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Abstract
This paper presents a novel approach to schedul-

ing of hardware supported synchronization operations.
The optimization goal is to minimize the interation
time of processes and thus the overall computation
time of a system composed of a set of interacting pro-
cesses.

To minimize computation time, minimum timing
constraints of synchronization mechanisms have to be
satis�ed. In order to meet these requirements the
control 
ow oriented scheduling algorithm allows to
schedule synchronization operations into loops with
unknown iteration count. To achieve this, a set of
control steps into which each synchronization opera-
tion may be scheduled is computed and afterwards, a
controller is synthesized, which determines the �nal
schedule dynamically during execution.

1 Introduction
System-level synthesis of digital systems1 deals

with multiple communicating processes. Tasks of
system-level synthesis (see e.g.[1, 2]) are e.g. parti-
tioning (see e.g. [3]), including clustering and con-
straint partitioning as well as behavioral transforma-
tions like process generation from procedures or func-
tional pipelining.

In an early design phase, only causal relations inside
processes and between processes are speci�ed. Later
on detailed timing information is considered in the
design process. Assuming a synchronous design style,
�rst clock cycles and later clock-period(s) or propaga-
tion delays respectively are introduced in the design.
The introduction of detailed timing can be split up
into two tasks: protocol- or interface synthesis and
high-level synthesis. The former deals with synthe-
sis of synchronization and communicationmechanisms
between the processes, and the latter (for an overview
see [1, 3, 4]) with synthesis of operations inside single
processes.

Tasks of protocol synthesis are control step schedul-
ing [5], which inserts or removes time slots for correct
data exchange, selection of protocols including serial-
parallel transmission trade-o� [6], or the implemen-
tation of hardware-supported synchronization which

1System-level synthesis includes also the synthesis of hetero-

geneous, e.g. electrical analog=digital systems or mechatronic

systems. This paper, however, focuses on the synthesis of syn-

chronous digital systems only. Hardware=software co-design is

not considered, too.

adds hardware to allow for correct data exchange, con-
trol of subunits or resource sharing between concur-
rent processes.

This paper presents semi-dynamic scheduling a
novel approach to scheduling of hardware supported
synchronization. The paper is organized as follows:
Existing approaches and related work are presented in
the next section. Properties of protocols and synchro-
nization mechanisms are discussed afterwards. The
algorithm and an example concludes the paper.

2 Previous Work

Methods as implemented in high-level synthesis
tools (see e.g. [1, 3, 7, 4]) typically do not attack
the freedom of scheduling synchronization operations.
Either the number of time slots (= number of required
control steps or clock cycles respectively) is minimized,
or area and propagation delay are minimized subject
to pre-scheduled IO-operations. In the �rst case the
optimization of concrete synchronization mechanisms
is inhibited, in the second case adjustments to the con-
trol steps of I=O operations can not be made.

A special approach in high-level synthesis, the data-

ow oriented scheduling under consideration of rela-
tive and incomplete time constraints, as presented in
[8] or [9], may allow for scheduling of synchroniza-
tion operations. However, this approach treats level
sensitive synchronization mechanisms equally to edge
sensitive synchronization mechanisms due to data-
ow
oriented schedule. Therefore it wastes one clock cycle
per level-sensitive synchronization mechanism. More-
over, this approach does not allow scheduling of loop
variant operations into loops with unknown iterations
count.

Scheduling approaches which do allow scheduling
into loops and over loops are described in [10] and [11].
These approaches, however, do not allow scheduling of
loop variant operations into loops with an unknown
iteration count.

Approaches for protocol and synchronization syn-
thesis, respectively can be found in [6] and [5]. Both
approaches, however, try to minimize area only. The
�rst approach is based on the evaluation of a serial-
parallel data transmission trade-o� and the second ap-
proach focuses on detection and removal of unneces-
sary synchronization lines and optimization of the re-
quired control logic.



3 Protocols
Protocols are used to synchronize the execution

of concurrent processes and=or to allow for data ex-
change between concurrent processes. Protocols can
either consist of merely a synchronization mechanism
or merely a data exchange mechanism or both a syn-
chronization mechanism and a data exchange mecha-
nism. This paper mainly focuses on the synchroniza-
tion aspect of protocols.

Synchronization mechanisms are used to guarantee
a required temporal relation-ship of a set of concurrent
processes. A synchronization speci�cation consists of
a physical speci�cation and a behavioral speci�cation.
The physical speci�cation describes the connectivity
required for synchronization. The behavioral speci�-
cation includes temporal requirements and describes
the temporal sequence of events. It is composed of a
set of synchronization operations. The physical spec-
i�cation is implemented by wires, whereas the behav-
ioral speci�cation is implemented by a controller, a
sub-controller or a part of a controller2.

A synchronization operation is seen in this paper
as a part of a synchronization mechanism that can
be mapped onto one control step. A control step is
an atomic operation performed by a controller. The
time required for a control step is one clock cycle in
synchronous designs.

A time constraint speci�es the distance of two
events or two operations, respectively. The distance
may be speci�ed by an exact value, a lower bound, an
upper bound or an interval consisting of a lower bound
and an upper bound. A synchronous design style re-
quires that the values are speci�ed in terms of clock
cycles and an additional speci�cation of the clock pe-
riod. A minimum time constraint is the exact value
or the lower bound of a time constraint.

A synchronization point speci�es one point in the
synchronization mechanism between two synchroniza-
tion operations. Intended time relations are anchored
at a synchronization point.

The need for a separate speci�cation of the synchro-
nization point is illustrated by the following example.
Assume a synchronization mechanism as shown in Fig-
ure 1. It ensures that two processes run in parallel
after its execution.
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Figure 1: Need for Synchronization Point

Three points in the protocols P1, P2 and P3 can
be used to specify a time constraint for the beginning
of the subsequent operations Op1 2 and Op2 2 respec-
tively. Hence, one of the three possible points must

2It should be remarked that a controller is a piece of hard-

ware which implements the control-
ow of a description. The

implementation of a controller, however, is not restricted to a

special target architecture, e.g. a �nite state machine
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Figure 2: CDFG of a Hand-Shake Mechanism

be speci�ed as the point at which synchronization is
performed to allow an unambiguous time constraint
speci�cation of the starting point S1 2 of operation
Op1 2 and Op2 2.

4 Properties of Synchronization Mech-

anisms
The behavioral speci�cation of synchronization

mechanisms shows some important features listed be-
low. They must be considered during scheduling but
also can be used for optimization purposes.

4.1 Data Types of Synchronization Mech-
anisms

Data types for synchronization consist of bit values
or enumeration types which may be mapped on bit val-
ues. Thus, only bit manipulations but no arithmetic
operations have to be performed for synchronization.
The hardware required for their implementation is rel-
atively small compared to datapath elements like a
multiplier.

4.2 Control-Flow Structure of Synchro-
nization Mechanisms

Synchronization ensures that one or more processes
perform actions concurrently, exclusively or sequen-
tially. To allow this, synchronization operations in-
clude operations signalling that an action has been
performed or that an action waits to be performed,
and operations awaiting a signal of other processes.
The latter task can be implemented in hardware via
polling only. This implies that a loop with an unknown
iteration count has to be executed for this task.

An example containing an unconstrained loop is
shown in Figure 2. It represents pieces of a hand-
shake protocol's control 
ow graph. Data
ow arcs
have been shadowed and arcs for time constraints have
been dashed in the example. TStep speci�es the exact
time constraint of one clock cycle.

4.3 Timing Constraints of Synchroniza-
tion Mechanisms

Scheduling synchronization operations must gen-
erate an implementation which satis�es time con-
straints. To allow for fast response of a system com-
posed of interacting processes, synchronization oper-
ations must be scheduled as fast as possible This re-
quires, that minimum time constraints have to be ex-
actly met.

Figure 3 illustrates the impact of delayed synchro-
nization operations which consist in the example only
of the valid signals valid in, valid x and valid out.
It shows waveforms of the synchronization and data
exchange of a system composed of two sub-systems.
The overall computation time of the system depicted
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Figure 3: The In
uence of the Schedule of Synchro-
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in the upper part of the �gure is greater than the
computation time of the system depicted in the lower
part due to the internal synchronization operation
(valid x) being performed too late.

4.4 Level- and Edge-Sensitive Synchro-
nization Mechanisms

A level-sensitive synchronization mechanism is a
synchronization mechanism which requires a de�ned
value for a de�ned time interval only. It is aminly
used for closely coupled processes.

A level-sensitive synchronization mechanism can be
scheduled into a single control step. An example for
a level-sensitive synchronization mechanism is the in-
crement control of an up-counter. If a signal of the
synchronization mechanism has a speci�ed value, the
counter will increment its value during each control
step.

An edge sensitive synchronization mechanism is a
synchronization mechanism which requires the change
of a value to a speci�ed value. It is used for the syn-
chronization of completely independent processes.

Hence, an edge sensitive synchronization mecha-
nism requires at least two control steps. Hand shake
synchronization mechanisms belong to this type of
synchronization mechanisms.

It is important to note, that edge- and level-
sensitive synchronization mechanisms must be distin-
guished. Otherwise one control step is wasted when a
level-sensitive synchronization mechanism is used like
an edge-sensitive synchronization mechanism.

4.5 The Synchronization Point

If operations for data exchange exist then they oc-
cure befor the synchronization point. These and all
synchronization operations before the synchronization
point main not be moved to keep the time anchor as-
sociated with the synchronization point �xed.

Additionally, it is important to note that all
data
ow dependecies of the synchronization opera-
tions are �xed by control 
ow dependencies and time
constraints.

5 Semi-Dynamic Scheduling
5.1 The Basic Idea

The basic idea is to perform control 
ow oriented
time constrained scheduling of the synchronization op-
erations after the synchronization point. The opera-
tion before the synchonization point must remain in
their place in the data 
ow graph. These should be
considered only in an additional data 
ow oriented
scheduling step.

Dealing in this way, all data
ow dependencies in-
side and between synchronization mechanisms are ful-
�lled due to 4.5.

5.2 Level- and Edge Sensitive Protocols
Level and edge sensitive protocols must be be han-

dled di�erently. This can be achived by setting min-
imum time constraints (see 4.4) to all synchonization
operations but the tail operation of a level sensitive
protocol. Thus, this synchronization operation can be
both executed or overwritten in control 
ow oriented
scheduling.

5.3 Solving the Scheduling Problem
The main problem to be solved in scheduling of

synchronization mechanisms is to allow scheduling of
loop variant operations into loops with unknown it-
eration count due to 4.2 and 4.3. The basic idea is
to schedule the synchronization mechanisms dynam-
ically, i.e. the schedule of the synchronization oper-
ations is determined during execution by the synthe-
sized controller. This can be achieved by synthesizing
a controller which executes synchronization operations
depending on their earlier execution in both condition-
ally executed branches3 again as well as in uncondi-
tionally executed branches.

To store the state of execution of synchroniza-
tion mechanisms, i.e. the synchronization operations
which have already been executed, a 
ag is introduced
in the controller. The controller will only execute a
synchronization mechanism if its corresponding 
ag is
not set; in turn it will set the 
ag upon execution of
the operation.

To avoid errors, it must be also considered that
a synchronization mechanism may not have been �n-
ished before beeing initiated again. This implies that
the synthesized controller has to �nish execution of a
synchronization operation of a synchronization mech-
anism, before it starts a subsequent instance of the
synchronization mechanism.

The expected overhead should be acceptable due to
the considerations of 4.1.

5.4 Scheduling Algorithm
The semi-dynamic scheduling algorithm consists of

four parts (see Listing 1): The �rst part removes the
synchronization operations which can be scheduled,
stores them related to their synchronization mecha-
nism for later use, and analyzes their properties. The
second part determines the control steps for the op-
erations between the synchronization operations. The
implementation of this point is discussed in Section 5.5
in more detail.

3including loops with unknown iteration count



algorithm semi-dynamic scheduling
r : list of synchronization operations;

Lb, Le : array of labels;
S : array of integer;

R : array of lists of synchronization operations;

T : array of integer;
CSmin, CSmax, csmin, csmin : integer;

begin

Part 1: for all synchronization mechanisms s
label begin and tal of synchronization protocols in CFG with labels Lb(s) and Le(s)

r = cut synchronization operations of s after the synchronization point;

S(s) = number of synchronization operations in r;
R(s, i) = i-th synchronization operation of r 8 1 � i � S(s);

T(s) = maximum number of control steps required for r;

end for;
Part 2: (see Section 5.5) determine other control steps in controller

Part 3: for all synchronization mechanisms s

= = Block oriented Timing Analysis
CSmin = minimum number of control steps between synchronization point and start of s

if T( s ) > CSmin then = = Enough control steps available for synchronization operation

for i = 1 : : : S(s) = = Determine control steps which may not be executed
csmin = minimum number of control steps required for R(s, j) 81 � j � i;
if csmin > CSmin then

= = Introduce 
ag controlling dynamic schedule
insert flag(s) in controller, if not already done

= = Schedule synchronization operation dynamically

insert R(s, i) before Lb(s) under condition of flag(s) in control 
ow graph;
end if;

end for;

end if;
end for;

Part 4: for all synchronization mechanisms s

for all control steps c
if c 2 R(s, i) 8 1 � i �S(s) then continue

= = Block oriented Timing Analysis

CSmin = minimum number of control steps between synchronization point of s and c;
CSmax = maximum number of control steps between synchronization point of s and c;

for i = 1 : : : S(s)
csmin = minimum number of control steps required for R(s, j) 81 � j � i;
csmax = maximum number of control steps required for R(s, j) 81 � j � i;
if csmin = csmax = CSmin = CSmax or = = interval exactly determined?

i = S(s) and kind( R(s, i) ) = invariant and = = loop invariant �nal syncronization operation?
csmin � CSmax and CSmin � csmax then

insert R(s, i) in c = = static schedule

else

if csmin � CSmax and CSmin � csmax then = = syncronization operation possibly in interval?

= = semi-dynamic schedule

insert 
ag(s) in controller, if not already done
insert R(s, i) in c under condition of 
ag(s) in control 
ow graph;

end if;

end if;

end for;

end for;

end for;

end algorithm;

Listing 1: Semi-Dynamic Scheduling



The third part performs a static analysis of the con-
trol steps and inserts synchronization operations de-
pending on the minimum number of control steps, to
ensure that a synchronization mechanism has �nished
before it is being started again. The �nal part sched-
ules, depending on the number of control steps be-
tween the synchronization point of each synchroniza-
tion mechanism and any control step in the process,
the synchronization operations either statically, or dy-
namically without using a 
ag or dynamically using a

ag.

The complexity C of the semi-dynamic scheduling
algorithm can be formulated as

C = jSj � jPj
| {z }

part1

+ jSj � jSj
| {z }

part3

+ jSj � jCj � jPj
| {z }

part4

= O(jSj
3
)

without considering part 2: determination of control
steps in the process. Here, jSj is the number of nodes
in the control-
ow graph before scheduling, jPj is the
number of nodes in the synchronization mechanism
and jCj is the number of control steps. The for-
mula shows that the complexity of the semi-dynamic
scheduling algorithm is in the worst case cubic in the
number of nodes of the control-
ow graph.

5.5 Integration in the Design-Flow
All control steps of a process must be known to

allow semi-dynamic scheduling. Three alternatives for
the determination of the control steps are possible.
These possibilities also show the interaction of semi-
dynamic scheduling with high-level synthesis.

1. If the time constraints between the synchroniza-
tion mechanisms are not speci�ed exactly, high-
level synthesis will be performed as a second part
of the presented semi-dynamic scheduling algo-
rithm. In this case the control steps between
the synchronization mechanisms are determined
by high-level synthesis.

This alternative facilitates the application of pure
resource constraint scheduling in combination
with �xed synchronization timing of the synchro-
nization operations.

2. If the time constraints between the synchroniza-
tion points are �xed and feasible two alternatives
exist.

(a) As above, high level synthesis is performed
as second part of the scheduling algorithm.

(b) The second part consists of the introduction
of control steps only. High-level synthesis is
performed on the pre-scheduled control steps
after part four of the semi-dynamic schedul-
ing algorithm.

For both alternatives, however, high-level synthe-
sis must be able to satisfy exact time constraints.
Alternative 2(b) moreover requires that high-level
synthesis operates on pre-scheduled control steps.

Note that the determination of the control steps be-
tween synchronization mechanisms may be NP-hard
depending on the accuracy of the implemented algo-
rithm.

6 Scheduling Example
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Figure 4: CFG of a Hand Shake Mechanism

Figure 4 shows the control-
ows graphs for an
independent4 send and receive operation based on
edge-sensitive hand-shake synchronization. The
send operation consists of one control step before
the synchronization point (operations d1=data and
v1=valid) which can not be scheduled and two con-
trol steps after the synchronization point, which can
be scheduled. The �rst control step after the synchro-
nization point is required to wait for the acknowledge
signal of the communication partner and the second
control step is required to ensure that the valid signal
v1 changes its value to not valid. Hence, the follow-
ing properties of the statements to be scheduled of the
send routine can be evaluated:

1. The maximum number of clock cycles required
for executing the synchronization operations of
the send routine after the synchronization point
is in�nite.

2. The size of the 
ag storing the state of the send
routine is three5.

3. The �rst control step which can be scheduled
is loop variant whereas the second control step
which can be scheduled is loop invariant. This
property of the second control step, however, can
not be used for optimization as the number of
iterations of the �rst control step is unknown.

The receive operation consists of two control steps,
which can not be scheduled. The �rst is conditionally
executed. It is required to wait for the valid signal of
the communication partner. The second one is nec-
essary to take data from the communication medium.
One control step however can be scheduled. It consists
of the statement a0=not ack. It is required to ensure
that the acknowledge signal a0 changes its value to
not ack due to the fact that a hand-shake protocol is
edge-sensitive. The receive operation has the following
properties, to be considered for scheduling:

4The post�x 1 respectively 0 is introduced to show that the

operations may operate on di�erent signals. Hence, the same

post�x is used for the example in Figure 5
5Later in the paper, the values of the 
ag will be called

waiting, pulse, and ready.



1. The maximum number of clock cycles required
for the executing the synchronization operations
of the receive routine after the synchronization
point is one.

2. The size of the 
ag storing the state of the receive
routine is two.

3. The synchronization operation after the synchro-
nization point is loop invariant.

Figure 5 shows the semi-dynamically scheduled
control-
ow graph of a process, which consists of a re-
ceive and send operation only. First, the synchroniza-
tion operations of the send and receive operation (v0?,
data=d0, a0=ack, d1=data and v1=valid), before the
synchronization points of the synchronization mech-
anisms, are scheduled. No further process-internal
scheduling must be performed in this example.
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Figure 5: Semi-Dynamically Scheduled CFG

The next step, the static analysis of control steps,
returns two as the minimum number of executed con-
trol steps. This implies that it can be ensured for the
receive routine only, that it will be �nished correctly.
Due to the fact that the tail synchronization opera-
tion of the receive routine is loop invariant, no 
ag is
required to store the state of the receive routine. The
number of control steps required for the send routine
is in�nite and hence not smaller than the minimum
number of executed control steps. Thus 
ag state1
has to be introduced to store the current execution
state of the send routine, and block (3) has to be in-
troduced in the control 
ow graph to ensure, that the
send operation can be �nished before it will be started
again.

The last step consists of scheduling the remain-
ing control steps of the synchronization mechanisms.
The operation a0=not valid is scheduled statically
in block (3) and after the operation v1=valid and
the operations of the send routine are scheduled dy-
namically by inserting the blocks (1) and (2) in the
control-
ow graph.

7 Results
Several tests were made to analyze the e�ect of

semi-dynamic scheduling. Semi-dynamic scheduling re-
duced the number of required clock-cycles in every test.
The minimum clock period and the required area
of the resulting circuits, however, increased in some
cases.

8 Summary and Conclusion
A new method for clock cycle minimization of in-

teracting processes by control 
ow oriented scheduling
of synchronization mechanisms with cubic complex-
ity was presented. The method allows for optimizing
edge-sensitive as well as level sensitive synchronization
mechanisms, which can not be handled by schedul-
ing algorithms presented in the past. Moreover, the
scheduling algorithm is able to schedule operations
into branches and loops with unknown iteration count.
The method was only developed for cycle based proto-
col optimization. Currently, we are working to apply
semi-dynamic scheduling also for resource minimiza-
tion and to reduce hardware overhead by generating
concurrent controller for 
ag control.
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