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Abstract

 

The design of microelectronic systems including
hardware and software for open-loop and closed-loop
control requires the combination of expertise from differ-
ent domains. However, no integrated approach to the
specification and design nor to the analysis and simulation
of the overall system is available. The design of such com-
plex and heterogeneous systems mandates a systematic,
computer aided approach to requirements definition, spec-
ification and design as well as to the verification and vali-
dation of the results. In this paper a simulation backplane
concept is presented for parallel mixed-mode cosimulation
using a standardized interface. Synchronization mecha-
nisms are developed and used that allow an efficient con-
current cosimulation.

 

1 Introduction

 

During the past few years the design of electronic
systems with analog and digital components has made it
necessary to use different tools within one simulation
environment and to couple them such as in a simulation
backplane. An efficient coupling between modern simula-
tors often can only be achieved in a distributed simulation.
Cosimulation has become a very important issue in mixed
digital/analog circuits and system design because many
tools are specialized either to discrete-event or continuous
simulation. In this paper we present a simulation back-
plane for coupling continuous and discrete-event simula-
tors in an environment that is able to run the cosimulation
in a very efficient mode. Special algorithms must be used
to ensure a parallel mixed-mode cosimulation. This work
is part of our integrated design environment for real-time
systems IRTISD for heterogeneous systems consisting of
analog and digital hardware and software as well [1]. 

There are several possibilities to simulate systems
containing analog and digital components. First of all,
there are mixed-mode simulators such as Saber

 



 

 from
Analogy Inc. using algorithms that allow a coupling of
digital and analog models by introducing interface models
performing the analog/digital conversion. This solution
requires that all simulators, as well as the design data for-
mat, come from the same tool manufacturer, or at least are
adapted to each other. In other words, it is in general not
possible to use a simulator of one’s choice in such an envi-
ronment if there is no interface provided by the tool manu-
facturer. 

Other coupling technologies are so called "ad-hoc
couplings", which can be thought of as a very specific
solution for two or more simulators. A coupling in this
sense may be obtained by a code integration process for
the source code created by each tool. Coupling another
simulator to this environment would require the same
work to be done once again, i.e. there is no advantage in
the knowledge of the integration process for other simula-
tors. Building such a cosimulation environment also
requires the knowledge of detailed information about the
single simulator or source code representing the simulator.
Coupling tools in this way is hard work. Moreover, this is
just a specific solution and the next simulator to couple
requires the same effort.

Commercial simulation backplanes offer a much
more flexible way in coupling technology. Using a proce-
dural interface, a high degree of modularity and independ-
ency in tool integration is achieved. Tool manufacturers
provide their simulators with a standardized interface, and
thus enable each customer to use a coupling with other
simulators of their choice. Besides, already existent inte-
grations are not affected by this new interface. The adapta-
tion of simulation data of each simulator to the new
simulation environment is performed automatically.



 

2 Common Backplane Concept

 

The simulation backplane concept used by most
available backplanes is in a standardization process of the
CAD Framework Initiative (CFI) which has not yet been
finished [2]. In the following, this concept will be called
the "Common Backplane Concept". A simulator back-
plane can be thought of as a superior instance that controls
the processing of all client simulators coupled to it. Thus,
cosimulation is obtained. The whole simulation progress is
controlled by the backplane - all a simulator can do is tell
the backplane when it needs input from partner-simulators
or other dependencies. Based on this information, the
backplane calculates the order and time period of simula-
tor runs in a way that all clients can satisfy their data
requests registered by the backplane.Within this proceed-
ing algorithm, the backplane does not only have to prevent
the simulating clients from working further than a request
to a particular solver but it must also ensure that it does not
run to a time point later than 

 

another

 

 solver is able to
make a request. This is a bidirectional requirement.

Fig. 1 shows a typical simulation backplane environ-

ment regarded in this scope. Client simulators are con-
nected to the backplane either directly over a tool specific-
or over a C-code interface. Thus, a backplane environment
is a convenient solution for the multi-simulator problem.
Various independent simulators, each optimized for a spe-
cial task, are combined in one common environment. The
open architecture of a backplane allows to integrate spe-
cial simulators such as DSP modelling tools, self-written
simulators, and even not yet existing tools to the back-
plane if they are provided with a specific interface. For this
reason, the integration of the best tool in each case is pos-
sible and it is no more necessary to use a specific tool just
because it already is coupled to another simulator in a spe-
cial environment. Thus, existing model libraries, which
often represent an immense value, can still be used. There
are currently two strands of work: First, commercial back-

 

Fig. 1: Backplane concept of cosimulation
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planes are used to simulate models containing reactive,
time-discrete behaviour sub-models and the models of
closed-loop control systems. Here, two different simula-
tors are connected to the backplane. There is one VHDL-
simulator which is responsible for the reactive sub-model
and the other simulator is a differential equation solver
written in C-Code for the closed-loop control system.
Unfortunately, all tested backplanes offered a bad per-
formance which is a very important drawback in simula-
tion. In the evaluation phase we tested the performance of
different commercial simulation backplanes. Several per-
formance marks have been compared by running the same
simulation model both on a backplane environment and on
a single-core simulator. As shown in Fig. 3 the ratio of
computation time backplane system to single-core system
was up to 40:1. To ensure a representative comparison,
four different simulation courses (S

 

1

 

 to S

 

4

 

) were chosen
The reason for this lack of performance can be caused by
additional communication levels or inefficient synchroni-
zation algorithms.

 

Fig. 2: Performance ratio backplane system to 
single-core system
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3 An Optimistic Backplane Approach

 

Our main goal was to develop a superior simulator
processing strategy with high efficiency and a minimum of
communication between backplane and clients. Very
important in this context is the fact that simulators work-
ing in the continuous time space are connected. One major
problem in coupling time-discrete and continuous simula-
tors is data exchange - especially requests from a continu-
ous to a time-discrete working solver. A typical digital
simulator only knows the results of its calculations at the
current time but not in the past and not at all at time points
in the past that do not fit on the time-scheme. Several
enhancements have been made to additionally improve the
performance during cosimulation.

 

3.1 Synchronization Algorithm

 

The most important influence on the efficiency of a
cosimulation environment is the basic synchronization
algorithm used. We consider the used synchronization
algorithm to have a favourable effect on the performance
of the coupled system in mixed-mode cosimulation. Most
simulation backplanes use a PDES-(Parallel Discrete-
Event Simulation) algorithm based on Lock-Step which
results in a sequential processing or a locked technique.
Only one simulator may run at a time, exchanging results
afterwards. This causes a lack of performance which may
be acceptable when discrete-event systems are coupled.
Unfortunately, when regarding continuous simulators such
as differential equation solvers it means a drawback.

In our approach, we use a partially optimistic syn-
chronization mechanism first proposed by Jefferson [3],
[4]. Jefferson introduces the term 

 

local virtual time

 

 which
is the simulation time point to which a subsystem has car-
ried out its simulation. The virtual time paradigm is a
method of synchronizing and organizing distributed sys-
tems. Jeffersons implementation of this paradigm, the

 

Time Warp

 

 mechanism, is a very important protocol for
parallel simulation. In most cases, it is used to organize
discrete-event systems. To correctly simulate a subsystem
(design partition), a process must execute messages in the
timestamp order. This may not be the order of their real
arrival time. Because subsystems act independently and
asynchronously, incoming event messages are not guaran-
teed to arrive at a receiving process in timestamp order.
Nevertheless, the logic of simulation demands, for the
maintenance of causality, that all event messages must be
processed in timestamp order for each process. The man-
agement of virtual time is handled in an asynchronous
manner. This means that virtual times and the simulation
progress may differ in a wide range. If a process local vir-
tual time is 

 

t,

 

 then the process has (at least temporarily)

simulated to this time point. Event messages with times-
tamps 

 

t

 

*

 

<t 

 

arriving at this process have been processed but
none of a higher timestamp. Of course, there is no guaran-
tee that all messages destined to arrive with timestamps
less than 

 

t

 

 have already arrived. This would mean a 

 

cau-
sality error

 

: if the execution of an event 

 

A

 

 causes or affects
the execution of an event 

 

B

 

, then the execution of 

 

A

 

 and 

 

B

 

must be scheduled in real time so that 

 

A

 

 is completed
before 

 

B

 

 starts. A Time Warp system characteristically
processes continuously event messages from its input
queue in timestamp order until there are no more events in
the queue. It never waits until it can "safely" process the
next message. Instead, it always charges ahead and the
only reason for stopping is an empty message queue. It
continues working when the next message arrives. This
"charge ahead"-policy is optimistic, for it takes a calcu-
lated risk that no straggler message (a message with a
timestamp less than or equal to the local virtual time of the
receiving process) will arrive. In the case of a straggler,
the state of the receiving process must be reset to that
belonging to the timestamp of the straggler event. This
procedure is called 

 

rollback

 

. In addition, all side effects
caused by the use of computation results for a time point
greater than the timestamp of the straggler must be elimi-
nated. This means that a rollback also causes rollbacks of
other processes. A process that has been rolled back may
reprocess some messages that it processed before, but this
time the straggler will be processed first in its correct
sequential position. In the case of a rollback some compu-
tation time is "wasted" when a projected future is thrown
away. A conservative

 

1

 

 mechanism [5] in the same circum-
stance would keep the process blocked for the same
amount of time so that time would be wasted "anyway". In
difference to a conservative algorithm, there is a higher
degree of parallelism in cosimulation. In the mixed-mode
cosimulation, an optimistic synchronization algorithm can
be advantageously applied. For example, requests from
continuous clients directed to discrete-event simulators
with a lower local virtual time can now be answered by
optimistically assuming no changes from the last calcu-
lated time point to the time in request. Simulation can go
on only if the slower client calculates another result for the
specified time point. A straggler message must be sent and
rollbacks must be performed. Alternatively, the asking cli-
ent would have waited for the slower partner to complete
its simulation. The whole coupled system would have
been as slow as the slowest client simulator. A state resto-
ration is performed by sending so called 

 

anti-messages

 

cancelling all messages at or after the straggler event mes-
sage.

 

1. Conservative systems execute events only when they can 
guarantee that doing so does not violate the causality con-
straint.



 

3.2 Extensions to Time Warp 

 

The Time Warp-based mechanism has been success-
fully used for simulations of digital hardware with a prom-
ising speed-up [6]. We are working on a modification of
this synchronization algorithm to synchronize cosimula-
tion of mixed digital and analog hardware.

In the last few years, many extensions to Time Warp
have been made to improve performance. In 

 

lazy

 

 

 

cancella-
tion

 

 [7], a rolling back process does not immediately send
the correspondent anti-message but waits to see if the
reexecution of the computation causes any of the 

 

same

 

messages to be regenerated. If the result is the creation of
the same message, it may not be cancelled. The other
approach is an 

 

aggressive 

 

cancellation mechanism. Once a
computation is executed out of timestamp, 

 

all

 

 of the com-
putation as well as other computations that may have been
affected by the execution of this causal wrong message are
incorrect and cancelled. However, it is possible that the
erroneous computation in spite of the error generated cor-
rect event messages, which should not be cancelled. This
drawback is partially avoided in lazy cancellation. [8] and
[9] show that lazy cancellation tends to perform as well as,
or better than, aggressive cancellation in practice.

In [10] and [11] Madisetti, Walrand, and Messer-
schmitt propose the so called 

 

WOLF

 

-mechanism. In
WOLF, a straggler message causes a process to send spe-
cial control messages to stop the spread of erroneous com-
putations. Processes that may be affected by the execution
of the non-causal message are notified when a straggler
message is detected. Optimizing work on the area of state
saving (necessary for rolling back in Time Warp) has been
done in [12] and [13] in form of 

 

periodic checkpointing

 

and 

 

incremental state saving

 

. The intention was to find the
optimal checkpoint interval, i.e. a minimum of overhead
and memory required to perform state saving.

 

3.3 Coupling Mechanisms

 

Coupling discrete-event and continuous systems
means combining two completely different timing mecha-
nisms. Requests among discrete-event or continuous cli-
ents can easily be answered because of the same timing
scheme: discrete-event clients need to have the same time
base (i.e. system state can change only at the same time
points), whereas continuous solvers a priori do not make
demands to the timing scheme. Difficulties can be seen in
requests from continuous to discrete-event clients when
the time point in question does not fit the time scheme of
the discrete-event client. This problem can easily be
solved within the simulation backplane by interpolation
and the assumption that there is no change between any
points on the timing scheme, for example in Fig. 3, the

request of the continuous client at 

 

t

 

2

 

 will be answered with
the computation results at the last simulated time step (

 

t

 

1

 

)
of the discrete partner. Requests as shown in Fig. 3 can be
answered immediately, whereas a timing according Fig. 4
in a conservative system would cause the asking client to
wait until the asked partner has worked to a time point (

 

t

 

2

 

),
when it can provide the data in request by itself, which
means for the time (

 

t

 

2

 

-t

 

1

 

). In our optimistic approach, we
assume that there is no change since the last calculated
value (at 

 

t

 

1

 

) and thus go on simulating without interrupt.

Requests from time-discrete to continuous clients are
treated in a similar way. Interpolation is used to answer
requests that do not fit on the calculation plan of the con-
tinuous client (according to Fig. 3). Optimistic approaches
for pure continuous systems are very hard to realize, but
the developed extrapolation algorithms make it possible to
perform a look-ahead according to Fig. 4. It can be shown
that the resulting error is not larger than any internal calcu-
lation error during the solution of differential equations.
Of course, there is a limitation of this extrapolation inter-
val (simulation time) by reason of the exactitude of the
estimated solution.

 

3.4 Procedural Interface

 

Communication for synchronization and data transfer
is done by a Procedural Interface (PI) containing a set of
callbacks. A minimal set of these callbacks can be found
which represent the minimal PI required by mixed-mode
cosimulation over a simulation backplane. This PI is the

 

Fig. 3: Interpolation scheme 

Fig. 4: Optimistic approach
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only interface to the backplane. Therefore, it should
become standardized in a way that tool manufacturers are
able to provide their simulators with this functionality. CFI
[2] mainly concentrates on the coupling of discrete-event
systems but a lot of specific communication that typically
must be used in a mixed-mode cosimulation has not yet
been defined. In this approach we propose an interface
which eliminates this deficit.

Another aspect to mention when integrating simula-
tors to a backplane is the amount of work the integrator
has to do, and to which degree a reuse of already done
work is possible. To ensure an easier way of integrating
clients to a backplane, we formulated a distinct set of con-
trol commands a solver must dispose of before being con-
nected (PI). These commands also include coupling of
analog/continuous simulators. Thus, it is easier for tool
manufacturers to provide a set of callbacks without pub-
lishing their know-how. When a tool provides this set of
callbacks it can be very easily - and always in the same
manner - be connected to a backplane by writing the inter-
face code. Moreover, another advantage of such a stand-
ardized interface is the similarity of the integration code
that is necessary to complete the integration. Coupling yet
another client to the backplane does not cause a change of
the integration for the other tools and can be done in a rel-
atively short time.
The advantage of a standardized PI is the fact that in the
future manufacturers will be able to take care of this addi-
tional functionality in the development phase of their
tools. Unlike in the case of other coupling techniques,
there is no danger of giving away the internal know-how
or algorithms of the client simulators. Many direct tool
couplings in the past have failed or resulted in a bad per-
formance because manufacturers did not open interfaces
that should have been used for an efficient cosimulation
for they feared to give away know-how. An interface, as
mentioned in this paper, is a possibility to avoid this con-
flict. 

 

3.5 Design Partitioning

 

To a high degree, the performance of a coupled simu-
lation system is influenced by the result of the design par-
titioning performed in the elaboration phase.
Characteristics for a good partitioning include a minimum
of communication over partition boundaries, i.e. over the
backplane. Minimizing inter-simulator connections is
extremely important. Each connection (so called boundary
pin) is a potential carrier of events, and some may exhibit
very high levels of activity and thus may cause an inten-
sive communication. The most common application of
PDES to analysis of large designs is to intelligently parti-
tion the design into sub-sections, with the dual goal of

minimizing event traffic among the partitions and relying
on the algorithms implemented in the backplane for run
control and synchronization. Clearly, an efficient cosimu-
lation requires that the majority of the time is spent inside
the simulator clients rather than in a synchronizing mod-
ule. On the other hand, design partitioning for parallel
simulation can be approached automatically. During a spe-
cial phase in elaboration, the design data must be proc-
essed and based on a set of rules or heuristics that the
whole design is partitioned around. The goal is to mini-
mize cross-simulator communications. 

There are two important techniques for automatic
partitioning: optimization and path analysis. Optimization
scheme means a form of combinatorial optimization as it
is used for instance for the automatic placement of stand-
ard cells. Another approach is based on the analysis of cir-
cuit structure, i.e. it provides a geometrical solution of the
problem. Combining MINCUT and Simulated Annealing
algorithms it is possible to achieve several sub-optimal but
acceptable partitionings in a relatively short time. The
algorithm manipulates functional blocks arbitrarily plac-
ing them in different partitions. The best solution, i.e. the
partitioning with fewest wires crossing the partition
boundaries, is found by combinatorial optimization. A
drawback of this algorithm is that it does not take into
account the activity-level of partition crossings. A further
improvement would be possible if run-time statistics were
collected and weighted crossings lead to a better partition-
ing via back-annotation. We now have an algorithm work-
ing on a combination of dynamic (run time statistics) and
static (structural) data.

The most promising technique, however, we see in
path analysis-based approaches. Algorithms of the graph
theory are used to find the optimal partitioning. A graph
representing the design is traversed from the output pins to
the inner design. Sub-graphs are formed which describe
circuitry that has effects on the value of each output signal.
Those graphs that do not intersect with others form a parti-
tion. Intersection areas may be replicated in multiple parti-
tions (resulting in larger independent partitions) or cut
using optimization technique described above.

Another aim is to work out algorithms for automatic
partitioning to achieve a well-balanced load concept for
coupled client simulators. These simulators will minimize
causality errors, resulting in a better performance. Rolling
back as a consequence of the occurrence of a causality
error must also be limited to a minimum of neighbour par-
titions for evident reasons. This also results in constraints
for good partitioning algorithms based on graph theory. In
Fig. 5 modifications of the boundaries between partition 

 

B

 

and 

 

E

 

 and between 

 

A

 

 and 

 

D

 

 stop spreading a rollback initi-
ated by partition 

 

A

 

.



 

4 Conclusions

 

A backplane concept is an appropriate solution for
the cosimulation problem in heterogeneous design envi-
ronments. Existing simulation backplanes are very power-
ful tools as far as the standardized interface and data
exchange mechanisms are concerned. On the area of par-
tially optimistic working synchronization algorithms we
see a large potential for improving the performance of the
coupled mixed-mode system simulation. Optimistic
approaches have yet to find their way into commercial
products. On the other side, the Lock-Step-based distrib-
uted simulation has been used and evaluated on the com-
mercial software market several times. These attempts
resulted in improvements of simulation capacity, but
delivered relatively little (if at all) concerning the perform-
ance in the simulation of coupled systems.

 

5 Future Work

 

Future work will be concentrated on partitioning
algorithms and techniques for microelectronic systems
both in discrete and continuous areas with constraints
mentioned above. Tests of the developed synchronization
and partitioning algorithms in a multiprocessor environ-
ment must be performed to achieve performance data. Fur-
thermore, the efficiency of optimistic synchronization for
mixed discrete-event and continuous systems must be
proven in concrete applications.

 

Fig. 5: Partitioning and rollback behaviour
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