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Abstract

A hierarchical system design flow was developed to
facilitate concurrent development and Time-to-Market
reductions. The system design flow provides for codesign
of (embedded) driver software, digital hardware, and
analogue hardware. The flow starts from a prosaic
functional target specification, which is formally recorded
in a system algorithm, in VHDL. Through functional
decomposition and partitioning, individual parts of the
system algorithm are projected onto software, digital
hardware, and analogue hardware design flows, all based
on VHDL. The hierarchical flow was applied to the design
of channel and source decoding systems for Digital Video
Broadcast applications.

1. Introduction

The increasingly high requirements on the perform-
ance and integration levels of integrated circuits (ICs), in
conjunction with a necessity to reduce Time-to-Market
require revision of existing design methods. For the past
25 years, a common design method has been “capture-
and-simulate” [1]. New, structured design flows allow
handling of large device complexities, device performance
optimization, and concurrent development [1]-[2]-[3].
Such design methods are based on hierarchical specifica-
tions, and verification, and the associated design activities:
synthesis and analysis respectively [4]. Hierarchical
design methods and “describe-and-synthesize” are there-
fore gaining popularity in digital IC design [1]-[2]-[3].

This paper introduces the concept of a hierarchical
design flow and studies its merits for digital IC design
(section 2). To extend these benefits to both embedded
software development (section 3) and mixed analogue /
digital design (section 4), expansion of the flow was exam-
ined in an industrial environment. The results of the explo-
rations are summarized in section 5.

2. Hierarchical digital design flow

2.1. Design flow characteristics

A top-down hierarchical design flow was successfully
used for the development of several digital ICs at PCALE
[2]-[3]. Figure 1 depicts the (formal) description levels
and verification steps in the flow. The description levels

are similar to the levels proposed in [1]-[2]-[3], where the
feasibility and usefulness of the approach are shown. Each
description level in the flow is a partial implementation of
the device under development, but also an increasingly
more detailed formal specification.

The principal characteristics of each of the description
levels are listed in table 1. At later stages of a design,
implementation restrictions may require modifications to
the device behaviour. When discovered, these modifica-
tions are back-annotated to higher description levels. Sim-
ulation and verification are repeated. However, iterations
rarely span more than two description levels. The extra
effort is compensated for by the inherent reduction in the
number of design errors.

2.2. Verification

Because for example word length effects result in
small functional differences between AL and HL, design
verification at this level cannot be bit-accurate (figure 1).
Algorithm and formal IC specification (HL) are therefore
subjectively compared on the basis of simulations. From

Figure 1. Hierarchical design flow.

Algorithm (AL)

Register
Transfer

Level (ML)

Behavioural
Level (HL)

Library
Level (LL)

Silicon

Proto-
IC

type

Output

Output

Input

PaperSpecification
n=1

n=2

n=3

n=4

n=5

= bit accurate
comparison



Table 1: Description level characteristics for digital IC design.

Description Characteristics Requirements Applications

Algorithm (AL) • executable functional description
• causal timing, unclocked
• abstract data types (e.g. integers, reals)

• implementation / partitioning indepen-
dent
• high execution speeds

Functional system develop-
ment, verification, and specifi-
cation

Behavioural (or
High Level, HL)

• executable description (function and
architecture)
• clock related timing
• composite bit data types (e.g. integers,
bit vectors)

• pin compatible with device
• abstract description in VHDL
• exact representation of IC functionality
• high simulation speeds

Executable functional and
architectural reference (formal
specification) for IC design,
and system verification

Register Transfer
(RT- or Medium
Level, ML)

• executable description (function, archi-
tecture and implementation)
• clock related timing
• composite bit data types

• detailed internal device hierarchy
(blocks)
• preferably synthesizable VHDL

Input to block based design tra-
jectory

Gate (or Library
Level, LL)

• structural description
• propagation delay based timing
• bit value data types

• VHDL netlist of entire device Input to layout synthesis, per-
formance and timing analysis,
and netlist verification

the HL description onwards verification is bit-accurate. So
far, verification was performed through simulations, in
future formal verification may be an alternative [5].

Functional verification of hardware prototypes is per-
formed by using the HL description (VHDL) as an exact
(pin compatible) reference for an IC (figure 1). Stimuli are
applied to the device at full frequency, and its response is
recorded and compared (off-line) to HL output (bit-accu-
rately). In addition to functional verification, hardware is
tested under various electrical conditions.

2.3. Experimental results

Table 2 summarizes the consistent experimental results

of applying the hierarchical flow to several digital IC
designs. The gate counts approximate the number of

Table 2: Hierarchical Design Flow, Experimental
Results.

I II III IV V

gate count 25,000
 + 12
kbit
RAM

35,000
+ 23
kbit
RAM

60,000
 + 43
kbit
RAM

35,000
 + 46
kbit
RAM

40,000 +
1 kbit
RAM +
3 DACs

(appr.)

clock freq. 27 27 27 27 27 MHz

design flow HL
→
layout

HL
→
layout

HL
→
layout

HL
→
layout

ML
→
layout

development
effort

28 30 28 p-mth

total elapsed
time

14 13 7 mth

rede-
signs

func-
tional

0 0 0 0 1 modi-
fica-
tionselec-

trical
2 0 0 0 0

standard cell 2 input NAND-equivalent gates. The devel-
opment effort (p-mth = person months, mth = months) was
measured from the start of design work (setting up an HL
description) until the release of first silicon engineering
samples (no redesigns included). The redesign modifica-
tions represent the design changes required to make the
first silicon specification compliant.

The HL step was omitted for design V, resulting in an
increase in verification complexity, and a decrease in sim-
ulation performance. The total design effort was conse-
quently not reduced substantially. Moreover, a functional
redesign was required, (not accounted for in the effort in
table 2) due to insufficient simulation coverage. Design V
therefore demonstrates that starting design at higher levels
of abstraction is sensible.

2.4. Advantages

A hierarchical design flow, such as the one previously
described, has the following advantages:
• the same formalism (i.e. VHDL) is used for all descrip-

tion levels throughout the design
• concurrent development (engineering) is facilitated
• the risk of functional errors is reduced, early design flaw

detection is facilitated, and iteration loops are kept short
• models are easily maintainable for (future) reuse, rede-

signs are consequently simplified
• Time-to-Market is reduced effectively (by a factor of

about 2, according to [1])

3. Hardware / software codesign

3.1. Driver software

Embedded software can be represented in the layered
model depicted in figure 2. The bottom layer of the model
consists of self-contained components combining hard-



ware, and hardware specific driver software. The compo-
nent layer moulds the bare functionality of the hardware
(HW) into the logical functionality required for software
(SW) design.

The two higher layers in the model consist of software
only. The system control layer combines the functions of
several component layer modules. Such subsystems are
the basic abstraction of hardware functionality, arranged
according to the structure of the software. The user control
layer combines all software functionality and provides a
user access to, and feedback from the system.

3.2. Hardware / Software Codesign
Characteristics

Hardware / software codesign is a method for concur-
rent development of individual component layer modules
(figure 2), consisting of digital hardware and associated
driver software. Concurrent development provides for a
reduced Time-to-Market, as hardware and software design
are performed concurrently instead of consecutively. Fur-
thermore, the risk of functional errors is reduced, as both
hardware and software design benefit from extensive veri-
fication, and from close cooperation with the other.

The advantages of hierarchical flows (listed in section
2) inspired the development of a hierarchical hardware /
software codesign flow (figure 3). In this flow the hard-
ware column is identical to figure 1. The software descrip-
tion levels however have different characteristics (table 3).

The hardware / software algorithm (AL) is basically
not different from the algorithm for digital hardware
design. No distinction is made between hardware and soft-
ware. An instruction-execution based specification style
[1] in VHDL is well suited for hardware / software algo-
rithms. Commands issued by higher layer software mod-
ules (figure 2) are executed, under the assumption that
processing power is sufficiently available [6].

The behavioural description (HL) in the software col-
umn consists of algorithmic implementations of driver
tasks in VHDL. Software processing power is assumed to
be adequately available, dedicated hardware resources are
limited. All of the concurrent driver tasks are served
instantaneously, upon request [6]. However, communica-
tions channels to the hardware, provided by an elementary

Figure 2. Basic architectural model for embedded
software development.
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micro controller emulator (µC-emu), have to be shared
between driver tasks.

The ML description contains the same software tasks
as the HL, but statements are executed strictly sequen-
tially. A real time kernel (operating system) is imple-
mented to allocate priority to competing driver tasks [6].

The library level description (LL) represents the
microcode of the driver software. It is strictly sequential,
and ready-to-run on a system micro controller or micro-
processor. To allow for performance and timing analysis
through VHDL simulations, a vehicle which emulates
hardware execution (µC-emu, figure 3) may be needed.
The software may subsequently be released for incorpora-
tion in a complex suite of system software (as in figure 2).

In literature, several possible hardware / software
codesign problem areas are identified. The most relevant
issues are tackled in the following paragraphs.

3.3. Cospecification

If an algorithm (AL) is set up as an instruction-execu-
tion specification in VHDL, at the start of system develop-
ment, it can serve as a hardware / software cospecification,
provided the description does not prescribe an implemen-
tation nor a partitioning (table 3).

At the behavioural (HL) level, hardware and software
are specified in separate descriptions, but in the same for-

Figure 3. Digital hardware / software codesign.
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Table 3: Description Level Characteristics for Software Design.

Description Characteristics Requirements Applications

Algorithm (AL) • executable functional description
• causal timing, unclocked
• abstract data types (e.g. integers, reals)

• implementation / partitioning
independent
• high execution speeds

Functional system develop-
ment, verification, and speci-
fication.

Behavioural (or
High Level, HL)

• executable description (function and architecture)
• causal timing, clock synchronous I/O to hardware
• composite bit data types (e.g. integers, bit vec-
tors)
• individual software tasks processed concurrently

• abstract description in VHDL
• detailed timing only for com-
munication (I/O) to hardware
• high simulation speeds

Executable functional refer-
ence for software design,
and system verification.

Register Transfer
(RT- or Medium
Level, ML)

• executable, scheduled description (function and
architecture)
• causal timing, clock synchronous I/O to hardware
• composite bit data types
• individual software tasks processed sequentially

• high level programming lan-
guage (HLL, e.g. C), or VHDL
description
• scheduling based processing
time allocation

Input to high level program-
ming language (HLL) com-
pilation

Gate (or Library
Level, LL)

• structural description (microcode)
• processor clock cycle based timing
• bit value data types

• executable on appropriate
micro-controller / microproces-
sor

Input to performance and
timing analysis, and design
verification

malism (VHDL). The software HL specifies driver behav-
iour, in a timing causal manner. If hardware and software
HL are combined in one VHDL environment (as in figure
3), hardware / software cospecification results at this level
also (as in [6]).

3.4. Partitioning and Integration

Architectural synthesis tools [7] may prove useful to
support hardware / software partitioning, which has so far
been performed manually. As VHDL is the formalism
used at the behavioural level, modifications of the parti-
tioning are straightforward (figure 3). Parts of the software
description can be cut and pasted into the hardware
description, and / or vice versa.

3.5. Cosimulation and Verification

To enable cosimulation and verification, a micro con-
troller emulator (µC-emu, figure 3) is needed to virtually
run the driver software on. For behavioural and register
transfer level descriptions the emulator is a rudimentary
(VHDL) model of the micro controller, implementing
clock cycle based I/O protocols only. The VHDL emulator
therefore consists of a small set of read and write instruc-
tions. For the library level (microcode), a more sophisti-
cated model, performing accurate microcode execution, is
required. This model enables cycle based timing analysis.

Hardware / software verification is performed on the
basis of VHDL simulations. In our experiments we found
that hardware / software verification benefits from concur-
rent development. The number of hardware and software
design errors is effectively reduced. Furthermore, stimuli
generation is simplified, as the driver software translates
logically abstract, but intelligible instructions into appro-
priate, but hardly comprehensible communication actions.

After hardware-only prototype evaluation (section 2),
co-evaluation is performed. A real time micro controller
emulator is connected to the hardware evaluation environ-
ment. The emulator runs the driver software, and allows
real time interactive software debugging.

3.6. Experimental Results

Hardware / software codesign experiments have so far
been restricted to control oriented implementations in
which hardware handles real time tasks under software
control, with the results listed in table 4. The efforts for the

two equally complex devices are different, because several
design VI blocks were reused in design VII.

The effort for both devices in table 4 is comparable to

Table 4: Hardware / Software Codesign, Experimental
Results.

VI VII

gate count 25,000 +46 kbit
RAM

30,000 + 12 kbit
RAM

(appr.)

clock freq. 9 9 MHz

design flow HW / SW code-
sign

HW / SW code-
sign

pro-
gram-
mability

protocol memory I/O,
parallel

memory I/O,
parallel

control
regis-
ters

900 1852

development
effort

32 24 p-mth

total elapsed time 9 6 mth

redesigns 0 0 modifi-
cations



the data in table 2. However, hardware / software codesign
in combination with rapid prototyping [8] results in not
only engineering samples, but also driver software and
CPLD (complex programmable logic device) prototype
boards. The early availability of software and CPLD pro-
totypes led to a functional prototype system, even before
the IC designs (VI and VII) were transferred to a foundry.

3.7. Conclusions

Present day formalisms such as VHDL and design
tools allow effective hardware / software codesign, with
the following advantages:
• models are easily maintainable for (future) reuse
• the risk of functional errors in both hardware and soft-

ware is reduced, and iteration loops are kept short
• concurrent development is supported, and even recom-

mended to increase development speed
• the Time-to-Market for hardware and associated driver

software is effectively reduced
• in combination with rapid prototyping, hardware / soft-

ware codesign allows for early system integration
Most of the hardware / software codesign obstacles men-
tioned in literature can be overcome fairly easily.

4. Mixed analogue / digital design

4.1. Analogue / Digital Design Flow
Characteristics

Traditional analogue design methods focus on the
structure (transistor) and geometry (layout) domains.
However, mixed analogue / digital coverification (similar
to section 3) in these domains is practically infeasible,
because circuit simulations are slow. A hierarchical mixed
signal design flow (figure 4), which starts in the function
domain, for software (SW), digital hardware (DHW), and
analogue hardware (AHW), is therefore proposed [11].
The digital hardware and software columns are identical to
figure 4, the analogue hardware description levels are
defined in table 5.

The algorithm (AL) does not distinguish between ana-
logue hardware, digital hardware, nor software. The ana-
logue behavioural description (HL) is an oversampling
based VHDL description of desired hardware behaviour
[9]-[10], because current VHDL simulators only support
event driven, discrete time simulations.

The analogue medium level (ML) description is a
macro based description of an analogue implementation. It
may contain macro cells such as operational amplifiers,
and filters. Modern circuit simulators (such as MILES,
[12]) allow for ML cosimulation, through VHDL simula-
tor interfaces.

The library level (LL) description is the transistor
implementation of an analogue device. Simulation of ana-
logue behaviour at this level is accurate, but extremely
slow, and therefore used to verify specific implementation

aspects such as timing and signal integrity only.

4.2. Cosimulation and verification

Designers working in either the digital hardware, or
the software column, are uninterested in detailed analogue
behaviour. They use the analogue HL description as a
functional reference. Analogue designers in turn use the
digital hardware and software HLs.

4.3. Experimental Results

Mixed analogue / digital design flow experiments have
yielded the results in table 6.

4.4. Conclusions

The proposed analogue modelling is feasible, and the
benefits of a hierarchical design flow apply to analogue
design as well [11]. However with the future extension of
VHDL towards the analogue domain, VHDL-A, more
detailed descriptions of the analogue behaviour can be
made. This may facilitate the incorporation of parasitic
analogue behaviour at the behavioural level, providing
more accurate system models.

5. Discussion

Hierarchical design flows for digital IC design exhibit

Figure 4. Mixed analogue / digital design flow.
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Table 5: Description Level Characteristics for Analogue Design.

Description Characteristics Requirements Applications

Algorithm (AL) • executable functional description
• causal timing, no clocks
• abstract data types (e.g. enumerated)

• implementation / partitioning indepen-
dent
• high execution speeds

Functional system development,
verification, and specification

Behavioural (or
High Level, HL)

• executable description (function and
architecture)
• timing related to oversampling clock
• real data types

• pin compatible with device
• abstract description in VHDL
• representation of IC functionality
• high simulation speeds

Executable functional reference
(formal specification) for IC
design, and system verification.

Register Transfer
(RT- or Medium
Level, ML)

• executable description (function,
architecture, and implementation)
• continuous time
• real, or physical data types

• detailed internal device hierarchy
(macroblocks)
• includes parasitic characteristics

Input to block based design tra-
jectory

Gate (or Library
Level, LL)

• structural description
• propagation delay based timing
• physical data types (e.g. voltage)

• transistor netlist of analogue part of
the device

Input to layout synthesis, perfor-
mance analysis, and design veri-
fication

distinct advantages. If hardware / software codesign, and

mixed analogue / digital design flows are set up hierarchi-
cally, they benefit from, at the very least, the same advan-
tages:
• a small but comprehensive set of descriptions
• a single formalisms (VHDL) for higher levels of design

abstraction
• concurrent development
• design error risk reduction, resulting in a significant

decrease in the number of redesigns
• Time-to-Market reduction

Table 6: Mixed Analog / Digital Design, Experimental
Results.

VIII IX X

gate count 1,000 +
2 ADCs,
5 DACs,
4 Opamps

22,000 45,000 +
2ADCs,
3 DACs,
3 Opamps

(appr.)

clock freq. 60 14 28 MHz

design flow Mixed
Analog /
Digital

Mixed
Analog /
Digital

Mixed
Analog /
Digital

program-
mability

protocol - - I2C

control
registers

- - 250 (est.)

development effort 24 18 30 p-mth

total elapsed time mth

redesigns 0 0 0 modifi-
cations
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