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Abstract
This paper presents a formal approach to test combina-

tional circuits. For the sake of explanation we describe the
basic algorithms with the help of the stuck–at fault model.
Please note that due to the flexibility of our approach, var-
ious fault models can be handled. A highly efficient data
structure, represented by an implication graph, provides a
straightforward evaluation of all relevant local and global
implications. The experimental results illustrate impres-
sively the effectiveness of our approach. All the MCNC
benchmark circuits are processed without any aborted fault
requiring less CPU–time than state–of–the–art tools.

1 Introduction
Testing of integrated circuits is mandatory in order to

produce high–quality components. The quality of the test
of VLSI-chips is determined by two opposing factors. On
the one hand, the test has to assure fault–free circuits; on the
other hand, the time requirement for testing a chip must be
low. Therefore, a good test is a small set of circuit stimuli
that assures high fault coverage.

A standard way to find good test sets is Automatic Test
Pattern Generation (ATPG). For every modeled fault in a
given circuit, the ATPG–tool has either to generate a test
pattern or to prove the fault untestable. A widely–accepted
fault model used by most industrial tools is the single stuck–
at fault model.

One of the first approaches to ATPG was the D–
algorithm [1]. Since Very Large Scale Integration (VLSI)
is state–of–the–art, testing is becoming more and more dif-
ficult and costly. In order to cope with these problems,
efficient gate–level ATPG–tools like PODEM [2] and FAN
[3] have been developed. Based upon these two tools,
SOCRATES [4] was the first test pattern generator that
succeeded in handling all ISCAS ’85–benchmark circuits
without aborted faults. Ever growing requirements for test-
ing integrated circuits during the last years resulted in new
concepts for test generation. Proving a fault untestable or
generating a test pattern for a fault may be seen as a deci-
sion or satisfiability problem. The realization that ATPG
was a well–known Boolean task resulted in new algebraic
algorithms for test generation [5, 6, 7].

This paper describes a new and formal approach to test
pattern generation for stuck–at faults in combinational cir-
cuits. It achieves superior results without any circuit or
fault specific heuristic. The approach is based on a set of
clauses representing the circuit under test. We handle the
set of clauses in a homogeneous way, different than [6]. All
clauses are transformed into a data structure called impli-

cation graph. Then the implications are performed on this
graph which is well suited for test pattern generation. The
separation of the part that solves the decision problem from
all fault model specific parts guarantees a very flexible test
pattern generator that can easily be extended to other fault
models [19].

This paper is organized in the following way. The next
section reviews the most important techniques of test pat-
tern generation. Section 3 introduces the implication graph
as a data structure tailored to perform implications. Sec-
tion 4 presents the basic ideas in applying the new alge-
braic algorithm. In Section 5 convincing experimental re-
sults demonstrate the effectiveness of our approach. All
circuits of the ISCAS ’85–benchmarks [9] are treated with-
out any aborted faults. Furthermore, we had no aborted
faults for the combinational parts of the ISCAS ’89 [10]
and MCNC ’93–benchmarks [11]. A comparison with var-
ious state–of–the–art tools shows that the new approach
provides a clear speed–up. Section 6 concludes the paper.

2 State-of-the-Art
Test generation for stuck–at faults is a well studied topic.

Many techniques and heuristics have been proposed during
the past 20 years; the most important ones are described
below.

� The application of a 9 or 15-valued logic [12, 13]
instead of the 5-valued logic [1] allows both more
precise signal assignments and a significant reduction
of the search space.

� During "Learning" [4], dependencies between signals
are identified. Exploiting these implications, contra-
dicting signal assignments may be identified at an ear-
lier stage. Therefore, the search space is reduced. This
results in accelerated test generation for faults that are
hard–to–detect. For faults that are still aborted, it is
possible to increase the number of learned implica-
tions by considering the current signal assignments.
This process is called "Dynamic Learning" [14].

� The idea of "Recursive Learning" [15] is similar to the
idea of dynamic learning. Recursive learning, how-
ever, ensures that all existing dynamic implications
are learned and that all possible signal assignments
are made. Consequently, inconsistent signal assign-
ments can be avoided.

� Test pattern generators that are based on a branch–
and–bound technique assign logical values to signals.



The size of the search space depends significantly on
the order of selecting the signals. The multiple back-
trace procedure [16] is a method to select both the
signal and the logical value.

� An alternative to the branch–and–bound technique
is the application of BDDs, e.g., [5]. A BDD is a
data structure that is able to efficiently represent large
Boolean functions. Therefore, it is possible to repre-
sent all alternatives simultaneously. There are circuits,
however, that cannot be represented by a BDD because
of exponentially growing memory requirements.

Due to the ever increasing circuit speed, new require-
ments and fault models have been proposed for test gener-
ation. This results in great efforts for test preparation by
state–of–the–art tools since

� a complete new test pattern generator has to be devel-
oped, or

� existing (stuck–at) test pattern generators have to be
rebuilt, and

� valuable techniques that are effective for the old fault
model have to be replaced.

This forms the motivation for us to work on the well–studied
topic of test generation for combinational circuits.

The result is a test pattern generation kernel. Contrary
to former approaches, its advantages are:

� A formal and general description of the test generation
problem.

� Efficient development of test generators for various
fault models due to the flexibility of our tool. This
is enabled by the separation of the fault model in-
dependent and the fault model dependent part of the
program.

� Extraction of the general and most important ATPG
techniques and the avoidance of any fault or circuit
specific heuristic.

� A new and highly efficient data structure for implica-
tion independent of the used fault model. With the
help of this data structure we evaluate all necessary
and relevant (local and global) implications.

� Reduction in the number of lines of code up to 80%.

� Realization of new techniques, e.g., bit–parallel test
pattern generation and a consistent fault propagation.

� High quality and fast test pattern generation. All the
MCNC benchmark circuits are treated without any
aborted fault requiring less CPU–time than state–of–
the–art tools.

3 The Implication Graph
Performing implications is one of the most important

and time consuming tasks of test pattern generation [17].
Therefore, this section will focus on this problem. It will
be shown how to derive a data structure [18] from a logic
and how to exploit it for fast implication. For the sake of
simplification, the necessary steps will be shown for a three
valued logic and an AND gate. The extension to arbitrary
logics and gates is given in [19].

Let us assume a two input AND gate with the input
signals a and b and the output signal c. The function of this
gate can be written as

c$ (a ^ b):

(The XNOR operation is abbreviated by $.) Exploiting
the transformation

c$ (a ^ b) , (a _ :c) ^ (b _ :c) ^ (:a _ :b_ c)

two clauses with two literals and one clause with three
literals can be used to describe the logical behavior of the
gate and to assure a consistent assignment. Now each

a _ :c

c a

:a:c

Figure 1: Clauses with two literals
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Figure 2: Clauses with three literals

clause with two literals is represented as shown in Figure 1,
after transforming



a _ b, (:a! b) ^ (:b! a);

and each clause with three literals is represented as given
in Figure 2.

This procedure leads to an implication graph representa-
tion. For each signal, 2 �dlog3ne (n is the number of logical
values) nodes are introduced. In case of the 3–valued logic
and a signal x, the nodes x and :x are introduced. The
interpretation is given in Table 1.

To imply from a signal means that the corresponding
node is marked. Then all successors are checked if they
can be marked. That is the case if

� the node is no ^–node (see Figure 2) and one prede-
cessor is marked.

� the node is a ^–node and all predecessors are marked.

These rules are applied until no further propagation of
marks is possible.

x :x interpretation abbr.
no mark no mark value unknown X
no mark marked signal is 0 0
marked no mark signal is 1 1
marked marked conflict –

Table 1: 3-valued logic representation

This graph is implemented straightforward as a data
structure. All local and global implications can easily
be computed. The global implications are learned on the
graph. The usage of this data structure and its applica-
tion to perform bit–parallel implication and justification is
explained in [8].

4 The ATPG Approach
Our test pattern generator TIP is based on the implication

procedure explained in Section 3. In addition to these
algorithms there is a need for some fault model specific
functions. These functions contain the complete set of
constraints that have to be considered for the selected fault
model. Please note that the complexity of these functions
is linear in the number of gates in case of justification
problems. Since there are different fault models that are
supported by TIP, we select one of them to explain the
principle of the approach: the stuck–at fault model.

The general approach is shown by the flow–chart in
Figure 3. The basic steps and the main ideas of the approach
will be explained below.

After selecting a fault, the necessary constraints for de-
tecting this fault are performed. The fault is activated and
the path in the fanout–free region is sensitized according
to the condition of column 3 in Table 2. The first two
columns give the type of the gate that should be sensitized
and the fault effect at the input of the gate. The entries are
explained in Table 3.

Then, the implication procedure that was introduced in
Section 3 is performed. If a conflict occurs, the fault is re-
dundant since only necessary conditions to detect the fault
are exploited, i.e., no decision was made. There are two

situation condition
gate fault type FFR else

AND, NAND D 1 G1
AND, NAND D 1 F1

OR, NOR D 0 F0
OR, NOR D 0 G0

XOR, XNOR D – E
XOR, XNOR D – E

INV, BUF D – –
INV, BUF D – –

Table 2: Sensitization conditions

value fault-free circuit faulty circuit
D 1 0
D 0 1
0 0 0
1 1 1

G0 0 x
G1 1 x
F0 x 0
F1 x 1
E 0

1

0

1

Table 3: Logical values

ways to continue the generation process. Either the logic
values that are not satisfied by the values of the primary in-
puts are justified or the fault effect is propagated. We found
out that the first alternative is, in most cases, the better one.
There are two reasons for this fact. First, about 90% of all
redundant faults can be identified this way. Second, the re-
sultingassignments to the primary inputs form a test pattern
that is able to detect the underlying or other untreated faults
in about 80% of the cases. The resulting pattern is given
to a fault simulator to decide whether the selected fault is
detected. If it is not, the fault has to be propagated to one of
the primary outputs. For this reason one path starting from
the fanout stem of the fanout–free region that contains the
fault is selected. This path is sensitized according to the
condition of column 4 in Table 2. Then the logic values
that are unsatisfied are justified. If no conflict occurs a test
pattern for the selected fault has been detected. Otherwise
another path is selected, sensitized, and justified. Please
note: this type of single path sensitization implicitly con-
siders all multi–path propagation possibilities, that contain
the selected path [20]. Hence, the fault is proven to be
redundant if no further propagation path exists.

Besides the 9–valued logic and the global implications,
TIP does not use any of the other techniques presented
in Section 2. It exploits the fast bit–parallel implication
procedure [8] based on the implication graph and the sepa-
ration of the approach into two parts. A part that performs
the justification and a part that ensures constraints of the
underlying fault model.
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Figure 3: Pseudo-code of TIP/stuck–at

5 Experimental Results
The algorithm of Section 4 was implemented in a C

language program, TIP. The results were achieved on a
DECstation 5000/200.

Out of the various approaches that treat stuck–at test
pattern generation we selected SOCRATES [4] for com-
parison because it is a well–known structural approach.
Moreover, we compare TIP with Nemesis [6] and TRAN
[7], two other formal approaches. The comparison with
further approaches namely TSUNAMI [5], FAN [16], EST
[21], COMPACTEST [22], CONTEST [23], and the ap-
proaches of [15] and [24] yields similar results.

Table 4 shows the TIP results for the ISCAS ’85 [9]
benchmark circuits and four industrial circuits (their sizes
range from 196 to 11629 gates). The next five columns
display the number of tested faults, the number of redun-
dant faults, the number of aborted faults, the CPU-time
in seconds for test pattern generation and fault simulation,

and the number of test patterns after test set compaction
using reverse fault simulation. Since we use a compar-
atively simple fault simulator, the CPU–time additionally
necessary for test set compaction is about 35 % of the CPU–
time for test generation. The last two columns denote the
number of backtracks, and the memory in megabytes that
is necessary to build the implication graph. Please note
that there is an additional memory requirement especially
to store the net list, the test patterns, and the ATPG state
for backtracking. The number of aborted faults is zero for
all ISCAS ’85, ISCAS ’89 and Addendum ’93 benchmark
circuits.

circuit test red ab time pat bt MB

c432 520 4 0 0.6 54 1287 0.1
c499 750 8 0 0.7 56 4 0.1
c880 942 0 0 0.4 57 0 0.2

c1355 1566 8 0 1.6 87 216 0.3
c1908 1870 9 0 4.6 124 24 0.5
c2670 2630 117 0 6.7 118 113 0.6
c3540 3291 137 0 11.5 162 188 0.8
c5315 5291 59 0 6.7 123 567 1.3
c6288 7710 34 0 3.0 32 0 1.1
c7552 7419 131 0 22.8 222 602 1.6

s35932 34470 3984 0 314.2 68 33k 7.1
s38417 30859 165 0 307.5 911 264 8.7
s38584 34493 1506 0 299.8 631 845 8.7

ind1 390 0 0 0.1 24 0 0.1
ind2 6812 87 0 12.1 182 392 1.6
ind3 11560 210 0 27.2 165 796 2.6
ind4 15237 205 12 3442.1 304 423k 4.5

Table 4: Results of TIP

See Table 5 for a comparison of these results with
previously reported stuck–at test pattern generator perfor-
mances. The first column gives the circuit name. The next
four columns show the CPU–times for complete ATPG for
SOCRATES (DECstation 5000/200), Nemesis (Sparc 1+)
and TRAN (SunSparc2), and our approach. To consider the
different machine speed, the third row gives the SpecInt89
of the different machines. The data in Table 5 demon-
strates clearly that for all ISCAS ’85 benchmark circuits
TIP is significantly faster than all other approaches. It is
five to nine times faster than the formal approaches and up
to four times faster than the fastest ATPG approach. This
result is astonishing since TIP is a formal ATPG tool, which
is not specialized in stuck–at faults. TIP is also capable of
generating robust and non–robust test patterns for path de-
lay faults assuming enhanced or single scan design [8].
The part that is specially written for stuck–at fault ATPG
consists of less than 1000 lines of code. Most of them are
necessary to handle the fault list and to initialize the test
pattern generation kernel. Please note that the CPU-times
of Nemesis and TRAN are reduced by exploiting a random
test generation phase first.

TIP is able to generate test patterns for all testable faults;
and is able to prove all redundant faults redundant for all
ISCAS ’85 [9], ISCAS ’89 [10] and Addendum ’93 [11]



atpg + fsim time [s]
circuit SOCR. Nemesis TRAN TIP

19.1 11.2 21.7 19.1
c432 1.4 8.5 0.8 0.6
c499 2.9 3.9 1.8 0.7
c880 1.6 37.5 2.9 0.4

c1355 6.1 22.0 6.6 1.6
c1908 12.6 69.8 12.6 4.6
c2670 12.9 371.2 92.9 6.7
c3540 23.6 264.7 23.9 11.5
c5315 14.2 74.8 32.1 6.7
c6288 16.2 147.6 38.0 3.0
c7552 45.1 752.6 298.4 22.8

Table 5: Comparison with other approaches

benchmark circuits. As far as we know, TIP is the first
published ATPG tool that achieves this goal with only one
test generation phase in a reasonable amount of time.

name pats flts time time
fault norm.

TIP 992 547 18.0 0.033 1.0
Nemesis 297 628 729.9 1.162 20.6

TRAN n.a. 525 250.3 0.477 16.4
Socrates 1344 527 30.3 0.058 1.8

Table 6: ATPG results for c7552

In another experiment we compared the speed of the
different approaches for hard–to–detect faults. For that
purpose we performed a random test pattern generation
phase to drop the easy–to–detect faults. Then we performed
a deterministic test pattern generation phase in order to
generate test patterns for detectable but still undetected
faults and to identify the redundant faults. Table 6 shows
the results of this experiment. We selected the benchmark
circuit c7552 because it is known to contain many hard–
to–detect faults. Column two gives the number of random
patterns. The next two columns present the number of
undetected faults after the random pattern generation phase
and the CPU–time in seconds that was necessary to classify
these faults. Column five and six show the time per fault for
deterministic ATPG and CPU–time per fault normalized to
TIP and the speed of the machine.

6 Conclusion
We have presented a new and general algorithm for test

pattern generation and a method for the propagation of fault
effects that works without any heuristics for redundancy
detection. The effectiveness of this approach was demon-
strated by comparing the results for stuck–at test pattern
generation with the most important published methods. It
turns out that our approach is up to four times faster than
the fastest approaches reported so far. Moreover, it is the
first published single phase approach that does not yield
aborted faults for any ISCAS ’85 or ’89 benchmark circuit
within a reasonable amount of time.
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