a’TRANSACTION,b’TRANSACTION,100 ns, 800 ns)

REPORT "timing constraint violation"
SEVERITY WARNING;

P1:PROCESS
VARIABLE t: TIME; VARIABLE x: INTEGER;

BEGIN
ANCHOR(t);. . .
RANGE_TIME(constr_4,t);. . .
SEND(a,x);. . .
ANCHOR(t);. . .
MAX_TIME(constr_2,t);

END PROCESS P1;

P2:PROCESS
VARIABLE t: TIME; VARIABLE y: INTEGER;

BEGIN
RECEIVE(a);. . .
ANCHOR(t);. . .
RANGE_TIME(constr_5,t);. . .
SEND(b,y);. . .
ANCHOR(t);. . .
EXACT_TIME(constr_1,t);

END PROCESS P2;
END synth;

P1:

send(a,x)

anchor(t);

range_time(constr_4,t);

anchor(t);

max_time(constr_2,t);
[...]

[...]

send(b,y)

anchor(t);

range_time(constr_5,t);

anchor(t);

exact_time(constr_1,t);

[...]
[...]

receive(a)
P2:

[100 ns, 800 ns]

Fig. 8.Representation of timing constraints across process borders.

been provided. The global constraints, expressing timing
requirements on signals, are significant in this context both
at simulation and synthesis. Simulation verifies if local con-
straints satisfy global requirements on signals, expressed by
assert statements. At synthesis the global constraints are
interpreted as additional restrictions that have to be consid-
ered when exploring of the design space spanned by the
constraints on sequences of statements.

6. Experimental Results

Table 1 gives the results obtained for two benchmarks,
which have been synthesized with TCs. We performed syn-
thesis of both the elliptic filter [12] and the 256-point
Discrete Fourier Transform (DFT) circuit [10] in two differ-
ent contexts (Fig. 9). First we synthesized each benchmark
as a process containing a local constraint (P1 in Fig. 9). The
input in this case is received from portinp. We then consid-
ered the process containing the benchmark algorithm in
interaction with another process (P2 in Fig. 9) from which it
gets its input data through signalinp. In addition to the pre-
vious local constraint inside the benchmark specification,
we specified a constraint for the time interval between the
execution of a send on signalinp (whenP2 sends the data)
and on signaloutp (when the result is produced byP1).

These experiments have been performed on both bench-
marks and the results given in Table 1 show how the
additional constraints imposed on signals influence the syn-
thesis process. Usually, additional functional units are used
in order to meet these constraints, as indicated in Table 1.

1. The LSI 10K technology is used.
2. These experiments have been carried out on a SPARCstation 10.

Table 1: Synthesis results

Benchmark
Constraints

(in µs)

Synthesis results1
CPU
time
(s)2

exec.
cycles

cycle time
(ns)

exec. time
(µs)

funct.
units

elliptic
filter

local: 0.1..0.25 19 11.63 0.220 2 +, 1 * 78.4

local: 0.1..0.25
signals: 0.1..0.2

15 11.63 0.174 3 +, 2 *
20.6

DFT

local: 1000..2000 68559 27.12 1859.320 1 ALU, 1 * 3.7

local: 1000..200
signals: 1000..1500

52175 27.12 1414.986
1 ALU,
1 +, 1 *

2.6

ASSERT RANGE_ASSERT(inp’TRANSACTION,outp’TRANSACTION,t1,t2)
REPORT "timing constraint violation"

 SEVERITY WARNING;
-- this constraint is provided only when
-- process P1 is interacting with P2

. . .
P1: PROCESS P2: PROCESS

BEGIN BEGIN
 RECEIVE(inp); . . .
 ANCHOR(t); SEND(data,inp);

-- algorithm (ell. filt. or DFT) . . .
 RANGE_TIME(constr, t); END PROCESS P2;
 SEND(outp, result); . . .
END PROCESS P1;

Fig. 9. VHDL skeleton used for experiments

7. Conclusions

We have presented a notation for TC specifications in
VHDL for high-level synthesis. Based on the requirements
adopted in the first section, we have decided to use prede-
fined procedures for the specification of constraints on
sequences of statements. Our notation accepts nested TCs
with specification of minimum, maximum, range, and exact
limits and supports back-annotation for post-synthesis sim-
ulation. We have also provided support for specification of
TCs across process borders.

One of the major problems of defining and implementing a
mechanism for TC specifications in the context of VHDL syn-
thesis is how to preserve consistency between the behavior of
the simulation model and that of the synthesized hardware.
We have proposed solutions to this problem in the frame of
our synthesis strategies and have shown in the paper how sim-
ulation/synthesis correspondence can be achieved for VHDL
specifications containing both concurrent processes and TCs.

References

[1] J. Biesenack, et. al.,The Siemens High-Level Synthesis
System CALLAS, IEEE Trans. on VLSI, vol. 1, no. 3, Sept.
1993, 233-243.

[2] R. Camposano, A. Kunzmann,Considering Timing
Constraints in Synthesis from a Behavioral Description,
Proc. ICCD, 1986, 6-9.

[3] W. Ecker, S. März,Subtype Concept of VHDL for Synthesis
Constraints, Proc. of EURO-DAC/VHDL’92, 1992, 720-725.

[4] P. Eles, K. Kuchcinski, Z. Peng, M. Minea,Compiling VHDL
into a High-Level Synthesis Design Representation, Proc. of
EURO-DAC/VHDL’92, 1992, 604-609.

[5] P. Eles, K. Kuchcinski, Z. Peng, M. Minea,Synthesis of
VHDL Concurrent Processes, Proc. of EURO-DAC/
VHDL’94, 1994, 540-545.

[6] D. Gajski, N. Dutt, A. Wu, S. Lin,High-Level Synthesis,
Introduction to Chip and System Design, Kluwer Academic
Publisher, 1992.

[7] P. Gutberlet, W Rosenstiel,Timing Preserving Interface
Transformations for the Synthesis of Behavioural VHDL,
Proc. of EURO-DAC/VHDL’94, 1994, 618-623.

[8] IEEE Standard VHDL Language Reference, IEEE Std. 1076-
1993, IEEE Comp. Soc. Press, 1993.

[9] D.C. Ku, G. De Micheli,Relative Scheduling Under Timing
Constraints: Algorithms for High-Level Synthesis of Digital
Circuits, IEEE Trans. on CAD, vol 11, no. 6, June 1992, 696-717.

[10] P. Michel, U. Lauther, P Duzy,The Synthesis Approach to
Digital System Design, Kluwer Academic Publisher, 1992.

[11] K. Nordqvist,Timing Specification and Back-Annotation in
High-Level Synthesis, Technical Report - Swedish Institute
of Microelectronics, 1993.

[12] Z. Peng, K. Kuchcinski,Automated Transformation of
Algorithms into Register-Transfer Level Implementation,
IEEE Trans. on CAD, vol. 13, no. 2, Feb. 1994, 150-166.

[13] Synopsys,VHDL Compiler Reference Manual, V. 3.0, Nov.
1992, Chapter 11, VHDL Compiler Directives.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

