
Towards Verifying VHDL Descriptions of Processors

Laurent Arditi H�el�ene Collavizza

Universit�e de Nice { Sophia Antipolis, I3S, CNRS-URA 1376

arditi@unice.fr, helen@essi.fr

Abstract

We present a system for the formal veri�cation of

processors which combines a computer algebra simpli-

�cation tool with an object-oriented approach. It has

been successfully used for verifying the DP32 processor

described in the VHDL Cookbook. A general VHDL

description style for proving processors is derived from

this case study.

1 Introduction
1.1 Motivations

In order to produce correct circuits, attention has

been paid these last ten years on formal veri�cation

methods [1]. Formally verifying a circuit consists in

proving that its speci�cation is logically equivalent to

its implementation. When dealing with complex cir-

cuits such as processors, the speci�cation of the circuit

is a description of an abstract level (such as the as-

sembly language level), while its implementation is a

description at a more concrete level (for instance, the

microinstruction level).
The formal veri�cation then consists to prove

the behavioural equivalence between two abstraction
levels. More precisely, let leveli be an abstract spe-
ci�cation level, and leveli+1 a more concrete one. An
action at leveli is realized at leveli+1 by composing a
set of actions at leveli+1. So to verify the correctness
between two adjacent levels one must show that the
following diagram commutes:

instri
-statei statei;after

6 6

abstraction abstraction

instr
1
i+1 � : : : � instr

n
i+1 -statei+1 statei+1;after

1.2 Aims of the paper and related works

The �rst signi�cant work on processor veri�cation

was initiated by Gordon[2] and followed by two main

case studies: the proofs of Viper with HOL[3] and

FM8501 with Nqthm[4].

These examples raised the need for a general meth-

odology of processor veri�cation. A general functional

model has �rst been proposed in [5] for describing pro-

cessors at abstract levels. More recently, Windley has

proposed a methodology based on generic interpreters

[6]. An interpreter describes the processor state and

behaviour at any abstraction level. The veri�cation

consists to prove the equivalence between two inter-

preters. This approach is generic and is a �rst step for

designing a CAD framework dedicated to processor

veri�cation. But in our opinion, these previous works

display two kinds of shortcomings:

� they are based on general logical proof tools which

are too complex to support e�ciently particular

problems and require a logical background,

� they do not provide any user-friendly interface to

describe processors and veri�cations to execute.

So we have proposed a new framework for processor

veri�cation. The key idea is to combine a \computer

algebra system" and an \object-oriented implementa-

tion of generic interpreters" in a single framework[7].

The computer algebra system is used to e�ciently

simplify expressions. The object-oriented approach is

well-suited to implement the generic interpreters.

In this paper, we get over another step for integrat-

ing formal veri�cation methods into CAD frameworks

taking VHDL as a speci�cation interface. The com-

mon approach to formally verify VHDL descriptions

is to identify a provable VHDL subset and to de�ne

a semantics of this subset [8, 9]. Furthermore, some

systems provide translators from VHDL to an inter-

mediate form as input to proof tools [10, 11].

We emphasize here that our framework is well-

suited to verify some kind of VHDL descriptions of

processors, in a very e�cient way and with a small

speci�cation e�ort. We exhibit the speci�cation and

veri�cation of the DP32 processor [12]. Its veri�c-

ation has derived a general VHDL style to describe

processors, that our system is able to prove.

Layout of the paper: in section 2, we introduce our

veri�cation method on a simple example. In section

3, we give our general speci�cation and veri�cation

methodology. Section 4 presents our implementation

prototype. In section 5 we detail the proof of the DP32

processor. We last conclude in section 6.

2 Overview of our method
Before discussing the technical details of our

method, let us introduce it on a simple example.

Suppose we are given a simple processor and we

wish to prove the \addition" instruction in direct

memory addressing mode. We assume that this pro-

cessor is described in VHDL at the assembly language

level (level1) and at the microinstruction level (level2).

At the assembly language level, the state of the

processor consists of the memory mem, the accumulator

acc and the program counter pc. The whole VHDL

description consists of a process with a state variable

declarative part, and a body part that describes the

processor cycle: fetch an instruction and execute a

set of assignments. The addition instruction in direct

memory addressing mode involves the two assignments

T1 and T2:
acc := add(acc, -- T1

mem(concat('0000',mem(pc)(7 downto 4))));

pc := add(pc, '00000001'); -- T2

In our object-oriented framework, this is described

as an object, \proc-level1", with the following attrib-

utes (see part 3.1):

� state contains the tuple <mem,pc,acc> where

each component is built up from an object-

oriented library: mem is an instance of the Memory

class while pc and acc are instances of the

Register class.
� transitions describes the instruction semantics,
� select is a function that selects the instruction in

memory at address pc.

At the microinstruction level, a more concrete

state is considered. It includes the assembly language

level state plus the instruction register ir, the operand

register rop and the current microinstruction pointer

mpc. The addition instruction is executed by a se-

quence of microinstructions M0, M1 and M2:
case mpc is

when 0 => ir := mem(pc); --M0

mpc := 1;

when 1 => rop := concat('0000', ir(7 downto 4)); --M1

pc := add(pc, '00000001');

mpc := ...;

when 2 => acc := add(acc, mem(rop)); --M2

mpc := 0; ...

In our framework, the processor at the microinstruc-

tion level is also described as an object \proc-level2":

� state is <mem,pc acc,ir,rop,mpc>,
� transitions de�nes semantics of microinstruc-

tions,
� select selects the microinstruction that is in the

microprogram memory at address mpc.

In order to perform the proof, between level1
and level2, we must show that the sequence M0, M1,

M2 correctly realizes the transitions T1 and T2. The

proof is speci�ed by an object that has four attributes

(see part 3.1):

� specification points the object \proc-level1",

� implementation points the object \proc-level2",

� abstraction de�nes the state abstraction from

<mem,pc,acc,ir,rop,mpc> to <mem,pc,acc>.

� sync de�nes the temporal abstraction. Since a

microinstruction sequence begins at the address

0, the predicate sync is here mpc = 0.

The proof is performed as explained in 3.2. In this

simple case, it does not require any simpli�cation and

the state values obtained at the two levels are exactly

the same. However, for more complex processors this

can involve reducing expressions on bit vectors.

The above speci�cation and proof process will be

the same for any processor at any abstraction level.

3 Speci�cation and proof methodology
In this section, we give our general speci�cation and

proof methodology, that follows the approach of generic

interpreters of [6].

3.1 Speci�cation process

One important point in processor veri�cation is that

the speci�cation process must be reusable for all pro-

cessors of a same category. In fact, we need horizontal

genericity (the model should be reusable to specify

di�erent processors) and vertical genericity (at each

abstraction level, the same model and proof method

should be reused).

Processor speci�cation. Any processor at any

level is de�ned as an Interpreter that has the three

attributes below:

� state: the set of all processor components visible

at the current level.

� transitions: a set of state transitions, indexed by

keys, that de�nes the behaviour of the processor,

and

� select: a function from state that returns the key

of the current transition selected by the control

part.

This ensures the genericity of the description.

Proof speci�cation. In order to ensure the gener-

icity of the proof, a veri�cation between two speci�c-

ation levels is a Proof, that links two interpreters. A

Proof has two attributes pointing the two interpreters

and two others describing the abstraction functions:

� specification: speci�cation interpreter,

� implementation: implementation interpreter.

� abstraction: it de�nes the state abstraction from

the implementation to the speci�cation state.
� sync de�nes the temporal abstraction. Its value

is true only when the two levels are synchronized.

This predicate is usually de�ned as a test on the

implementation program counter.

3.2 Proof process
Assume we have de�ned two Interpreters that spe-

cify a processor at leveli and levelj , and one Proof,
that links these two interpreters. To perform the proof
we have to execute a transition at leveli and a set
of transitions at levelj . The speci�cation is correct if
leveli �nal state is an abstraction of levelj �nal state
when sync is true. Then, the correctness proof is per-
formed according to the following steps:

1: Sj := init(statej)

2: Si := abstraction(Sj)

3: trans := transitions(select(Si))

Si := exec-trans(trans, Si)

4: repeat

trans := transitions(select(Sj))

Sj := exec-trans(trans, Sj)

until sync(Sj)=true

5: verify that Si � abstraction(Sj)

Broadly speaking, points 1 and 2 compute initial

states using symbolic values. Points 3 and 4 per-

form the state transitions, \exec-trans" carries out

the transitions while simplifying expressions (see part

4.2). Point 5 consists in a syntactic checking of the

equality of the two expressions that have �rst been

simpli�ed by our computer algebra system (see part

4.3). Syntactic checking is generally su�cient for in-

structions that do not involve loops.

4 Framework implementation

Scheme object Scheme object Scheme object

component
 library

computer
 algebra
 system

symbolic
evaluator

specification
 description

implementation
 description

 proof
description

USER

 user
interface

Figure 1: Overview of the framework

Our object-oriented framework (see �gure 1) is real-

ized using the functional and object-oriented language

STk [13]. Processors are described through a textual

user-friendly interface and a parser automatically gen-

erates the Scheme functions.

4.1 An object-oriented description of in-
terpreters

A straightforward way to implement interpreters

and proofs is to follow an object-oriented approach.

This answers the need for genericity and reusability.

So we have de�ned a class hierarchy for Interpreters

and Proofs and a component library[7].

State components are built by inheriting from one

structural class (a data type) and one behavioural

class (\stored" or \instantaneous" kind [14]). Figure

2 shows a simpli�ed class hierarchy.

BVARRAY

MEMO NO−MEMO

BUSREGISTERMEMORY

NAT

COMPONENT−WITH−PAST

WIRE BUS−WITH−PAST

A B
A inherits from Bstructural class behavioural class component class

Figure 2: Hierarchy of component classes

4.2 A symbolic evaluator of transitions

The key to the proof algorithm described in part

3.2 is the symbolic execution of transitions. Assume

we are given a transition dest source, it is executed

as follows:

� call on read method to get the value of source,
� call on the simpli�cation system in order to sim-

plify the resulting value if possible,
� call on write method to modify the value of dest.

The symbolic evaluator takes convenience of the

object-oriented approach: this execution process is

generic since read and write are methods associated

to all component classes.

4.3 A computer algebra system

In order to prove the equality of the expres-

sions involved in state transitions, we use a sim-

pli�cation system based on a computer algebra ap-

proach. Some other simpli�cation systems use rewrit-

ing techniques[15, 16]. We choose the computer al-

gebra point of view which is much more e�cient since

the simpli�cation of an expression is driven by its head

operator. This system is less powerful than general

provers as HOL or Nqthm, but is particularly well ad-

apted for this speci�c problem where expressions to be

proved are simple but numerous.

Having shown the structure of our system, we are

now ready to exhibit how it can be used to verify pro-

cessors described in VHDL.

5 Case study of the DP32 processor
In this section we consider the case study of the

DP32 processor described in [12] and derive general

remarks on the VHDL style we are able to prove.

The DP32 is speci�ed in [12] at two levels: the

\behavioural description" level (i.e assembly language

level), and the \register transfer architecture" level.

We follow the speci�cation plan of the VHDL descrip-

tion except for the time modeling (see 5.2).

5.1 Behavioural description

The VHDL behavioural description is a single pro-

cess. Its declarative part de�nes the set of visible com-

ponents, and its body de�nes the fetch sequence and

the instruction semantics. This is translated into an

interpreter without any restrictive modi�cation. The

declarative part forms the state attribute of the inter-

preter, while the process body is decomposed into the

transitions attribute and the select attribute.

Declarative part. In VHDL, processor components

are variables of types arrays of bit-vectors, bit-vectors,

bits and natural numbers (these components are stored

variables). They are represented by instances of our

component classes.
Here is an extract of the VHDL declarative part1:

variable reg: array (natural) of bit_32;

variable PC: bit_32;

and its translation in Scheme:

((make ARRAY :size 32 :name 'reg)

(make REGISTER :size 32 :name 'PC))

The state attribute of the interpreter is the list of all

these instances.

The process body. In VHDL, the behavioural de-

scription is a single process that is decomposed into

four main sequential steps: (1) the word at address

PC is fetched in the instruction register current instr,

(2) PC is incremented, (3) �elds of current instr are

assigned to variables, and (4) a case statement over

op selects the instruction and executes its behaviour.

Here is an extract of the VHDL process body:

memory_read(PC,true,current_instr);

add(PC, bits_to_int(PC), 1);

op := current_instr(31 downto 24);

r3 := bits_to_natural(current_instr(23 downto 16));...

case op is

when op_add => -- behaviour of the ADD instruction

when op_sub => -- behaviour of the SUB instruction

Each instruction behaviour just consists of assign-

ments to components. For example, the behaviour of

\add" instruction is:

add(reg(r3),bits_to_int(reg(r1)),bits_to_int(reg(r2)));

1We applied some minor modi�cations in the original VHDL

source and in our Scheme code in order to shorten the extracts.

In our model, this process body is mapped into

the attributes select and transitions of the inter-

preter: select reects the structure of the VHDL

case while transitions reassemble the instruction be-

haviours de�ned in the case statements. The select

attribute of the interpreter is de�ned as follows:

(if reset

reset_pseudo_instruction ; reset sequence

(case (field (memory_read PC) 24 31)

(op_add add_instr)

(op_sub sub_instr) ...))

Unlike in VHDL, we do not consider intermediate

steps in our model. As a consequence, we do not model

temporary variables (current instr, r3: : :) but use the

\let" constructor instead. This is more close to the in-

tuitive view of a processor because, at the assembly

language level, the instruction register is not usable.

Here is an extract of translation for the addition in-

struction:

(let ((current_instr (memory_read PC)))

(let ((r3 (field current_instr 16 23))

(r2 (field current_instr 0 7))

(r1 (field current_instr 8 15)))

(PC := (add PC (word32 1)))

((reg ($ r3)) := (add (reg ($ r1)) (reg ($ r2))))

Each instruction is de�ned by a set of state trans-

itions in the same way as described for \add".

The set of all instruction behaviours constitutes the

transitions attribute of the interpreter. So, mapping

the VHDL source into an interpreter is simple for such

a single process.

5.2 Time modeling

Before presenting the \register transfer architec-

ture" let us discuss now on time modeling principles,

that would be important at this more concrete abstrac-

tion level.

Time granularity. In the VHDL description of con-

crete levels, assignments are always synchronized with

the clock and scheduled with a delay that corresponds

to the gate propagation delay.

In our interpreter model, which is specialized to

functional aspects of processor veri�cation, we do not

consider a �ne time granularity. At each level, the

clock period is implicitly the duration of a state trans-

ition: at the assembly language level it corresponds

to the duration of an instruction (so we do not con-

sider intermediate steps) and at the architecture level,

it corresponds to the real clock of the processor.

Clock phases. In the VHDL description, signal con-

nections are always performed on the �rst clock phase

�1, while assignments to registers are performed on

the second phase: �2. Roughly speaking, the VHDL

description is as follows:

wait until �1='1'; signal connections;

wait until �2='1'; assignments to registers;

In our object-oriented model, the distinction

between the two clock phases is naturally induced by

the class of the component which is assigned: \instant-

aneous variables" are immediately assigned (i.e. dur-

ing �1 in VHDL) while \stored variables" are assigned

only at the end of the current cycle and so their res-

ults are only visible at the next cycle (i.e. during �2
in VHDL).

Temporal behaviour of variables. In VHDL, sig-

nals keep their values until they change. So in DP32

description from [12], signals that keep the same value

as in the previous cycle are not reassigned.

In our processor modeling, registers and memor-

ies keep their values until they change but signals, as

buses, keep their values only during one clock period.

Therefore, we need to reassign them on each cycle.

Our approach is closer to the real structure of pro-

cessors because it better reects the microcode execu-

tion. In fact, on each cycle a microcode word is fetched

from the memory by the controller. Bits of this word

are connected to signals of the operative part. There-

fore they change on each cycle.

Having detailed the time modeling, let us now give

the translation of the register transfer architecture.

5.3 Register transfer architecture

The register transfer architecture is a structural de-

scription of the processor that follows four steps. It

describes behaviour of sub-modules and declares sig-

nals and buses. Then it instantiates sub-modules and

connects them by these signals. And last, it describes

the controller as a single process.

Sub-module and signal descriptions. A \sub-

module" is a behavioural description of an entity. It

has a name, a port list and a process which describes

its behaviour. It represents a component of the archi-

tecture.

For example, the Scheme description of the DP32

register �le follows:

(reg_file_32_rrw ; module name

(a1 q1 en1 a2 q2 en2 a3 d3 en3) ; ports

((reg memory 32)) ; local variables

((if en3 ((reg ($ r3)) := d3) ; behaviour

(if en1 ((q1 .= (reg ($ r1))) null)

(if en2 ((q2 .= (reg ($ r2))) null)))

The di�erent sub-modules are connected by buses

inside the operative part, and by signals between the

operative part and the controller. These buses and

signals are declared at the beginning of the VHDL de-

scription. The translation of this declarative part is,

as for the previous level, a set of instantiations of com-

ponent classes (mainly BUS and SIGNAL).

Structural description. The structure of the pro-

cessor then consists of instantiations of sub-modules

using predeclared buses and signals to connect their

ports. For example, the register �le is instantiated in

VHDL as follows:

reg_file: reg_file_32_rrw

port map(a1 => instr_a1, q1 => op1_bus,...);

Our Scheme speci�cation is very similar and the trans-

lation in Scheme is automatic.

The controller. Each sub-module of the operative

part has ports connected to the controller. At each

cycle, the controller provides speci�c values to these

ports, depending on the current microinstruction name

(micro-pc), and determines the next microinstruction

to execute. Here is an extract of the Scheme speci�c-

ation of the controller that reects the VHDL code.

(case micro-pc (fetch_0 ((reg_port1_en .= "0")

(PC_out_en .= "1")

(micro-pc := fetch_1)))

(fetch_1 ((read .= "1")

(PC_out_en .= "1")

(micro-pc := fetch_2))) ...

Having translated sub-modules and signal declara-

tions, the structural description, and the controller, a

parser puts this in a single interpreter. This is en-

tirely automatic and consists in attening the descrip-

tion and renaming ports and internal variables. So we

have shown that an interpreter may be generated even

from a structural description.

5.4 Proof speci�cation and run

We are now able to prove that the register transfer

architecture correctly implements the behavioural de-

scription. The proof is described by an object of the

Proof class:

� its specification and implementation attributes

point the two interpreters.

� the abstraction is just a state injection that keeps

pc, reg, cc, mem, and reset.

� The sync attribute describes the condition re-

quired to synchronize the interpreters. Since the

result of an operation is written in the register �le

during the next instruction fetch, the interpret-

ers are synchronized when micro-pc = fetch 1 if

a write back is required, else when micro-pc =

fetch 0.

The Scheme code of the proof speci�cation is:

(make <Proof>

:specification DP32's behavioural description

:implementation DP32's RT architecture

:abstraction '(pc reg cc mem reset)

:sync '(or (and (= micro_pc fetch_1)

(= write_back_pending "1"))

(and (= micro_pc fetch_0)

(= write_back_pending "0"))))

Thanks to the genericity of our system for interpret-

ers and proofs, running the proof is entirely automatic.

The DP32 proof raised a minor error: the controller

does not always wait for the ready signal from the

memory. This produces an error when a memory op-

eration is longer than the clock period.

6 Conclusion
6.1 VHDL description style we can prove

From the signi�cative case study of DP32 processor,

we can now derive the form of a VHDL description of

processors that we are able to prove.

At the assembly language level, the processor be-

haviour is a single process de�ned by a case on the

operation code. Each part of the case de�nes the state

transitions involved by a particular instruction.

At the microinstruction or register transfer architec-

ture level, the description is structural. The behaviour

of the processor is described by a state machine, that

represents the processor controller. This may be a

process or a sub-module de�ned by a case on the mi-

croinstruction name. Each part of the case expresses

the transitions that occur on the two clock phases.

As we explained in part 5.2, the main restriction

we make is on time model. We only consider sys-

tems which are synchronized by a global clock and, we

ignore time delays which are smaller than the global

clock period. We also make an important restriction

on sequentiality which is only implicitely determined

by the clock cycle.

6.2 Other results and future works

We have presented an object-oriented framework

for processor speci�cation and veri�cation. It has been

used to verify several microprocessors without any

change to the class hierarchy (see Table 1). The spe-

ci�cations are concise and systematic, and Scheme ex-

pressions are built from a textual interface. The veri-

�cation process is generic, automatic and proof times

are very satisfactory compared with other methods.

We have shown in this paper that this system may

be used to verify some kind of VHDL descriptions. We

have now to precisely identify a VHDL subset that is

su�cient to model processors in a style that can be

proved by our system, and to implement a translator

from this subset to our textual interface.

References
[1] A. Gupta, \Formal hardware veri�cation methods: a

survey," Formal Methods in System Design, vol. 1,

pp. 151{238, Oct. 1992.

[2] M. Gordon, \HOL, a machine oriented formulation

of higher order logic," Tech. Rep. 68, University of

Cambridge, Computer Laboratory, 1985.

Microprocessor SS (pages) PT (seconds)

AVM-1 22 (100 in [6]) 1775 (58 hours in [6])
DP32 19 470

Proc. in [14]. 4 183

Tamarack-3 3 (17 in [15]) 197 (10 days in [15])

Table 1: Microprocessors we speci�ed and

proved. SS: speci�cation code size, PT: proof time

on a SUN IPC workstation.

[3] A. Cohn, \A proof of correctness of the Viper mi-

croprocessor: the �rst level," in VLSI Speci�cation,

Veri�cation and Synthesis, (Calgary), Jan. 1987.

[4] W. A. Hunt Jr., \Microprocessor design veri�cation,"

Journal of Automated Reasoning, vol. 5, Dec. 1989.

[5] D. Borrione, P. Camurati, J. Paillet, and P. Prinetto,
\A functional approach to formal hardware veri�c-

ation: The MTI experience," in ICCD'88, (Port

Chester, New-York), Oct. 1988.

[6] P. J. Windley, The Formal Veri�cation of Generic In-
terpreters. PhD thesis, University of California, Divi-

sion of Computer Science, 1990.

[7] L. Arditi and H. Collavizza, \An object-oriented

framework for the formal veri�cation of processors,"
in ECOOP'95, (Aarhus, Denmark), Aug. 1995.

[8] J. P. van Tassel, Femto-VHDL: The Semantics of a

Subset of VHDL and its Embedding in the HOL Proof

Assistant. PhD thesis, Univ. of Cambridge, July 1993.

[9] P. T. Breuer, L. S. Fernandez, and C. Delgado

Kloos, \Clean formal semantics for VHDL," in
European Design Automation Conference, (Paris,

France), 1994.

[10] D. Borrione, L. Pierre, and A. Salem, \Formal veri�c-

ation of VHDL descriptions in the PREVAIL environ-
ment," IEEE Design and Test of Computers, vol. 9,

pp. 42{56, June 1992.

[11] F. Nicoli and L. Pierre, \From VHDL to formal veri-

�cation," in EURO-VHDL Conference, (Grenoble,
France), Sept. 1994.

[12] P. J. Ashenden, The VHDL Cookbook. Dept. Com-

puter Science, Univ. of Adelaide, July 1990.

[13] E. Gallesio, \STklos: a Scheme object oriented system

dealing with the TK toolkit," in Xhibition 94, (San
Jose), ICS, Jul. 1994.

[14] F. Anceau, The Architecture of Microprocessors.
Addison-Wesley Publishing Company, 1986.

[15] V. Stavridou, Formal Methods in Circuit Design.

No. 37 in Cambridge Tracts in Theoretical Computer

Science, Cambridge University Press, 1993.

[16] M. Allemand, \A rewriting based method for the
formal veri�cation of microprocessors," in CHDL'93,

(Ottawa), Apr. 1993.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

