
Predicting the Functional Complexity of Combinational Circuits

by Symbolic Spectral Analysis of Boolean Functions

Enrico Macii Massimo Poncino

Politecnico di Torino

Dip. di Automatica e Informatica

Torino. ITALY 10129

Abstract

Spectral analysis of Boolean functions represents an elegant ap-

proach to the problem of estimating the complexity of digital

designs. In general, however, the use of spectral techniques in

logic synthesis has been very limited in the past because Boolean

functions associated with circuits of interest are usually too

large and complex to allow the computation of their correspond-

ing spectral representations using traditional techniques. In this

paper we present a symbolic formulation of the logic complexity

prediction problem, and we propose an ADD-based algorithm

that performs well, in terms of both execution time and accu-

racy in the estimation, on circuits that are sensibly larger than

the ones usually handled by the tools currently available. Ex-

perimental results are discussed in detail to support this claim.

1 Introduction
The problem of predicting the complexity of a circuit produced

by a logic synthesis tool is of primary importance in the pro-

cess of automatically synthesizing the functional speci�cation

of a digital design, and di�erent approaches to its solution have

been developed in the last few years. Most of the proposed

methods rely on abstract complexity measures based on analyt-

ical processing of the Boolean functions describing the circuit

being synthesized [1, 2]. An alternative approach, based on

information theory, consists of computing the entropy associ-

ated to the circuit, which is related to its complexity [3]. In

any case, determining such measures is usually computationally

very expensive and extremely memory consuming, so that their

evaluation becomes infeasible when the sizes of the functions

increase over a certain threshold.

For this reason, in [4], the use of spectral transforms has been

proposed to re-formulate the logic complexity evaluation prob-

lem into a domain where Boolean functions can be handled with

considerably less di�culties. Even in this case, however, the

sizes of the Boolean functions to be transformed remain a prob-

lem; in fact, computing the spectrum of a N -variable Boolean

function, speci�ed as a truth table or a set of equations, is a

complex operation which involves either the multiplication of

the output column(s) of the truth table with a non-singular

matrix of size 2N � 2N or an analytical computation. There-

fore, in the general case, determining the spectral representation

of function f(x1; : : : ; xN) requires N � 2N arithmetic operations

(additions/subtractions) and 2N memory locations, when tra-

ditional techniques based on explicit minterm enumeration are

used; as a consequence, methods as the one presented in [4] have

been of limited applicability to real cases.

With the advent of symbolic techniques for the manipulation

of Boolean and pseudo-Boolean functions based on decision di-

agrams, however, spectral transformations have assumed larger

relevance. (A pseudo-Boolean function is a function which maps

the set f0;1gN onto the set of real numbers.)

Binary Decision Diagrams (BDDs) [5, 6] are a very compact

data structure for the representation and manipulation of large

Boolean functions, and Algebraic Decision Diagrams (ADDs) [7]

are an extension of BDDs to the case of pseudo-Boolean func-

tions. In particular, ADDs provide the user with a complete

framework (data structure and operations) for symbolicallyhan-

dling matrices and graphs.

Recently, symbolic algorithms for spectral analysis of Boolean

functions have been developed for applications as combinational

technologymapping [8], function decomposition for FPGA syn-

thesis [9], and evaluation of Boolean function correlation [10] in

the context of state space decomposition algorithms for approx-

imate �nite state machine traversal [11, 12].

In this paper we propose an ADD-based algorithmwhich is able

to predict the complexity of a combinational circuit, starting

from the functional speci�cation, i.e., the logic equations, of the

design being synthesized. In particular, the purpose of this work

is two-fold. First, we are interested in showing that, by using

symbolic techniques, the spectral approach to logic complexity

evaluation can be successfully applied to reasonably large cir-

cuits. Second, we aim at proving that the complexity measure

we propose here, derived from [13] and di�erent from the one

proposed in [14] and employed in [4], is very suitable for logic

complexity prediction of circuits generated by state-of-the-art,

BDD-based synthesis tools.

Di�erent cost functions can be used to evaluate the logic com-

plexity of a digital design. Literal count and number of product

terms in the sum of product realization of the Boolean functions

are usually employed for complexity estimation at the speci�ca-

tion stage; on the other hand, gate count, transistor count, and

chip area are the cost factors considered at the implementation

level. Finally, when complexity of a design has to be estimated

during the synthesis process, a good indication can be derived

from the sizes, i.e., number of nodes, of the BDDs represent-

ing the output functions of the circuit under development. We

present experimental results that show how the spectralmeasure

we propose in this work can be put in relation to the complexity

factors mentioned above.

The rest of this paper is organized as follows. Section 2 reports

background information concerning BDDs, ADDs, and spectral

analysis of Boolean functions. In Section 3 we give the the-

oretical foundations of this work; in particular, we introduce

criteria for logic complexity estimation in the Boolean domain,

we show how they can be re-expressed in the Rademacher-Walsh

spectral domain, and we propose an ADD-based algorithm for

the computation of such complexity measures; furthermore, we

present a criterion to determine the functional complexity of a

multiple output combinational circuit. In Section 4 we show

di�erent sets of experimental results and we comment on them.

Finally, Section 5 is devoted to conclusions and directions for

future work.

2 Background

2.1 Binary Decision Diagrams (BDDs)

A BDD is a graph representation of a logic function. Under

some conditions, the BDDs are canonical, that is, there is one

unique BDD for a given logic function. For example, let us

consider he function f(x; y; z) = xy + x
0
z + y

0
z. The BDD of f

is shown in Figure 1.

f
x

y

z

10

Figure 1: BDD of f(x; y; z).

To obtain the value of the function corresponding to a given

assignment of the variables, it su�ces to follow a path in the

BDD from the root node to a leave by taking the dotted branch

when the value of the variable associated with the node is 0,

and by taking the dot-free branch otherwise. The value of the

leave gives the value of the function.

Sophisticated algorithms exist for e�ciently constructing and

manipulatingBDDs. For a more detailed treatment of this mat-

ter, the reader can refer to [5, 6].

2.2 Algebraic Decision Diagrams (ADDs)

AlgebraicDecisionDiagrams (ADDs) [7] can be viewed as a form

of multi-terminal BDDs that support algebraic and arithmetic

operations on their terminal nodes. Terminal nodes can hold

objects drawn from an arbitrary set, for instance, real numbers.

An ADD is a directed acyclic graph representing a set of func-

tions fi : f0;1g
N 7! S, where S is the carrier of the algebraic

structure over which the ADD is de�ned.

ADDs are particularly suitable for representing matrices. For

example, the matrix of Figure 2-a can be represented by the

ADD of Figure 2-b. x variables encode row variables, and y

variables encode column variables.

(b)(a)

0.5

P

0

0.5
0.5
0.5
0

0
0
0
0

0.5
0
0
0

0
0.5
0.5
0

00 1001 11
 0 0
 0 1
 1 0
 1 1

x1 x2

y1 y2
x1

y1 y1

x2 x2 x2 x2

y2 y2

Figure 2: A Matrix and its Corresponding ADD.

Notice that, as in the case of BDDs, the value of the function for

a given assignment of the variables is given by the value of the

leave reachable from the root of the ADD by taking the dotted

branch when the value of the variable associated with the node

is 0, and taking the dot-free branch otherwise.

As shown in [15], the use of ADDs has made it possible the

realization of algorithms for the manipulation of very large ma-

trices; in fact, the ADD data structure has appeared to be much

more memory e�cient than traditional storage techniques that

exploit structure sparsity.

2.3 Spectral Analysis of Boolean Functions

Let f : BN
7! B be a single-output, completely speci�ed

Boolean function. (The assumption of f being completely spec-

i�ed is made only because all the Boolean functions we are con-

sidering in this paper fall in this category; however, the theory of

spectral transforms summarized in the following can be adapted

easily to the case of incompletely speci�ed functions.) f can be

represented as an integer-valued vector F = [F1; : : : ; F2N]
T ,

that is, as a list of the values corresponding to each of the 2N

minterms.

Function f can be mapped onto the transform domain by multi-

plying its corresponding integer-valued vector F with a 2N�2N

non-singular transform matrix.

Among all spectral transforms known in the literature [16], we

focus our attention on Rademacher-Walsh transforms; these

kinds of transforms have found several applications in the �eld

of logic synthesis. The Rademacher-Walsh spectrum of a given

Boolean function, f , written as bF , is given by:

bF = W
(N)

F; (1)

where W (N) is the Rademacher-Walsh transform matrix.

Notice that the inverse transformation is possible, that is, F can

be recovered from bF as follows:

F = W
(N) bF :

The encoding used for vector F determines the type of the spec-

trum, that is, the R or the S spectrum. In the �rst case, F is

encoded by its original values: 0 for false minterms of f , that is,

minterms for which f assumes the logic value 0, and 1 for true

minterms of f , that is, minterms for which f assumes the logic

value 1. In the latter, false minterms are denoted with 1, and

true minterms with�1. Only theR spectrumwill be considered

throughout this paper.

The transform matrix, W (N), can be obtained with a recursive

formulation as follows:

W
(N) =

�
W

(N�1)
W

(N�1)

W
(N�1) �W (N�1)

�
; whereW (0) = [1]: (2)

As a simple example, let us compute the spectrum of the func-

tion f realized by a two-input NAND gate. The integer-valued

vector F corresponding to f is:

F = [1 1 1 0]T :

To compute bF , we need to construct the Rademacher-Walsh

matrix of order 2, that is:

W
(2) =

2
64

1 1 1 1

1 �1 1 �1

1 1 �1 �1

1 �1 �1 1

3
75

Therefore, we obtain bF as follows:

bF = W
(2)

F =

2
64

1 1 1 1

1 �1 1 �1

1 1 �1 �1

1 �1 �1 1

3
75
2
64

1

1

1

0

3
75 =

2
64

3

1

1

�1

3
75

Each Rademacher-Walsh spectral coe�cient, except for the �rst

one, tells us the minterm-by-minterm resemblance of the func-

tion to a linear function (EXOR) of some combination of the

input variables corresponding to the binary representation of

the coe�cients [16]. For example, a large magnitude (absolute

value) spectral coe�cient at the coordinate 3 (binary 11) indi-

cates that a large part of the function can be represented as

x1 � x2.

3 Predicting Circuit Complexity

3.1 Complexity of a Boolean Function

As mentioned in Section 1, several criteria to estimate the com-

plexity of a digital design have been presented in the past. Par-

ticularly interesting is the one proposed in [14]: Given a generic

N -input Boolean function, f , a measure of its simplicity, �, is

given by the number of true minterms of f at unit Hamming

distance; in formula:

�(f) = (
X
k�=1k

(

2NX
x=1

f(x)f(x� �))); (3)

where x =
PN

i=1
xi2

i�1, � =
PN

i=1
�i2

i�1, and k�k is the num-

ber of ones in the binary representation of � , i.e., (�1; : : : ; �N).

Notice that function
P2N

x=1
f(x)f(x� �) is the auto-correlation

function of f , and it is usually denoted as B(f;f)(�). The higher

the values of �, the simpler the correspondingBoolean function.

Logic complexity results presented in [4], obtained using the

equivalent of Equation 3 in the spectral domain as estimation

criterion, were not particularly meaningful, except for a very

limited class of arithmetic circuits, i.e., N -bit adders. The poor

behavior of the estimator can be explained as follows. Com-

plexity �(f) was computed by taking into account only the true

minterms of function f ; however, the benchmarks on which the

estimator was tested were produced by synthesis tools that ex-

ploited the information on both the on-set and the o�-set of f

to optimize and map onto a library the functional speci�cation

of the design.

This is the reason why, in the realization of our symbolic logic

complexity predictor, we have used a modi�ed version of �, in

the remaining of the paper indicated as �, that counts the num-

ber of adjacent pairs of assignments for which function f takes

the same value (0 or 1) for both assignments in the pair. The

de�nition of �(f) is the following [13]:

�(f) =
X
k�=1k

(B(f;f)(�) +B
(f 0;f 0)(�)); (4)

where n, x, � , and k�k are the same as in Equation 3.

As demonstrated by Karpovsky in [17], measure � provides a

complexity estimation which is more accurate than the one pro-

vided by criterion �, independently on the synthesis algorithms

used to produce the �nal implementation of the design.

As an application example of Equation 4, let us estimate the

complexity of functions f(x1; x2; x3; x4) and g(x1; x2; x3; x4),

whose speci�cation is given in Figure 3.

00 01 11 10

00

01

10

11

1

1

1 1

1 1

0 0

0 000

0 0

1

1

x1 x2

x3 x4

f(x1,x2,x3,x4)

00 01 11 10

00

01

10

11

0

0 0

1

1

x1 x2

x3 x4

g(x1,x2,x3,x4)

1

1

1 1

0 0 1

0

10

0

Figure 3: Karnaugh Maps of Functions f and g.

We have that �(f) = 32, and �(g) = 16, so the complexity of

f is clearly much smaller than the one of g, as it can be easily

guessed by looking at the position of the 1's in the maps of

Figure 3.

3.2 Spectral Formulation

Equation 4 gives us a way to estimate the complexity of a logic

function, f , through operations in the Boolean domain. As said

in Section 1, it may be computationally too expensive perform-

ing these operations in such domain; on the other hand, they

may result particularly cheap if performed in the transform do-

main, that is, on the spectral representation bF of f .

Hurst et al. in [13] have proved that Equation 4 can be re-

expressed in such a way that �(f) is determined by operating

directly on bF instead of f . We have:

�(f) = N � 2N � 1
2N�2

(
P2N

x=1
kxk(bFx)2)

= N � 2N � 1
2N�2

P2N

x=1
SbF (x); (5)

where bFx is the coe�cient in position x of the spectral repre-

sentation bF of f , and kxk is the number of ones in the binary

representation of x.

Equation 5 is particularly suitable for a symbolic realization

through ADDs, that is, for being computed without explicitly

enumerating all the 2N elements of each bF , as it will be shown
in detail in Section 3.3.

3.3 The Symbolic Algorithm

The reason why spectral techniques have never been used exten-

sively in logic synthesis is because of storage and manipulation

problems related to the sizes of both transform matrices and

spectral representations of large Boolean functions. Recently,

however, the use of ADDs to store integer-valued functions has

proved to be extremely e�ective in handling these kinds of func-

tions in the transform domain (see, for example, the work of

Clarke et al. [8], where Rademacher-Walsh spectral representa-

tions of Boolean functions with up to 300 input variables have

been used for technology mapping of combinational circuits).

Though in the following we use symbolic algorithms to estimate

the complexity of Boolean functions represented in the spec-

tral domain, techniques to build transform matrices and spec-

tral representations are not within the scope of this paper and,

therefore, they are not treated here; for further detail on these

techniques, the reader may refer to [7, 18].

The pseudo-code of procedure Predict Complexity for the eval-

uation of the �(f) (see Equation 5) is shown in Figure 4.

procedure Predict Complexity (f , N) f

1 W
(N)(x; y) = AddWalsh(N);

2 bF (x) = AddMatrixMult(W (N)(x; y); F (y));

3 bF 2(x) = AddApply(bF(x), bF (x), �);
4 SbF (x) = AddApply(bF 2(x), Ones Count(x;N), �);

5 e�(f) = n
+
x SF (x);

6 �(f) = N � 2N � 1
2N�2

e�(f);
7 return(�(f));

g

procedure Ones Count (x;N) f

foreach (xi 2 x) f

Res(x) = AddApply(Res, xi, +);

return (Res(x));

g

Figure 4: The Predict Complexity Algorithm.

In order to emphasize the symbolic nature of the algorithm, we

representmatrices as functionsof (x; y), and vectors as functions

of x or y, where x = (x1; x2; : : :) is the set of row variables and

y = (y1; y2; : : :) is the set of column variables.

The procedure receives, as input parameters, the ADD represen-

tation of a Boolean function, f , and the numberN of the circuit

inputs, and returns the value of its logic complexity, �(f). In

Line 1, we build the transform matrix of order N , W (N), by

using procedure AddWalsh, and we determine the square bF 2 of

the spectral representation of f (Lines 2 and 3 of the pseudo-

code). In Line 4 we calculate SbF (x) = kxk(bFx)2, and in Lines 5

and 6 we compute �(f) through existential abstraction of the x

variables from SbF (x) and normalization. Finally, in Line 7 we

return �(f). Notice that procedure Ones Count, used to com-

pute SbF (x), returns the ADD of the N -bit Tally Function of

number x.

It is important to observe that the algorithm above heavily

relies on the performance of matrix multiplication; procedure

AddMatrixMult operates on two matrices represented as ADDs

using a recursive algorithm based on Boole's expansion theo-

rem [19] and top variable splitting; for a detailed discussion on

the e�ciency of procedure AddMatrixMult and a comparison to

traditional sparse matrix multiplication algorithms, in the case

of multiplication of very large matrices, the reader may refer

to [7, 15].

3.4 Complexity and Support

Comparing the complexity of two functions, f1 and f2, as in the

example of Figure 3, is meaningful as long as the two functions

depend on the same number of input variables. In other words,

the measure of simplicity is relative to the number of input

variables.

To clarify this, let us consider the following example. Given

functions

f1 = x
0
1 ; and f2 = x

0
1x

0
2 + x3(x

0
1 + x

0
2);

let us compute the corresponding values of �. Applying Equa-

tion 4, we obtain �(f1) = 0, and �(f2) = 12. This result is

clearly in contrast with the expected interpretation that higher

values of � imply \simpler" functions. f2 is indeed a more com-

plex function than f1. Despite this fact , the result we have

computed is correct; f1 is more \complex" than f2 with respect

to its support size. In particular, f1 is the \most" complex one-

variable function, (which is indicated by �(f1) being 0), while

f2 is relatively complex with respect to three-variable functions.

This example suggests that, in order to get a meaningful com-

plexitymeasure, it is necessary to compare values of � computed

with respect to the same variable support. If we re-compute

�(f1) regarding f1 as a function of three variables (i.e., with

the same support as f2), we get �(f1) = 16, that now tells us

that f1 is a simpler three-variable function than f2.

3.5 Circuit Complexity

In this section we describe how we can use the previous de�ni-

tions to evaluate the complexity of a combinational logic circuit.

In the general case of a multiple output combinational circuit

realizing function f = (f1; : : : ; fm), we are interested in com-

puting a global complexity measure from the individual values

of �(fi). A simple way to obtain this measure is to average the

values of �(fi) over all circuit primary outputs. In formula, we

have:

�C(f) =

Pm

i=1
�(fi)

m
; (6)

where m is the number of circuit outputs.

Notice that, as shown in Section 3.4, �(fi) has to be computed

with respect to the total circuit support, that is, the set of all

the primary inputs of the circuit.

For a N -variable function, the values of �C range from 0 to

N � 2N . When we have to compare di�erent circuits with a

di�erent number of inputs, it is convenient to normalize �C
with respect to its maximum value. We obtain:

�
0
C
(f) =

�C(f)

N �2N
; (7)

where N is the number of primary inputs of the circuit.

4 Experimental Results
In this section we present complexity estimation results we have

obtained on some circuits taken from both the MCNC'91 [20]

and the ISCAS'89 [21] benchmark suites. All the experiments

have been run on a DEC-Station 5000/240 with 64M of mem-

ory. Circuit optimization has been performed using SIS [22],

and technology mapping to obtain area information has been

done using a commercial cell library (see [23] for details). No-

tice that, for sequential benchmarks, only the combinational

portion of logic has been considered, that is, state inputs and

state outputs have been treated as primary inputs and primary

outputs, respectively.

The factor �0
C
is an absolute measure of the logic complexity of

a design. To show this experimentally, for each benchmark we

have considered two di�erent optimizations, obtained through

the SIS scripts algebraic and rugged, and we have compared

their complexities. As expected, the value of �0
C

was constant

for all the di�erent realizations, while other measures, such as

average number of ADD nodes, total literal count, and area pre-

sented noticeable di�erences. While for literal count and area

this fact is very intuitive, the reason why the number of average

ADD nodes does not remain constant is quite subtle. In fact,

given that �0
C

is computed from the ADDs of the circuit, one

would expect a direct relation between the number of nodes and

the value of �0
C
. However, ADD sizes are sensitive to their vari-

able orderings, and such orderings are usually computed stati-

cally through structural analysis of the circuit implementation;

therefore, di�erent optimizations may change the structure of

the circuit and, thus, induce a di�erent variable ordering which

may inuence the total ADD sizes. On the other hand, �0
C

is

truly a functionalmeasure, because its value (but, of course, not

the time required to compute it) is independent from the ADD

variable ordering used during the calculation.

Data for the experiments above are summarized in Table 1. In

particular, columnOpt Script indicates what SIS script has been

used for optimization, column �
0
C

gives the complexity of the

design, columns Nodes and Lit the average number of ADD

nodes and the number of literals of all the output functions, and

column Area the area, in �m
2, of the mapped circuit. Finally,

column CPU presents the CPU time required to determine �0C .

As a general comment, notice that the values of �0
C
are sensibly

biased towards the higher end of the range. This is because

most circuits have many output functions that only depend on

a subset of the circuit inputs; as a consequence, these functions

usually contribute values to the average computed in Equation 6

which are close to N � 2N .

In Table 2 we present results for another set of experiments. We

have considered pairs of circuits that are known to be function-

ally equivalent, but with di�erent logic structure, and we have

measured their logic complexities. For all the pairs, the value of

�
0
C
has shown to be the same, as reported in column �0

C
of the

table. However, other complexity measures (total literal count

and area), which are realization dependent, have not been able

to catch the information about circuit equivalence.

As �nal comment, we would like to stress the point that our

complexity predictionalgorithm can deal with circuits which are

much larger than the ones tools currently available can handle

(see, for example, results in [4]).

Circuit Inputs Outputs Opt Script �
0
C
(f) Nodes Lit Area CPU

none 0.932 10.6 71 69136 0.3

pcle 19 9 algebraic 0.932 10.6 78 69136 0.4

rugged 0.932 10.6 69 67280 0.5

none 0.958 41.0 194 98368 0.7

cordic 23 2 algebraic 0.958 41.0 83 66352 0.7

rugged 0.958 41.0 64 55680 0.8

none 0.950 68.6 130 116464 33.5

frg1 28 3 algebraic 0.950 68.6 146 116000 48.3

rugged 0.950 68.6 136 123424 72.1

none 0.885 27.8 257 193024 7.9

my adder 33 17 algebraic 0.885 27.8 240 179104 10.1

rugged 0.885 27.8 192 165648 8.0

none 0.965 10.1 166 84448 0.1

s208 19 10 algebraic 0.965 11.5 101 84448 0.2

rugged 0.965 12.8 77 70528 0.2

none 0.924 7.4 244 138736 0.1

s298 17 20 algebraic 0.924 9.4 138 139200 0.2

rugged 0.924 8.2 116 135952 0.2

none 0.944 6.6 269 176784 0.3

s344 24 26 algebraic 0.944 6.8 176 163792 0.3

rugged 0.944 7.6 149 153584 0.4

none 0.929 21.1 424 315056 1.4

s510 25 26 algebraic 0.929 24.6 303 308560 2.6

rugged 0.929 23.3 242 285360 3.2

none 0.973 19.1 757 464000 3.0

s820 23 24 algebraic 0.973 19.1 359 330832 6.3

rugged 0.973 21.0 301 322016 8.4

none 0.964 59.5 1009 679296 83.3

s1196 32 32 algebraic 0.964 73.7 675 634288 125.2

rugged 0.964 65.0 574 619440 66.6

Table 1: Complexity Results for Di�erently Optimized Circuits.

Circuit Inputs Outputs �
0
C
(f) Lit Area CPU

s344 24 26 0.944 269 176784 0.3

s349 24 26 0.944 273 180960 0.3

s526 24 27 0.946 445 270048 0.4

s526n 24 27 0.946 445 270512 0.3

s820 23 24 0.973 757 464000 3.2

s832 23 24 0.973 769 476992 3.1

s1196 32 32 0.964 1009 679296 83.7

s1238 32 32 0.964 1041 756320 83.5

Table 2: Complexity Results for Functionally Equivalent Circuits.

5 Conclusions and Future Work
Although the use of spectral transforms for estimating the com-

plexity of a digital design has proved to be particularly appeal-

ing, its applicability has been very limited in the past. The

main reason for this has to do with the di�culty of construct-

ing the spectral image of large Boolean functions. In the last

few years, however, the use of symbolic methods for Boolean

and pseudo-Boolean functionmanipulation has made it possible

to successfully use spectral techniques for technology mapping,

FPGA-based synthesis, logic decomposition, and some other ap-

plications.

In this paper we have discussed criteria for predicting the logic

complexityof a digital circuit given its functional speci�cation in

terms of algebraic equations. Then, we have shown how such cri-

teria can be more easily re-expressed in the Rademacher-Walsh

spectral domain. The measures of above determine the logic

complexity of a design by examining the component functions

on a minterm-by-mintermbasis; this imply the non-applicability

of these techniques to circuits whose associated Boolean func-

tions are large. To overcome this problem, we have proposed

an ADD-based algorithm for evaluating the complexity of a

Boolean function that does not require to explicitly enumerate

all its minterms; instead, the complexity measure is determined

by considering all the minterms at the same time, that is, using

implicit enumeration. As a consequence, circuits we have been

able to analyze are much larger than the ones tools similar to

ours are able to handle. Besides the ability of dealingwith larger

circuits, another issue that we have taken into account while re-

alizing our procedures is the accuracy in the logic complexity

estimation; more speci�cally, we have chosen, as complexity cri-

terion, a measure which is particularly adequate to analyze cir-

cuits whose implementation is obtained through modern, BDD-

based logic synthesis tools. Di�erent sets of experimental results

have been reported on benchmark circuits in order to show the

e�ectiveness of our algorithms.

Spectral coe�cients can be used to test the functional behavior

of a combinational network. The values of certain coe�cients

are empirically measured, and the results are compared to the

expected values. A discrepancy indicates a fault. The coef-

�cients to be tested are called the signature of the network.

Studying symbolic algorithms for e�ciently selecting a signa-

ture for a given circuit and a given class of faults is one of the

objectives of our current research. Another area of application

of spectral techniques is the synthesis of combinational circuits;

we are currently investigating the possibility of applying sym-

bolic computations based on ADDs to algorithms like the ones

proposed by Thornton and Nair in [24, 25].

Acknowledgments

We would like to thank professor Fabio Somenzi for valuable

suggestions on the realization of ADD-based algorithms.

References

[1] M. G. Karpovsky, \Harmonic Analysis of Over Finite Commutative

Groups in Linearization Problems for Systems of Logical Functions,"

Information and Control, Vol. 33, No. 2, pp. 142-165, February 1977.

[2] C. Moraga, \Comments on a Method of Karpovsky," Information

and Control, Vol. 39, No. 3, pp. 243-246, December 1978.

[3] K. T. Cheng, V. D. Agrawal, \An Entropy Measure for the Complex-

ity of Multi-Output Boolean Functions," DAC-27: ACM/IEEE De-

sign Automation Conference, pp. 302{305, Orlando, FL, June 1990.

[4] D. Varma, E. A. Trachtenberg, \On the Estimation of Logic Com-

plexity for Design Automation Applications," ICCD-90: IEEE Inter-

national Conference on Computer Design, pp. 368-371, Cambridge,

MA, September 1990.

[5] R. Bryant, \Graph-Based Algorithms for Boolean Function Manipu-

lation," IEEE Transactions on Computers, Vol. C-35, No. 8, pp. 79-

85, August 1986.

[6] K. S. Brace, R. Rudell, R. Bryant, \E�cient Implementation of a

BDD Package," DAC-27: ACM/IEEE Design Automation Confer-

ence, pp. 40-45, Orlando, FL, June 1990.

[7] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A.

Pardo, F. Somenzi, \Algebraic Decision Diagrams and their Appli-

cations," ICCAD-93: ACM/IEEE International Conference on Com-

puter Aided Design, pp. 188-191, Santa Clara, CA, November 1993.

[8] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, J. Yang, \Spectral

Transforms for Large Boolean Functions with Applications to Tech-

nology Mapping," DAC-30: ACM/IEEE Design Automation Confer-

ence, pp. 54-60, Dallas, TX, June 1993.

[9] Y. T. Lai, M. Pedram, S. Sastry, \BDD-Based Decomposition of

Logic Functions with Applications to FPGA Synthesis," DAC-30:

ACM/IEEE Design Automation Conference, pp. 642-647, Dallas,

TX, June 1993.

[10] E. Macii, M. Poncino, \Using Symbolic Rademacher-Walsh Spectral

Transforms to Evaluate the Correlation betweenBoolean Functions,"

GLSVLSI-95: IEEE 5th Great Lakes Symposium on VLSI, pp. 112-

116, Bu�alo, NY, March 1995.

[11] H. Cho, G. D. Hachtel, E. Macii, B. Plessier, F. Somenzi, \Algo-

rithms for Approximate FSM Traversal," DAC-30: ACM/IEEE De-

sign Automation Conference, pp. 25-30, Dallas, TX, June 1993.

[12] H. Cho, G. D. Hachtel, E. Macii, M. Poncino, F. Somenzi, \A

Structural Approach to State Space Decomposition for Approximate

Reachability Analysis," ICCD-94: IEEE International Conference on

Computer Design, pp. 236-239, Cambridge, MA, October 1994.

[13] S. L. Hurst, D. M. Miller, J. C. Muzio, \Spectral Method of Boolean

Function Complexity," Electronics Letters, Vol. 18, No. 13, pp. 572-

574, June 1982.

[14] D. Varma, E. A. Trachtenberg, \Design Automation Tools for

E�cient Implementation of Logic Functions by Decomposition,"

IEEE Transactions on Computer Aided Design, Vol. CAD-8, No. 8,

pp. 901-916, August 1989.

[15] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A.

Pardo, F. Somenzi, Algebraic Decision Diagrams and their Applica-

tions, Internal Report, Dept. of Electrical and Computer Engineer-

ing, University of Colorado at Boulder, April 1993.

[16] S. L. Hurst, D. M. Miller, J. C. Muzio, Spectral Techniques in Digital

Logic. Academic Press Inc., New York, NY, 1985.

[17] M. G. Karpovsky, Finite Orthogonal Series in the Design of Digital

Devices, John Wiley and Son, New York, NY, 1977.

[18] E. M. Clarke, M. Fujita, P. C. McGeer, K. L. McMillan, J.

Yang. \Multi-Terminal Binary Decision Diagrams: An E�cient

Data Structure for Matrix Representation," IWLS-93: International

Workshop on Logic Synthesis, Lake Tahoe, CA, May 1993.

[19] G. Boole, The Mathematical Analysis of Logic, Macmillan, 1847,

Reprinted by B. Blackwell, Oxford, UK, 1951

[20] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide,

Version 3.0, MCNC, Research Triangle Park, NC, January 1991.

[21] F. Brglez, D. Bryan, K. Ko�zmi�nski, \Combinational Pro�les of Se-

quential Benchmark Circuits," ISCAS-89, pp. 1929-1934, Portland,

OR, May 1989.

[22] E. M. Sentovich, K. J. Singh, C. W. Moon, H. Savoj, R. K. Brayton,

A. Sangiovanni-Vincentelli, \Sequential Circuits Design Using Syn-

thesis and Optimization," ICCD-92: IEEE International Conference

on Computer Design, pp. 328-333, Cambridge, MA, October 1992.

[23] R. I. Bahar, G. D. Hachtel, E. Macii, F. Somenzi, \A Symbolic

Method to Reduce Power Consumption of Circuits Containing False

Paths", ICCAD-94: ACM/IEEE International Conference on Com-

puter Aided Design, pp. 368-371, San Jose, California, Novem-

ber 1994.

[24] M. A. Thornton, V. S. S. Nair, \An Iterative Combinational Logic

Synthesis Technique Using Spectral Information," EuroDAC-93:

IEEE European Design Automation Conference, pp. 358-363, Ham-

burg, Germany, September 1993.

[25] M. A. Thornton, V. S. S. Nair, \Parity Function Detection and

Realization Using a Small Set of Spectral Coe�cients," IWLS-95:

ACM/IEEE International Workshop on Logic Synthesis, pp. 8.39-

8.47, Lake Tahoe, CA, May 1995.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

