
Computing Subsets of Equivalence Classes for Large FSMs

Gianpiero Cabodi Stefano Quer Paolo Camurati

Dip. di Automatica e Informatica Dip. di Matematica e Informatica

Politecnico di Torino Universit�a di Udine

Turin, Italy Udine, Italy

Abstract

Computing equivalence classes for FSMs has several
applications to synthesis and veri�cation problems. Sym-
bolic traversal techniques are applicable to medium-small
circuits. This paper extends their use to large FSMs
by means of cofactor-based enhancements to the state-
of-the-art approaches and of underestimations of equiv-
alence classes. The key to success is pruning the search
space by constraining it. Experimental results on some
of the larger ISCAS'89 and MCNC circuits show its ap-
plicability.

1 Introduction

Finding the classes of equivalent states of a Finite
State Machine (FSM) has several applications to au-
tomated synthesis and to formal veri�cation [1], [2].
Devices obtained by composing interacting FSMs typi-
cally contain many equivalent states. State minimization
can lead to more e�cient implementations with fewer
latches. For veri�cation, it is important to extract a re-
duced machine, also referred to as the quotient machine,
to prove properties, e.g., model checking or language con-
tainment, in a more e�cient way.

The problem of �nding equivalence classes is well-
known from graph theory, but the algorithms for solving
it are exponential in the number of latches and require
the explicit representation of the state transition graph.
For this reason they are applicable just to very small
circuits.

Binary Decision Diagrams (BDDs) and symbolic
traversal techniques for FSMs represented a major
breakthrough in terms of e�ciency and applicability.
BDDs represent both Boolean functions and sets of
states, supporting also their manipulation by means of
logical operators. Symbolic traversal techniques explore
the state space of the FSM, either in forward or back-
ward breadth-�rst mode, their goal being to prove global
properties on a step by step basis.

The basic algorithm for identifying classes of equiva-
lent states with symbolic traversals is due to Lin et al.
[1]. They are able to compute the equivalence classes of
the smaller ISCAS'89 and MCNC benchmarks.

An expensive step in Lin's algorithm is computing in-
verse images in the state space of the product machine.

Tamisier [2] uses a variant of the compatible projector

called cross section to simplify inverse image computa-
tion. The gain in terms of BDD size and CPU time is
considerable, yet it doesn't allow to deal with bigger cir-
cuits. In fact, even if the intermediate steps are simpler,
the BDDs for the state sets explode with large FSMs.

The inability to represent large state sets occurred
also in symbolic traversals and fostered the development
of approximate techniques. For example, Cho et al. [3]
perform an approximate forward symbolic traversal to
explore the state space of large machines, computing
an over-estimation of the reachable state set. Over-
estimations are used by Cabodi et al. [4] to prune the
search space during backward traversal when trying to
verify the input/output equivalence of two machines.

Approximate solutions are a way to attack large cir-
cuits. We compute underestimations, i.e., subsets, of
the equivalence classes. We divide the search space in
smaller subspaces and we compute subsets of the equiv-
alence relation. Eventually, several underestimations are
properly combined to reach a good approximation of the
global equivalence relation. This reduces the amount of
information to be manipulated, extending the applica-
bility of these techniques to larger circuits.

The main contributions of this paper are:

� we improve on the basic techniques of [1] and [2] by
extensively using cofactoring for function and state
set simpli�cation during traversals

� we de�ne the notion of underestimation of an equiv-
alence classes, by restricting the working spaces of
the product machine with proper constraints.

� we show how to combine approximate results to ob-
tain a better approximation

� we present for the �rst time experimental results on
the equivalent states for some of the larger ISCAS'89
and MCNC benchmark circuits.

The remainder of the paper is organized as follows.
In the next section, we introduce the basic de�nitions.
Section 3 summarizes the approaches of Lin et al. and
Tamisier. Section 4 presents our cofactor-based improve-
ments to the original tecniques. Section 5 introduces the
fundamental notions about underestimating an equiv-
alence class and the related algorithms. In Section 6

experimental evidence shows that we are able to deal
with some of the larger benchmark circuits known from
the literature. Section 6 closes the paper with a brief
summary, outlining future developments.

2 Preliminaries

2.1 Finite state machines

A �nite state machine is an abstract model describing
the behavior of a sequential circuit. A completely spec-
i�ed FSM M is a 5-tuple M 0 = (I;O; S; �; �), where I is
the input alphabet, O is the output alphabet, S0 is the
state space, �0 is the next state function (�0 : S0�I ! S0),
and �0 is the output function (�0 : S0 � I ! O).

The product machine of two FSMs M 0 and M 00 is a
machine M = M 0 �M 00 = (I; f0; 1g; S; �; �), where s0 =
(s01; : : : ; s

0

n) and s
00 = (s001 ; : : : ; s

00

n) are the state variables
of the component machines, S = S0 � S00 is the state
space, �(s0; s00; x) = (�0(s0; x); �00(s00; x)) is the next state
function, and �(s0; s00; x) = (�0(s0; x) � �00(s00; x)) is the
output function. We shall hereinafter consider product
machines composed of two copies M 0 and M 00 of the
same FSM.

2.2 Image and inverse image

Let f : Bi ! Bj be a Boolean function and C � Bi a
subset of its domain. The image of C according to f is:

Img(f; C) = fy 2 Bj
j 9x 2 C ^ y = f(x)g

Subset C is often called constraint.
Let f : Bi ! Bj be a Boolean function and C � Bj be

a subset of its range. The inverse image of C according
to f is:

f�1(C) = fx 2 Bi
j 9y 2 C ^ y = f(x)g

2.3 Equivalent states and classes

Two states s0; s00 2 S are equivalent i� their outputs
are the same for all possible inputs and their image ac-
cording to � consists of equivalent states.

From the notion of equivalent states one can de�ne the
equivalence relation [5] E � S0�S00 : E = f(s0; s00) j s0 �
s00g satisfying the following properties:

� reexivity: 8s0 2 S0) (s0; s0) 2 E

� symmetry: (s0; s00) 2 E) (s00; s0) 2 E

� transitivity: (s0; s00) 2 E ^ (s00; s000) 2 E)

(s0; s000) 2 E.

Following the notation of Lin et al. [1], the equiva-
lence class of s0 is denoted as [s0] = fs00 j (s0; s00) 2 Eg.
As the number of equivalence classes can be very large,
the algorithms of the next section aim at �nding the
characteristic function E(s0; s00) of the set that contains
all equivalent states.

3 State-of-the-art equivalence class com-

putation

Given the de�nition of equivalent states, Lin et al.

[1] suggested a �xed point computation that returns the
characteristic function E(s0; s00) of the set of all equiv-
alent states. The starting point is the set of states for
which, for all possible input values, the output functions
don't di�er (E0(s

0; s00) = 8x�(s0; s00; x)). These states
are 1-equivalent, according to Lin's terminology. The
formula gives the set of k+1-equivalent states as a logi-
cal conjunction of two sets:

� states whose image consists, for all inputs, of k-

equivalent states (8x ��1(Ek(s
0; s00)))

� 1-equivalent states, i.e., belonging to E0(s
0; s00)

that is:

E0(s
0; s00) = 8x�(s0; s00; x)

Ek+1(s
0; s00) = E0 � 8x �

�1(Ek)
(1)

Note that if A � B, then f�1(A) � f�1(B). As a
consequence, at each iteration Ek+1(s

0; s00) � Ek(s
0; s00).

We modify formula (1) performing a logical conjunction
with the k-equivalent states (Ek(s

0; s00)) instead of the
1-equivalent ones:

Ek+1(s
0; s00) = Ek � 8x �

�1(Ek) (2)

In a dual way, noting that E(s0; s00) = D(s0; s00), where
D(s0; s00) is the characteristic function of the set of non
equivalent states, the �xed point computation starts
from the set of 1-distinguishable states:

D0(s
0; s00) = 9x�(s0; s00; x)

Dk+1(s
0; s00) = Dk + 9x ��1(Dk)

Let E(s0; s00) � S0�S00 be a Boolean equivalence relation
and let r 2 S0 be a reference state. The compatible

projection of E with respect to r is the function Cproj
de�ned as follows [5]:

Cproj(E; r) = f(s0; s00) j (s0; s00) 2 E ^ s00 = sel(s0)g

where sel is a function that uniquely selects a member
of the equivalence class [s0] of s0. The criterion is based
on minimumdistance from the reference state r [5]. Note
that we consider a unique reference point for computing
distances while applying the compatible projector.

Lin et al. discovered that many state pairs are sin-

gle cycle equivalent, i.e., the next states and the outputs
are the same for all possible inputs. A simple combi-
national operation results in an underestimation of the
equivalence classes:

E�(s0; s00) = 8x((�0(s0; x) � �00(s00; x)) � �((s0; s00); x))

Once E(s0; s00) is known, Lin and Newton [5] use it to
compute a state-minimal transition relation of the FSM.
For this purpose they introduce the compatible projector.

Its intuitive goal is to select just one member for each
equivalence class, based on the notion of minimal dis-
tance from a reference state, i.e., to transform relation
E(s0; s00) into a compatible function.

Tamisier [2] believes that most of the cost is due to
computing inverse images in the state space of the prod-
uct machine. His approach exploits a variant of the
compatible projector, called cross section to constrain
the state transition function �(s0; s00; x). Composing the
cross section C with the state transition function � on
the set of k-equivalent states yields a modi�ed function
��:

�� = C � �0

The computation of �� includes an inverse image compu-
tation step that is simpler, because it is within the state
space of a single machine. This justi�es the experimen-
tal advantages reported by Tamisier in [2] both in terms
of BDD nodes and of CPU time.

Eventually Tamisier proves that, for all inputs, the
inverse image of the set of k-equivalent states according
to �(s0; s00; x) coincides with a Boolean equality of two
copies of �� working on s0 2 S0 and s00 2 S00 variables:

8x ��1(Ek(s
0; s00)) = 8x (��(s0; x) � ��(s00; x))

Nevertheless, this method is not applicable to larger
FSMs. We point out the following reasons for failure:

� Tamisier doesn't completely work in the state space
of a single machine, because the last step is per-
formed in the state space of the product machine

� inverse image computation is simpler, but the E re-
lations that serve as input and outputs are not sim-
pler, rather their complexity grows with the size of
the FSM.

Our approach works in the state space of the product
machine, but our inverse image computation is simpler,
because of the use of constraints to prune the state space
and because of more e�cient function composition par-
ticularly suited to handling product machines.

4 Enhanced algorithms

Our enhancement to Lin's et al. method consists of
two optimizations. We present them for the computation
of equivalent states, but similar enhancements can be
applied also in the case of distinguishable states. The
logical conjunction with Ek(s

0; s00) means that outside
this set Ek+1(s

0; s00) = 0. By de�nition of generalized
cofactor #, A �B = A �B # A. As a consequence, formula
(2) becomes:

Ek+1 = Ek � (8x �
�1(Ek)) # Ek (3)

Cabodi et al. showed in that, if the pre-image of a set
of states C is restricted by cofactoring with a constraint
A, then A can be pulled inside to simplify also the �
functions:

��1(C) # A = (� # A)�1(C)

As a consequence, acting Ek(s
0; s00) as a constraint, for-

mula (3) becomes:

Ek+1 = Ek � (8x (� # Ek)
�1(Ek)) (4)

Cabodi et al. also showed in that, if the pre-image of a
set of states C is restricted by cofactoring with a con-
straint A, then one can simplify set C by cofactoring with
B, an over-estimation of the image of the constraint:

��1(C) # A = ��1(C # B) # A

where B � �(A). According to formula (2), Ek � Ek�1
and Ek�1 � �(Ek). As a consequence, formula (3)
becomes:

Ek+1 = Ek � (8x �
�1(Ek # Ek�1)) # Ek (5)

Combining formulas (4) and (5), we eventually obtain

Ek+1 = Ek � (8x ((� # Ek)
�1(Ek # Ek�1))) (6)

5 Underestimating equivalence classes

The methods described in the previous section are
applicable just to medium-small FSMs.

Some of the reasons are the number of variables de-
scribing the state space and the size of the BDDs, par-
ticularly important when the FSM is a product machine.
Our approach to this problem is to consider, instead of
the whole space, just a subset of it, de�ned by the char-
acteristic function of a constraint. Reducing the space
makes computations easier, at the expense of complete-
ness, because only an underestimation of the equivalence
classes will be found. We shall show in the next para-
graphs how to reduce the state space by imposing a con-
straint, how to combine several underestimations and
how to select constraints.

5.1 Underestimating E(s0; s00)

Let C(s0; s00) be the characteristic function of a con-
straint on S. C(s0; s00) de�nes a subset of S:

C(s0; s00) � S

Independently of how the constraint is chosen, once
it is given, it is straightforward to modify the �xed
point computation of equation (2) to compute a subset

EC(s0; s00) � E(s0; s00):

EC

0 (s
0; s00) = E0 �C

EC

k+1
(s0; s00) = EC

k
� 8x ��1(EC

k
)

(7)

The enhancements of formula (6) are easy to implement
in (7).

Once the �xed point is reached, it is possible to prove
that:

EC(s0; s00) � E(s0; s00) �C(s0; s00)

5.2 Combining underestimations

Restricting the analysis to a single constraint C(s0; s00)

may yield a poor underestimation EC(s0; s00). A way
to obtain a result closer to the exact one is to consider
several constraints, computing several underestimations,
and then combining them together.

Let C1(s
0; s00), C2(s

0; s00), : : :, Cq(s
0; s00) � S be q sym-

metric, reexive, and transitive subsets of the S state
space. Subsets can in general overlap.

For each subset Cj we compute ECj (s0; s00) according
equation (7). In order to �nd an appropriate underes-
timation E�, we could combine them according to the
following theorem by taking the transitive closure of the
union of the subsets:

Theorem 1:
E�(s0; s00) = T closure([

q
j=1E

Cj (s0; s00)) � E(s0; s00).

The goodness of the result E�, i.e., how close it is
to E, depends on the coupling of the subsets. If they
are loosely coupled, computing the transitive closure will
yield little bene�t. Otherwise, it can signi�cantly in-
crease accuracy.

Although the individual underestimations ECj (s0; s00)
are reasonably simple, computing their transitive closure
may be a hard task. We must trade-o� computational
e�ciency for better approximations. We look for a more
approximate underestimation E� provided it is a subset
of E�. As the ultimate goal is to apply the compatible

projector to select a single state out of each equivalence
class, instead of computing �rst the transitive closure
and then its compatible projection, we prefer to immedi-
ately compute the compatible projections of the subsets
and then compose them.

Theorem 2:
9E� � E� � E jCproj(E�) = Cproj(EC1) � Cproj(EC2) �

: : : � Cproj(ECq).

Composition is de�ned as follows:

(A � B)(s0; s00) = 9�(A(s0; �) � B(�; s00))

The computational advantage due to theorem 2 is evi-
dent, because the composition of projections avoids the
computation of the transitive closure.

5.3 Selecting the constraint

As the equivalence relation is symmetric, reexive,
and transitive, among the possible constraints we select
those that share the same properties. To make the con-
straint really helpful, it is important that it shrinks the
size of the BDDs. We reach this objective by reducing
the number of state variables appearing in the constraint,
imposing a relationship between some of the s0 variables
and the corresponding ones in s00.

Let S0 = S00 = Bn and S = S0�S00 = B2n, let � be the
set of the integers ranging from 1 to n: � = f1; : : : ; ng,
and let � be a subset of � . We use � to select among the

literals of s the ones whose subscripts belong to �:

s0� = fs0i j i 2 �g
s00� = fs00i j i 2 �g
s� = s0� [s00�

Among the many relationships, we impose that some
variable pairs are always equal, whereas the remaining
ones may di�er. In this case the constraint is the charac-
teristic function of the subset of S such that the variable
pairs not belonging to s� are equal:

C�(s
0; s00) = �i2���(s

0

i � s00i)

With this choice, we will handle equivalent states di�er-
ing only in the s� variables. The dimension of the state

space is correspondingly reduced from 22n to 2n+Card(�),
where Card (�) is the cardinality of set �. The size
of the BDDs experiences a considerable reduction, too.
There is another simpli�cation that allows us to make
the BDDs representing the equivalence classes smaller.
At any equivalence class computation step, given a sub-
set � of the literals, we retain only the pairs of equivalent
states whose con�guration in � doesn't depend on vari-
ables outside �: E� = 8s���E. Experience shows that a
wise choice for � is � � �. As a consequence, the worst-
case complexity of the BDDs is reduced from O(22n) to

O(2Card(�)+Card(�)). By properly choosing � and � we
can make our computations almost independent of the
size n of the state space.

111

000

110

001

010

101

100

011

(a)

E

100

111

000

110

001

010

101 011

(b)

EC α2
EC α1

Figure 1: Exact equivalence classes and their underesti-
mations for s27: part 1

5.4 Example

Let us apply the concepts of the previous paragraphs
to compute an underestimation of the equivalence classes

of s27, the smallest ISCAS'89 benchmark. This circuit
has 4 inputs, 3 latches, and 1 output.

Assuming a proper state variable ordering, and a
s1s2s3 encoding, Fig. 1(a) shows the equivalence rela-
tion graph E. Edges connect equivalent states, and self
equivalence is omitted for simplicity, i.e., self loops are
not indicated.

Equivalence classes with cardinality greater than 1 are
f001; 101;111g and f100; 110g. Let us restrict the space
as follows:

� �1 = f1g, C�1(s
0; s00) = (s0

2
� s00

2
) � (s0

3
� s00

3
) (set of

states of the product machine where only the most
signi�cant bit may di�er)

� �2 = f2; 3g, C�2(s
0; s00) = (s0

1
� s00

1
) (set of states

of the product machine where bits other than the
most signi�cant bit may di�er).

The corresponding restricted equivalence classes (EC�1 ,

EC�2) are shown in Fig. 1(b). It is easy to observe that,
as stated by theorem 1, merging the two relations and
taking the transitive closure of the resulting graph leads
exactly to the global equivalence relation of Fig. 1(a).

Fig. 2(a) and Fig. 2(b) illustrate, respectively, the

compatible projections of relations E, EC�1 , and EC�2 .
Directed edges are used to represent remapping of states
onto selected ones. The all-0 state serves as reference
state r. There is an implicit self-loop for any node with
no outgoing edge to itself.

111

000

110

001

010

101

100

011

 (b)

Cproj(EC α2)
Cproj(EC α1)

111

000

110

001

010

101

100

011

(a)

Cproj(E)

Figure 2: Exact equivalence classes and their underesti-
mations for s27: part 2

6 Experimental results

The procedure for generating the equivalence classes
has been implemented in a fully home-made package

amounting to about 15,000 lines of C-code. BDD nodes
are limited to 1,500,000. Experiments ran on a 130 MIPS
DEC Alpha.

Tab. 1 collects some data about some ISCAS'89 and
MCNC benchmarks. For each circuit it shows the num-
ber of primary inputs, primary outputs, latches, and
gates.

Tab. 2 compares our enhanced method (EM) to the
original method (OM) by Lin et al. For each circuit
it shows the number of backward steps performed, the
number of equivalence classes # EqC, including single
state ones, and the CPU times without and with the
improvements of section 3. The gain in term of time
is evident. We obtain similar results in term of mem-
ory occupation although we don't present evidence on
that. These results show that our enhanced method is at
least comparable with Tamisier's [2] method that claims
a gain in time by a factor ranging from 1.5 and 12 and
in memory by a factor from 1.5 and 3.

Tab. 3 compares the approximate method resulting
from single cycle equivalence (SCEM) [1] with the best
case of the space reduction method (SRM) for circuits of
Tab. 2 requiring more than 1.0s CPU time and for some
larger circuits. # N is the number of underestimation we
compute and combine in each case. Single cycle equiva-
lence yields rather poor results, i.e., not close to the ex-
act ones, and su�ers from the exponentiality of the state
space. The time required by single cycle equivalence
check is reasonably low for small circuits, but for the
larger ones, like s1423, s5378, m m9 (min-max MCNC
circuit), the method is not applicable. It is easy to con-
clude that we can obtain a good level of approximation
in the smaller circuits and, unlike exact techniques, we
can also deal with some of the larger circuits (s1423 and
s5378).

7 Conclusions

Computing equivalence classes has several applica-
tions.

Algorithms based on symbolic state space traversals
already represent a notable achievement, but they are
unable to deal with other than medium-small FSMs.
There are two main contributions of this paper. First, an
enhancement to state-of-the-art exact techniques based
on state space pruning and cofactoring. Second, the no-
tion of underestimation of equivalence classes. This is
done by restricting the search space of the product ma-
chine by means of constraints.

Future work will consist in applying this approach to
other circuits and in deepening our knowledge of state
space reduction, e.g., making it automatic and develop-
ing topology-based heuristics. Accuracy increases when
the subsets are strongly coupled, thus quite large. E�-
ciency requires smaller subsets to have smaller BDDs.
We will also investigate heuristic tuning strategies to
trade-o� between accuracy and e�ciency while selecting
the subsets.

References

[1] B. Lin, H.J. Touati, A. Richard Newton, \Don't
Care Minimization of Multi-Level Sequential Logic
Networks," in Proc. IEEE ICCAD'90, November
1990, pp. 414{417

[2] T. Tamisier, \Computing the Observable Equiva-
lence Relation of a Finite State Machine," in Proc.
IEEE ICCAD'90, November 1990, pp. 184{187

[3] H. Cho, G. Hachtel, S.W. Jeong, B. Plessier, E.
Schwarz, F. Somenzi, \Algorithms for Approximate
FSM Traversal," in Proc. ACM/IEEE DAC'93,
June 1993, pp. 25{30

[4] G. Cabodi, P. Camurati, S. Quer, \Symbolic Ex-
ploration of Large Circuits with Enhanced For-
ward/Backward Traversals," in Proc. IEEE EURO-
DAC94, September 1994, pp. 22{27

[5] B. Lin, A. Richard Newton, \Implicit Manipulation
of Equivalence Classes Using Binary Decision Di-
agrams," in Proc. IEEE ICCD'91, October 1991,
pp. 81{85

Circuit PI PO FF Gates

s208 11 2 8 96

s298 3 6 14 119

s344 9 11 15 160

s349 9 11 15 161

s382 3 6 21 158

s386 7 7 6 159

s400 3 6 21 162

s420 19 2 16 196

s444 3 6 21 181

s510 19 7 6 211

s526 3 6 21 193

s641 35 24 19 379

s713 35 23 19 393

s820 18 19 5 289

s832 18 19 5 287

s838 35 2 32 390

s953 16 23 29 418

s1196 14 14 18 529

s1238 14 14 18 510

s1423 17 5 74 657

s1488 8 19 6 653

s1494 8 19 6 647

s5378 35 49 179 2779

sbc 40 56 28 1011

m m9 14 9 27 863

Table 1: Example statistics

Circuit Depth # EqC OM EM

t [s] t [s]

s208 8 40 0.4 0.1

s298 16 8061 3.8 1.2

s344 5 18608 2.8 0.1

s349 5 18608 0.8 0.1

s382 93 608448 501.1 57.1

s386 2 15 0.2 0.0

s400 93 608448 498.7 57.0

s420 8 326 0.5 0.2

s444 93 648448 502.4 163.8

s510 6 59 1.6 0.2

s526 119 1432190 2986.4 814.8

s641 1 294912 187.4 0.3

s713 1 294912 172.9 0.3

s820 4 27 3.3 0.6

s832 4 27 3.2 0.6

s838 8 3066 3.6 3.4

s953 3 18.4549�10
7

0.6 0.1

s1196 2 82944 4.1 0.9

s1238 2 82944 5.6 1.2

s1488 2 49 0.9 0.2

s1494 2 49 0.9 0.2

sbc 2 9.40�10
6

- 17.8

Table 2: Comparing Lin's Equivalence Class computa-
tion to the enhanced cofactor-based method

Circuit SCEM SRM

EqC t [s] # N # EqC t [s]

s298 15165 0.7 3 8896 0.3

s382 1001860 1.2 7 745472 2.6

s400 1001860 1.1 3 745472 9.4

s444 1001860 2.0 3 700928 2.9

s526 1992800 4.8 3 1747970 10.2

s838 440976 0.5 3 9226 0.8

s1238 82944 1.0 9 82944 0.5

s1423(�) - - 12 2.9�10
21

850.0

s5378(�) - - 20 4.0�10
48

30.4

sbc 9.4�10
6

1.6 4 9.4�10
6

1.0

m m9 - - 6 1.3 �10
8

19.9

Table 3: Comparing the exact method to the single cycle
equivalence and the best underestimation; - means that

we were unable to conclude the experiment; (�) means
that the circuit has been simpli�ed to an equivalent one
by cofactoring it with an overestimation of the states
reachable from the all-0 reset state

	EURO-DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

