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Abstract
In this paper, we present a new model for concurrency

control that supports cooperation of design tools and de-
signers in a design environment. We capture characteristic
access and cooperation behaviour of design tools by activ-
ity types to guide a concurrency control component in ac-
cess synchronization, conflict handling and inter-tool
communication. Activity types allow to characterize coop-
erative work situations more precisely. This allows to im-
prove designers awareness of conflicts in an environment
of concurrently running design tools and supports them in
interactive conflict resolution.

1 Introduction

Design environments consist of various design tools
and a framework [1], [2] providing an infrastructure sup-
porting design methodology management and design data
management. An important service to be offered by a
framework is the support of cooperation between design-
ers as well as design tools. Design methodology
management [3] deals with the organization of the design
process. It provides means for project management related
aspects of cooperation like team work and task assignment
to designers. This information is represented by meta data
which is used to control the execution of design flows.

Design flow engines usually operate on meta data and
do not take the corresponding fine-grained design data into
account. Therefore, they are of limited use to support tight
cooperation of design tools sharing common design data.
Nevertheless, this support is essential for tool interopera-
bility. Since deep submicron design needs data-centered
synchronization of tools for synthesis, floorplanning,
placement and routing, tool interoperability will become a
more important issue in the future. Therefore, cooperative
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work of design tools has to be adequately supported by a
concurrency control component of a framework.

Cooperative work situations not only occur in the
context of tool interoperability but also in early design
phases where a team of designers have to negotiate and
agree on common component interfaces. Both cooperative
work situations have common characteristics and require
similar support by a concurrency control component.
Since the execution sequence of tool activities is usually
not known in advance, predefined design flows are hard to
apply. Since the synchronization of design tools mainly
depends on the design data itself, support of cooperative
work requires a data-oriented approach in contrast to the
more control-oriented nature of design flows.

In this paper, we concentrate on the support of coop-
erative work of design tools in a design environment. We
distinguish design tools in their cooperation capability and
capture their characteristic access and conflict behaviour
taking advantage of an information model. In addition, we
provide means to explicitly handle conflict situations to
support designers and tools in interactive conflict resolu-
tion.

This paper is structured as follows. After relating our
work to other approaches, we introduce an information
model as conceptual description of a shared object reposi-
tory in section 3. Section 4 describes our model for coop-
erative concurrency control. Section 5 discusses some
implementation aspects. Section 6 presents our conclu-
sions.

2 Related Work

Several models have been proposed to tackle the
problem of concurrency control for CAD applications [4].
Many of them use workspace concepts [5][6] or hierar-
chies of transactions [7][8]. Transactions are associated
with private workspaces which are usually managed using
check-out/check-in mechanisms in combination with non-



volatile locks in a public database. In case of access con-
flicts models using workspaces often react with the cre-
ation of new versions of data. This policy transfers the
problem of access conflict resolution to the problem of
merging different versions. Cooperative transaction
hierarchies [7] arrange transactions in a hierarchy. Cooper-
ative work is supported by providing protocols to sibling
transactions as well as parent transactions. These protocols
allow to relax isolation and serializability of classical
transactions. In addition, cooperative transaction hierar-
chies specify allowed as well as conflicting operation se-
quences by finite-state automata. Unfortunately, operation
sequences of cooperating design tools are often not known
in advance or very awkward to specify.

While existing approaches concentrate on methodolo-
gy management related aspects of cooperation, we aim at
support of tight cooperation of design tools. Therefore, we
do not primarily look at the hierarchical decomposition of
a design project into subtasks. Instead, we consider a set of
concurrently running design tools cooperating on a shared
design data repository.

3 Information Model

We use an information model to describe data shared
by design tools. Note that an information model makes no
assumption about a specific implementation. Data may be
stored in a design database, in design files, or elsewhere.
This allows to describe data on a conceptual level abstract-
ing from specific implementations.

An information model is described in terms of model-
ling constructs provided by an underlying data model. A
data model has to fulfill a minimum of requirements to be
suitable for our model. It has to support object types and
relationships. Object types may be arranged in an inherit-
ance graph. Each object typeOT has a set of attributes and
a set of relationships. Each relationship REL is a tuple of a
relationship identifier and a reference to an object type.
These requirements are fulfilled by existing object-orient-
ed data models (e.g. [9]) and are also provided by the in-
formation modelling language EXPRESS [10]. Both are
used for modelling of design data in design environments.

We use a simplified but typical ECAD structure as an
example. Figure 1 shows part of an information model de-
scribing a simplified design representation for high-level
synthesis. In the left part, the object types of a dataflow
graph are shown. They represent a simple behavioural de-
scription of a design. The object type representing a data-
flow graph (DFG) has a relationship (has_op) to a set of
operator nodes (OPERATOR) which in turn may refer
(of_dfg) to other dataflow graphs. In the right part, a hier-
archical netlist is depicted. It represents the structural de-
scription of a register-transfer level design. A cell (CELL)

contains (has_inst) instances (INSTANCE) which are de-
rived from (of_cell) other cells. A cell without instances is
a library cell. The object repository is described by such an
information model.

A high-level synthesis tool has the task to produce a
register-transfer level netlist from a behavioural descrip-
tion of a design. One subtask of the synthesis tool is to
bind operators (e.g. add) to functional units on register-
transfer level (e.g. an instance of an adder cell). More than
one operator may be mapped to a specific functional unit.
Therefore, we need a relationship from operators to in-
stances (bound_to) and a corresponding inverse relation-
ship (shared_by). Such non-isomorphic mappings are
characteristic for many ECAD structures.

4 A Model for Cooperative Concurrency
Control

Each design tool typically performs different kinds of
activities. Anactivity is a sequence of operations per-
formed by a tool on data. For example, an activity of a
simulator may be ‘read a netlist’ or ‘write a simulation re-
sult’.

Cooperative work of design tools is complicated by
the fact that tools have different capabilities to cooperate
and to react on conflicts. For example, tightly integrated
tools differ from encapsulated tools, interactive tools from
batch tools.

Interactive tools (e.g. editors) allow more flexible
conflict reactions, since designers may be directly in-
volved in conflict resolution processes. The schedule of
activities is determined interactively by the designer in de-
pendence of the state of design data. Therefore, interactive
tools primarily have designer controlled schedules.

A batch tool (e.g. a simulator) does not allow for di-
rect designer interaction. Therefore, the schedule of activi-
ties is determined by the algorithm of the tool. It may be
independent of or dependent on the state of design data. In
the latter case the run-time schedule is not known in ad-
vance.

Fig. 1:  Example for a simplified information model
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Both types of tools differ in their ability to handle
conflicts. An interactive tool allows a designer to directly
react on conflicts. This requires to make a designer aware
of conflicts by appropriate means. Although batch tools do
not allow direct designer interaction, they may also react
on conflicts if the algorithm of the tool is prepared to do it.

In the following, we consider a cooperative work sce-
nario consisting of a set of concurrently running tools
sharing common data. Some tools are controlled interac-
tively by designers, some are batch tools. In our example,
we use design tools having the following tasks:

• An editor is used to enter and edit a dataflow graph. The
tool is interactively controlled by a designer.

• A synthesis tool is a batch tool and creates a netlist from
a dataflow graph. It establishes non-isomorphic bindings
between operators and instances.

• A simulation tool analyses the synthesized netlist. Simu-
lation results have to be back-annotated to the dataflow
graph in order to allow the designer to evaluate the syn-
thesis result and to change the dataflow graph using the
editor.

4.1 Conflict Reactions

We use locks as a basis for the concurrency control
component. At least read (R) and write (W) lock modes
are provided. Compatibility of locks is determined by a
compatibility matrix as known from databases. Anaccess
conflict occurs if an activity tries to obtain a lock on data
that is locked by other activities in incompatible lock
mode. We call activities causing conflictsconflicting activ-
ities.

In our model, an access conflict produces a conflict
reaction. We distinguish two types of conflict reactions -
isolated and cooperative ones.Isolated conflict reactions
do not need any feed-back from conflicting activities. The
following isolated conflict reactions are provided:

• abort. Abort the current activity.

• wait. Wait until the required lock is released by all
conflicting activities (pessimistic protocol).

• ignore. Ignore the detected conflict and continue with
unsafe data (optimistic protocol).

Isolated conflict reactions have in common that they
do not try to communicate with conflicting activities. As a
consequence, the corresponding tools resp. designers are
not aware that their activities are producing conflicts.

Since our goal is to support cooperation and conflict
resolution, we provide an additional type of conflict reac-
tions. In contrast to isolated conflict reactionscooperative
conflict reactions allow to communicate with concurrent

activities. We provide the following cooperative conflict
reactions:

• request. The required lock is requested from all conflict-
ing activities. The activity may continue after issuing a
request.

• notify. A notification is sent to concurrent activities.
No lock on data is obtained in this case. The accessed
data itself is used as communication channel between ac-
tivities.

• kill . An abort is sent to conflicting activities. This
reaction should be avoided in cooperative environments.

The capability of a tool to handle cooperative conflict
reactions depends on its type. Interactive tools as well as
batch tools with conflict handling algorithms are able to
react on conflicts. Cooperative conflict reactions allow to
make designers or tools aware of occurred conflicts. This
is an essential prerequisite for successful conflict resolu-
tion. Designers are often able to evaluate and resolve oc-
curred conflict situations immediately. For example, a
designer controlling an interactive tool may rearrange the
schedule of activities on the fly.

4.2 Activity Types

Since each tool performs a dedicated task, the activi-
ties of a tool usually have a specific and often known be-
haviour in relation to data. We distinguishaccess
behaviour andconflict behaviour. Many design tools typi-
cally access data by navigating along relationships within
the object repository. We exploit this fact and describe
characteristic accesses of tool activities in terms of the in-
formation model. The access behaviour specifies which in-
ter-related set of objects are accessed by an activity.
Furthermore, relationships are used as paths to propagate
notifications in the object repository. Therefore, they are
important for inter-tool communication, e.g. back annota-
tion or change notification.
In addition to access behaviour, conflict behaviour deter-
mines which conflict reactions are performed if conflicts
occur during access to inter-related data. We define anac-
tivity type AT to specify the behaviour of tool activities:

AT = (LM, SOT, SCR, AP).

LM is the required lock mode.
SOT is the start object type the activity type belongs to.
SCR is the conflict reaction executed if a conflict on
the start object occurs.
AP = { (REL, CR) } is an access pattern. Each element
of AP is a tuple of a relationship REL of the
information model and a conflict reaction CR. The



conflict reaction is performed if a conflict on an object
REL refers to occurs.

An access pattern specifies a path between inter-relat-
ed object types. During run-time this path is used to pre-
claim locks. If an activity executes an operation on an
object in a specific lock mode, the activity type belonging
to thisstart object is selected. The access pattern of the ac-
tivity type determines which relationships are used to
propagate the lock beginning from the start object. It al-
lows to obtain locks on an inter-related set of objects with-
in a single operation.

The second purpose of activity types is to specify con-
flict behaviour. We distinguish between a direct conflict on
the start object and conflicts occurring during preclaiming.
The start conflict reaction(SCR) is performed if a conflict
occurs on access to the start object. If conflicts occur dur-
ing preclaiming, the conflict reactions specified by the ac-
cess pattern are automatically executed. Therefore, one
result of preclaiming is information about all occurred
conflicts. The designer or the tool may evaluate this infor-
mation and then decide whether to start conflict resolution
or to abort the activity.

Activity types have further advantages. Their compar-
ison allows to identify activities that are free of conflicts as
well as activities that may produce conflicts. This informa-
tion can be used by the concurrency control component to
select a pessimistic or an optimistic concurrency protocol.
Furthermore, activity types are arranged in an inheritance
tree. This allows to define generalized activity types which
may be specialized. The resulting classification of typical
activity behaviour is a very suitable conceptual basis to
precisely characterize design tools in a design environ-
ment.

We use our information model in conjunction with the
set of cooperating design tools to illustrate the application
of activity types. We assume that the editor reads and
writes a dataflow graph. Therefore, it needs access to a
dataflow graph and the operators it contains. The editor re-
quests locks if conflicts occur. The activity types describ-
ing this behaviour are:

ATEditor_read= (R, DFG, request, (has_op, request) )

ATEditor_write =(W, DFG, request, (has_op, request) )

These activity types specify that on access to a data-
flow graph all operators connected byhas_op relation-
ships are implicitly accessed. If a conflict occurs on the
start object of typeDFG or on objects of typeOPERA-
TOR, the required lock is requested from conflicting activ-
ities.

As second example for activity types, we take the
synthesis tool which needs read access to the whole data-

flow graph and write access to the hierarchical netlist. The
tool operates in batch mode and is not able to handle con-
flicts interactively. Therefore, we selectabort as conflict
reaction. The corresponding activity types are:

ATSyn_read = (R, DFG, abort, (has_op, abort) )

ATSyn_write = (W, CELL, abort, (has_inst, abort),

(of_cell, abort) )

During synthesis the relationshipsbound_to and
shared_by are established. These accesses need not to be
specified by additional activity types. Activity types are
primarily used to specify accesses to sets of inter-related
objects.

The batch simulator needs a whole hierarchy of cells
with all their instances to perform a simulation. If conflicts
occur, the simulator waits for locks before it starts:

ATSim_read = (R, CELL, wait, (has_inst, wait),

(of_cell, wait) )

In our example, simulation results are written to in-
stances. For design optimization a feed-back from the syn-
thesized netlist to the dataflow graph is essential. A
possible feed-back useful for design evaluation is a back-
annotation of simulation results to all operators bound to a
specific instance. Activity types offer flexible and simple
means to describe such tool interactions. We only have to
specify a notification along theshared_by relationship if a

Fig. 2:  Activity types of a dataflow graph editor
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Fig. 3:  Activity types of a simple synthesis tool
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simulation result is written to an instance. The correspond-
ing activity type is:

ATSim_write = (W, INST, abort, (shared_by, notify) )

The notification is sent to the editor running concur-
rently to the simulator. It may be made visible in the edi-
tor, for example by high-lighting the corresponding
operators.

As shown in this application example, activity types
specify characteristic access and conflict behaviour of tool
activities. The exploitation of the information model al-
lows to look at access synchronization and inter-tool com-
munication from a common data-centered point of view.
This is an advantage in cooperative work scenarios with
no given control-oriented design flow.

4.3 Access States and Primitives

Since we aim at support of more conflict-free cooper-
ation between concurrent tools, we have to handle con-
flicts explicitly in order to resolve them. Our approach is
to supplement locks with explicit information about con-
flicts. We introduceaccess statesto capture this informa-
tion. Each activity has exactly one access state for each
object. The access state is either alocked state or aconflict
state.

Primitives are abstractions of data manipulation oper-
ations with identical effects to access states. For example,
a lock primitive in read mode abstracts from all read oper-
ations. Alock primitive in write mode represents all up-
date and delete operations. In addition tolock andunlock
primitives, we define primitives that allow to explicitly
handle lock conflicts. These primitives are used to define
communication protocols between concurrent activities in-
volved in a conflict.

• Therequest primitive has already been mentioned as co-
operative conflict reaction. It starts a conflict resolution
process after conflict detection. The ultimate goal is to
obtain the required lock during communication with con-
flicting activities. A request may be cancelled using the
unrequest primitive.

• The grant primitive allows to pass a lock temporarily
from one activity to another that issued a corresponding
request.

• Notify is used to distribute notifications to concurrent ac-
tivities. A notification does not cause changes in access
states. It is used for data-centered communication be-
tween concurrent activities. Relationships may be used
as paths to propagate notifications. This general mecha-
nism is used for change notification, back-annotation,
and general purpose inter-tool communication.

• register andunregister are used to get access to objects
without obtaining locks, e.g. for browsing purposes.

Figure 4 gives a simplified overview of the access
states and the primitives supported by our model. Each
box represents an access state. A box drawn inside another
is a specialized access state. Therefore, the enclosing rect-
angle represents the most general access state (arbitrary
state). A locked state is one of the stateslocked, requested,
or granted. If a primitive is defined for an access state, it is
also valid for all its specialized access states.

Primitives cause access state transitions. We distin-
guish explicit and implicit access state transitions. Explicit
access state transitions are caused by execution of a prim-
itive on an object by an activity. They are depicted as bold
arrows. Depending on the primitive, the access state of the
object is changed, e.g. thelock primitive causes one of two
explicit access state transitions. If no conflict occurred, the
resulting state is a locked state, eitherlocked or requested.
The latter is a locked state indicating the existence of a re-
quest. If the lock primitive detects a conflict, the resulting
access state isconflict. As possible reaction to this conflict,
the request primitive may be issued. In this case, the ac-
cess state transitions to request and the access states of all
conflicting activities are implicitly changed fromlocked to
requested. We call such transitions caused by concurrent
activitiesimplicit access state transition. They are depict-
ed by thin arrows. The condition for the implicit access
state transition labels the corresponding arrow. These tran-
sitions can be made visible to the activities by appropriate
means. Interactive tools may pop-up conflict messages,
batch tools with conflict resolution algorithms may get ex-
ceptions.

unregisterunlock

conflict state

grant

Fig. 4:  Access state transition diagram

lock

accept

register

unrequest

request

request

locked state

conflict

request

interest

locked

requested

granted

no access

arbitrary state

conflict
resolved

conflict
resolved

conflict
resolved

lock
requested

conflict?
no yes



5 Prototype Implementation

We have implemented a prototype of our model for
cooperative concurrency control in C++ and the extension
language Tcl [11]. The extension language provides inter-
active access to the concurrency control component. Inte-
grated design tools access the component using a C++
library which provides an interface supporting the de-
scribed primitives. Since many design tools do not allow
for modification of their tool code, they have no direct ac-
cess to this interface. These tools have to be encapsulated
by wrappers that allow to perform cooperative conflict re-
actions.

We tested our concurrency control component in a
sample scenario consisting of several design tools. A sim-
plified example of the scenario and the underlying infor-
mation model was used as example in this paper. The
concurrency control component is used by a proprietary
synthesis tool [12] and a multi-level simulator [13]. These
tools have direct access to the concurrency control compo-
nent and cooperate on a partly shared design. Their typical
access and conflict behaviour is captured by activity types.
In addition, these tools cooperate with a commercial de-
sign compiler which was encapsulated via a wrapper. This
wrapper allows to perform conflict resolution on behalf of
the encapsulated tool.

The mechanisms provided by our model are used to
control concurrent access of these design tools to shared
inter-related design data. In addition, communication be-
tween the integrated simulation tool and an interactive ed-
itor is done via the concurrency control component. Our
integrated approach to both aspects allows for easy and
targeted tool cooperation.

6 Conclusions

We presented a model for cooperative concurrency
control that supports cooperative work of concurrent de-
sign tools in a design environment. Our approach com-
b ines  access  synchron iza t ion  and  in te r- too l
communication in an integrated model. In addition, we in-
troduced activity types which utilize an information model
to specify characteristic access as well as cooperation be-
haviour of design tools. Activity types allows to guide the
concurrency control component in access synchronization,
conflict avoidance, early conflict detection, and flexible
conflict reactions. We support conflict resolution by pro-
viding communication primitives. They are used to define
protocols which allow designers or tools to communicate
directly as conflicts occur, resulting in a more conflict-free
tool cooperation.

We have tested our model in a prototype scenario of
integrated as well as encapsulated design tools. The con-
currency control component is used to organize concurrent
accesses as well as inter-tool communication in this sce-
nario. The data-centered point of view taken in our model
simplifies the support of cooperative work in the absence
of a previously known design flow.

Our model does not aim at fully automatic conflict
resolution. Our intention is to provide designers and tools
with as much information about conflicts as possible to
improve and speed up their decisions on conflicts. Future
work will investigate possibilities to support automatic
conflict resolution processes to further improve conflict-
free cooperative work in design environments.
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