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Abstract: This paper introduces a modified
relaxation approach that allows to improve the
convergence of iterations while analyzing mixed
systems with different simulators. The method reduces
the local feedbacks in the decomposed system by the
use of rough models of parts in the neighboring parts
of the system. This improvement is very important for
mixed systems where optimal partitioning methods are
not possible and the choice of the suitable types of
coupling is also restricted.

 I. Introduction
Relaxation techniques are known to be successfully

used for the electrical analysis of some types of
circuits, mostly digital, and they were implemented in
several programs as MOTIS [1], SPLICE [2], RELAX
[3], etc. The main reasons that compel to choose
relaxation iterations are:

1) Very high circuit size and complexity. In this case
direct solution of the circuit equations, when all parts
of the system are solved simultaneously, requires
excessive CPU time and memory consumptions. On
the contrary, relaxation techniques treat different parts
of the circuit independently and they provide almost
linear dependence of consumptions on the number of
circuit equations.

2) Because of the multirate behavior of the circuit
variables it is preferable to choose independent
timesteps in different parts of the system. This can be
realized easily when waveform relaxation method is
used to simulate the dynamic circuit.

3) Relaxation algorithms easily allow parallel or
consequent implementation on multiprocessor
systems.

However, there are situations in which one must

perform the relaxation iterations alike, whether the
above reasons exist or not. This is the case in mixed
system simulation where several parts of the system
may exhibit different physical effects: electrical,
thermal, structural, coupled-field, etc. To describe
these effects we need various mathematical methods
(ODE, partial derivative equations, finite elements
etc.) and to simulate them we use some specially
elaborated program tools. Other examples are the
simulation of the "uniform-type" system when the
numerical model for some part is not known but
replaced with a call to a "real" device [4], and the
mixed-level system simulation, for instance, circuit
and device-level simulation [5].
 As a result, under some circumstances, the
simultaneous solution of the total system of equations
becomes impossible. In the following we'll use the
term "mixed system" to denote such type of a system
to be simulated. Thus, the mixed system analysis
requires the use of different program tools in one cycle
of simulation.
  If the processes in the given system are mostly
unidirectional, this particularity doesn't invoke any
extra problems. It's enough to simulate each part of
such a system only once. In general, however, the
different parts of the system might be "tightly coupled"
and the global feedbacks in the system can also exist,
so one has to repeat the simulation many times, i.e.
perform iterations. Naturally, these iterations must
converge to a desired solution and should do this as
fast as possible.

Unfortunately, the diversity of the models in the
different parts of the system compels crucial
limitations for the use of optimal partitioning
algorithms, overlapping of subcircuits and other
methods implemented in most relaxation-based



electrical simulators. Thus, alternative ways are
needed to improve the convergence of relaxation
iterations. In this paper we consider a new approach to
accelerate the convergence of iterations that
suppresses the local feedbacks in the decomposed
circuit. The proposed method is based on rough
(approximate) models of several parts being inserted
into some neihboring parts of the mixed system. The
accuracy of these models doesn't affect the final results
of simulation but substantially improves the
convergence properties.
  The paper is organized as follows. In section II we
consider the basic types of coupling that can be used in
the decomposed mixed system. In section III we
propose more general coupling schemes and
investigate their features. Further we apply the
modified type of coupling to a mixed system analysis
and discuss the experimental results.

II. Basic local coupling in mixed systems
Since manifold forms and methods may be used to

describe the parts in mixed systems, for the sake of
convenience we shall suppose that the different parts
of the system can also be represented by means of
equivalent electrical circuits. In fact, we need the
circuit description only for the inputs and outputs of
these parts and for couplings between them. Let us
consider the main possible ways of couplings with
strong local feedback between the parts of the system.
For simplicity, suppose that the system has only two
parts,A andB.

  In the first case the parts are connected by the
resistive-type elements, as shown in Fig.1a. To
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Fig.1 (a) Two parts connected by an elementZ. (b) Two
 parts connected direcly

perform the iterations, we can use the equivalent
iterative circuit as in Fig.2a. This type of coupling is
widely used in relaxation-based circuit simulators [6].
The equivalent circuit contains only voltage-controlled
voltage sources (VCVS) and the resistive elementZ is
included into both parts of this circuit. The last
peculiarity may produce implementation problems if
the model of Z is rather compound (dynamic,
nonlinear, distributed etc.) and implies a special form
of mathematical description, inconsistent with the
different program tools.

  The second type of coupling (see Fig.1b) doesn't
invoke any connecting elements between parts. The
iterations can be organized in two ways as shown in
Figs.2b, 2c. They both use different types of controlled
sources: VCCS and CCVS.
  If the mixed system contains many parts:A, B... and
couplings between them, the different types of
equivalent circuits like that shown in Figs.2a-c can be
used together in one iteration process.
  In any case we can't be sure that the considered
iterations converge and/or the convergence is fast
enough. Probably, among the reasons for slow or non-
convergence there are: a) the equivalent iteration
circuit badly reflects the "global" or informative
feedbacks existing in the original system; b) the
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Fig.2  Basic types of coupling in the decomposed circuit
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presence of strong local feedbacks produced by the
controlled sources in the equivalent circuit itself. In the
next section we'll show how to remove or reduce this
second reason of non-convergence.

III. Modified local coupling
Note, that the local feedbacks can be reduced by

changing the equivalent circuit in a way to suppress the
alternating components of the controlled sources at the
subcircuitA or B. Now, we’ll consider some modified
iteration circuits that can provide this possibility.

To explain the principle of the method in the easiest
form we start with a linearized system that doesn’t
restrict the applicability of our approach to nonlinear
system. Let, the linearized input characteristics ofA, B
be described by the input resistancesZa, Zb. In this case

we can represent the original model (Fig.1a) by the
equation:

     (Za + Z + Zb) I  = Ea - Eb,          (1a)

a)

 Fig.3   Modified types of coupling in the decomposed circuit
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whereEa, Eb,  decsribe some internal energy sources

in A, B. Similarly, the equation
(Za + Zb) I  = Ea - Eb              (1b)

describes the original model of second type (Fig.1b).

Let alsoZb
* be some additional resistance which we'll

use below.  In these denotions for each considered case
we can construct the modified iterative circuits that
have some new features.

Thus, the iteration circuit in Fig.3a generalizes the

case of Fig.2a and transforms to it whenZb
* = 0. To

prove the consistency of this approach we must show
that if iterations converge then the modified circuit

produces the result, satisfying (1a). IfVb
i+1 = Vb

i = Vb,

I  i+1 = I i = I, Va
i+1 = Va, then from Fig.3a we have:

(Za + Z + Zb
* ) J = Ea - Vb + Zb

*I          (2)

 (Z + Zb) I  = Va - Eb                               (3)

Va = Ea - ZaJ                                        (4)

Vb = Eb + ZbI    .                                   (5)

Substracting (3) from (2) and then substituting (4), (5),
we getJ = I . Further, the addition of (2) and (3) yields
(1a).
  The convergence of the considered iterations in the

form Va
i+1 = W Va

i + k (whereW is an iteration or

companion operator andk is independent ofVa
i, Va

i+1

) is characterized by the expression:

W = [(Za + Z + Zb
*) (Z + Zb)]

-1Za(Zb - Zb
*).  (6)

  Note, that ifZb
* = 0 then (6) coincides with the known

estimation for the iterations from Fig.2a. Further, the
norm of W substantially decreases and the
convergence of modified iterations accelerates when

Zb
*≈ Zb. In this case the controlled source parameter

Vb
i - Zb

*I  i ≈
Vb

i - Zb I i = Eb produces almost no local feedback

during the iterations.
  The modified iterations for the case of Fig.2b are
shown  in  Fig.3b  and  they  turn  to  the  first when

Zb
*  → ∞. If the convergence is reached then KCL and

KVL equations have the form:

Za
-1 (V - Ea) + I  = 0                   (7)

Zb I  = V - Eb                             (8)

The excluding ofV from (7), (8) yields (1b) which



proves the consistency of the modified iterations.
For this case the companion operatorW may be
expressed as:

W = - [Zb ( Zb
* + Za )]

-1Za(Zb
* - Zb) .      (9)

If Zb
*  → ∞  then (9) simplified toW = - Zb

-1 Za that is

the companion operator for the basic iterations shown

in Fig.2b. ForZb
* ≈ Zb we haveW ≈ 0 and the value of

the controlled current source turns toI i -J i ≈ Zb
-1 (V i

- Eb) - Zb
* -1 V i ≈ - Zb

-1Eb.

  At last, the equivalent circuit shown in Fig.3c
generalizes the iteration circuit from Fig.2c. They both

coincide whenZb
* = 0. After the iterations have been

finished, the modified circuit is described by the
equations:

( Za + Zb
* ) I = Ea - V + U          (10)

U = Zb
* I                                     (11)

V = Eb + Zb I                             (12)

   Substituting (11) and (12) into (10), we come to (1b)
which proves the consistency of the modified circuit.
The companion operator in this case has the form:

W = - ( Za + Zb
* )-1  ( Zb - Zb

*).        (13)

  If Zb
* = 0 then (13) coincides with the estimation of

W for the case of Fig.2c; the conditionZb
*≈Zb  makes

W ≈ 0 and turns the parameter of controlled voltage

source toVi - U i = Zb I i +Eb -Zb
*I i ≈ Eb.

Summarizing, we can say that all the considered
modified iteration circuits from Figs.3a-c are
generalizations of the conventional cases shown at
Figs.2a-c and they all transform to the latters under

some values ofZb
*. Furthermore, the choiceZb

*≈ Zb

considerably improves the convergence of the
modified iterations. It also makes the local feedback
"unidirectional" since the parameters of the controlled
sources in the left part of circuit become almost
constant.
Although the simplest case of linearized iterations

was considered here, this approach can also be used to
analyze nonlinear dynamic systems. In this case the
valuesI , V, U, Ea, Eb  etc. must be treated as time

functions. Since this method deals with local
feedbacks, it can also easily be generalized for more
complex systems with N>2 parts involved in the

iteration process, and many couplings may exist
between every two parts of this system.
  To implement these modified iterations in mixed
system simulation one must use the "rough" input
model ofB while analyzing the partA, if B in each
iteration is analyzed afterA. More general,  if during
analyzing of partXi, 1<i<N, one takes the results from

X1...Xi-1 found on the current  iteration and the results

from Xi+1...XN that found at the previous one, then the

convergence can be improved by the use of the rough
input models ofXi+1...XN while simulating Xi, as

shown in Figs.3a-c. Naturally, we must be able to
describe these rough models in terms appropriate for
theXi analyzer.

IV. An example of mixed system simulation
  To illustrate the above approach consider the analysis
of a mixed system "electrical circuit - piezoelement"
(Fig.4). For the electrical part we used Eldo v.4.3.1
analyzer (Anacad) and ANSYS 5.0 program (Swanson
An.Sys.) was used for the piezoelement simulation.

  The considered automatic gain-controlling system
contains the piezoelement U1 that receives the
acoustic vibrations coming from the transmitting
element U2 through a stiff media. The received

 Fig.4   The example of a mixed system
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oscillations are then transformed into an electrical
signal that is amplified and detected. The output of the
detector after additional amplification and filtering
controls the amplifier with the gain factorK(V2) =
K0/(1+300V2). The resulting sine voltage of the
frequency 100kHz is then applied to the transmitting
piezoelement U2.
    The input voltage is firstly applied to the top and
bottom surfaces of U2, that produces the deformations
creating the flat acoustic wave in the neighbourhood of
U1. The acoustic pressure together with the voltage
across U1 provoke the change of its charge. In its turn,
the resulting current influences the voltage of node 1.
The controlling system tries to maintain the constant
magnitude of oscillations in node 1.
  Hence it follows that:

1). The simulation of the given system totally in one
program, either in Eldo or in ANSYS is impossible due
to both the inconsistency of the input language and the
incompatibility of the mathematical models of the
parts. Furthermore, we don’t dispose of the
piezoelement macromodel that could be used in circuit
simulators.

2). The considered system is tightly coupled and it
has both global and local feedbacks. The global gain
controlling loop runs through all the elements of the
system. The local coupling between  theK(V2)
amplifier and U2 is "almost" unidirectional since the
charge movement in U2 doesn’t affect the output
voltage of the amplifier. However, this is not the case
for node 1 where the voltage substantially depends on
the charge variability in U1, and this charge in its turn
strongly depends on the applied voltage.

3). The suitable type of coupling in the decomposed
circuit is that shown in Fig.2b. The first type (Fig.2a)
cannot be realized since the original circuit (Fig.4)
corresponds to the case of  Fig.1b and we can’t include
the models of the electrical circuit components into
Ansys. The third type of coupling (Fig.2c) is not
possible here because we can’t apply the current
correctly distributed between different finite elements
of  U1 and U2 models.

  As it was anticipated, the iterations realized according
to Fig.2b, diverge  very quickly. E. g. the forth iteration
of V(2) yields values of about 1.0E8 V.

This inconvergence results from the fact that the input
electrical impedance of U1 is of capacitance type while
the output of electrical part from this point is almost
resistive, so the multiple differentiation of the initial
error is occurred during iterating.

  To provide the convergence we must realize the
modified iteration scheme shown in Fig.3b. The
simple C-RLC linear circuit (Fig.5) is used as a rough
model of piezoelement U1. Fig.6 illustrates the

responses (charge vs. time) on the 5V step function for
both U1 finite element ANSYS model and the rough
model shown above. Further, fig.7 shows the results of

  Fig.5  The rough circuit model of piezoelement
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the first 6 modified iterations. Though the rough circuit

model is very inaccurate, the iterations converge fast
enough and the results of 5-th and 6-th iterations
almost coincide that can be considered as an exact
solution.
 It is important that we can’t use the rough U1 model
directly in the circuit simulator instead of the finite-
element ANSYS model since it doesn’t provide the
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sufficient accuracy. Figs.8 shows the result obtained in
this way and the "exact" solution for node 2. Thus, for
the given example the modified iteration approach has
no alternatives.

V. Conclusion
   In this paper we introduced a new approach that
allows to improve the convergence of iterations while
analyzing mixed systems with different simulators.
The useful effect results from the reduction of the local
feedbacks in the decomposed system. This is very
important for mixed systems where optimal
partitioning methods are not possible and the choice of
the suitable types of coupling is also restricted.
  To reduce the problems of global feedback we can use
any other methods like time windowing, timestep
refinement, multilevel iteration etc. that can be
combined easily with the proposed approach.
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