
A Hardware/Software Partitioning Algorithm for

Pipelined Instruction Set Processor

Nguyen Ngoc Binh, Masaharu Imai,

Akichika Shiomi, and Nobuyuki Hikichi*

Department of Information and Computer Sciences

Toyohashi University of Technology

Toyohashi, 441 Japan

* Software Research Associates, Inc.
Tokyo, 170 Japan

Abstract

This paper proposes a new method to design an op-
timal instruction set for pipelined ASIP development
using a formal HW/SW codesign methodology. The
codesign task addressed in this paper is to �nd a set
of HW implemented operations to achieve the highest
performance of a pipelined ASIP under a given gate
count and power consumption constraint. The method
enables to estimate the performance and pipeline haz-
ards of the designed ASIP very accurately. The ex-
perimental results show that the proposed method is
e�ective and quite e�cient.

1 Introduction

Pipelining is a simple yet e�ective technique for in-
creasing parallelism and the utilization of Functional
Units (FUs) [1]. It is frequently used for increasing the
performance of an instruction set processor by overlap-
ping the execution of instructions. The total execution
cycles needed for a series of instructions are reduced
in proportion to the amount of overlap in their pro-
cessing (i.e., the number of stages in the pipeline).

In designing the pipelined instruction set processor
it is necessary to deal with all types of pipeline haz-
ards, especially when multi cycle and pipelined FUs
are used. In the traditional Application Speci�c In-
tegrated Processor (ASIP) design methodology, sys-
tem architects decide which operations will be imple-
mented in hardware (HW) or in software (SW). In
order to produce an e�cient design in a reasonable
turn-around-time (TAT), an e�cient HW/SW code-
sign partitioning method should be used. In practice,
design process still depends on the designer's skill, and
the best possible design is usually achieved after inves-
tigating a number of design candidates.

This paper focuses on the optimization of a
pipelined instruction set processor using a formal
HW/SW codesign methodology. In the case of area
and power consumption constrained design, some of
the operations may be implemented in SW using an
ALU only. During the execution of these SW opera-

tions, other ALU operations must be stalled. However,
FUs may operate simultaneously as long as no more
than one instruction can be issued at each clock cy-
cle and there are no two instructions which complete
their execution at the same time. That is, the method
must handle all types of data hazards and structural
hazards.

The rest of the paper is organized as follows. Sec-
tion 2 reviews related work and describes an architec-
ture model to be considered in this paper. Section 3
gives de�nitions and notations. Section 4 describes
a new problem formalization and the proposed algo-
rithm. The e�ectiveness and e�ciency of the proposed
algorithm are shown in Section 5 through design sam-
ples. Section 6 gives the conclusion and future work.

2 Related Work

A HW/SW codesign system PEAS-I (Practical En-
vironment for ASIP development - type I) [2] has
been developed to synthesize an optimal instruction
set processor by solving Instruction set implementa-
tion Method Selection Problems (IMSP) type 1 and 2.
IMSP-1 [3] is set up assuming no interaction among
the operations, and each operation was to be im-
plemented using a separate HW module. However,
IMSP-2 [4] is an extension of IMSP-1 by taking re-
source sharing into account.

The target CPU to be generated by PEAS-I be-
longs to a class of Harvard architecture with separate
data bus and instruction bus. The PEAS-I CPU core
architecture is shown in Figure 1, where `Kernel' con-
sists of an ALU, a one-bit shifter, and a register �le.
The CPU core may include other FUs such as multi-
plier, divider, and so on. The pipelined architecture
synthesized by PEAS-I consists of four stages: IF (In-
struction Fetch and decode), EX (EXecution), MEM
(MEMory access) and WR (Write back to Register
�le), respectively. While each of IF, MEM, and WR
stages takes only one cycle, EX stage takes one or more
cycles. The PEAS-I CPU has a RISC type load/store
(register-register) architecture and each control step

corresponds to one clock cycle. While the CPU may
contain the Kernel and di�erent types of FUs, it is as-
sumed that there are no identical FUs. The architec-
ture has a register bypass to forward the computation
results to Kernel or FUs. Each FU can be multi cycle
and pipelined. However, in the IMSP-1 and 2 formal-
izations, the pipeline was not taken into account, in
particular, pipeline hazards were not addressed and
left for future work [2]. Therefore, we need to develop
a method to estimate the e�ect of pipeline hazards
as accurately as possible because they a�ect the per-
formance of the CPU. Moreover, the method should
estimate the execution cycles of the application pro-
gram, i.e. the performance of the ASIP, as accurately
as possible.

ÿ�FU-1 ÿ�FU-2
ÿ�1ÿ�Bit

ÿ�Shifter ÿ�ALU

ÿ�Register
ÿ�File

ÿ�Ctrl

ÿ�. . . .

ÿ�Kernel

ÿ�(ÿ�Changeableÿ�)

Figure 1: PEAS-I CPU core architecture.

Huang and Despain [5] propose a systematic ap-
proach to synthesize an instruction set that the given
application SW can be e�ciently mapped to a parame-
terized, pipelined microarchitecture. While their work
is similar to our work in terms of the inputs and part
of outputs, it is di�erent from our method in terms
of approach and e�ciency. First, Huang and Despain
assume that the designers are required to specify the
number of HW resources (in parlicular, the number
of each type of FU), which will take several iterations
to �nd the best allocation; whereas in our method,
an optimal pipelined architecture can be selected and
generated automatically. Second, Huang and Despain
synthesize an instruction set from the assembly code
by grouping some instructions into a new one; whereas
we generate the optimal instruction set from a super
set regarding the optimal HW/SW partitioning.

3 De�nitions and Notations

The architecture of an ASIP synthesized by the
PEAS-I system is based on the GNU C Compiler
(GCC) abstract machine model [6]. The GCC
Register-Transfer Language(RTL) operations are di-
vided into primitive and basic operations. The
primitive operations contain the minimum operations
that can be included in the ASIP chip so that it can ex-
ecute any C program. The primitive operations should

be implemented in HW as the Kernel. The basic oper-
ations contain other C operators that are not included
in the primitive operations. A basic operation can be
implemented using some HW choices (such as fast or
slow HW modules) or using a SW subroutine (run-
time routine) that uses primitive operations and some
other basic operations.

The HW/SW partitioning problem in the current
version of PEAS-I is de�ned as follows [4]:

For a whole set of all candidate instructions rep-
resenting a given application domain, select a set of
implementation methods which maximizes the perfor-
mance of the CPU under the constraints of chip area
and power consumption, taking into account the func-
tional module sharing relation among instructions.

In order to formalize the IMSP-2P the following
de�nitions and notations are used in the remainder of
this paper.

(1) \n" denotes the total number of basic operations
to be considered.

(2) \fi" denotes the execution frequency count of ba-
sic operation #i in the given set of application
programs, where 1 � i � n. We denote frequency
count of all primitive operations as f0.

(3) \xi" denotes an implementation method that re-
alizes operation #i, where xi may be HW choice
or SW, 0 � i � n. Then X = (x0; x1; :::; xn) is
a combination of implementation methods to be
considered.

(4) \ti(xi)" denotes the execution cycles of operation
#i when implemented by method xi, where 0 �
i � n.

(5) \a(xi)" and \p(xi)" denote the area and power
consumption required for implementationmethod
xi respectively, where 0 � i � n.

(6) \A max" and \P max" denote the available chip
area and the maximum power consumption allow-
able for the computing module in the ASIP chip.

(7) \N" denotes the total number of basic blocks in
the application program's GCC RTL code.

(8) \t(Bj ;X)" denotes the execution cycles needed
to execute basic block Bj using a combination of
implementation methods X , where 1 � j � N .

(9) \Fj" denotes the execution frequency count of ba-
sic block Bj in the given set of application pro-
grams, where 1 � j � N .

(10) \cj" denotes clock cycles needed to de�ne control
(e.g., branch delay) from block Bj to another one,
where 1 � j � N . Here, it is assumed that all
branches are taken and delay slot scheduling is
not performed.

(11) \b" denotes execution cycles reduced by un-taken
branches in execution of the given application
program.

Note that fi, Fj , cj , and b are computed from the
application program and associated input data by us-
ing the application program analyzer (APA) of the
PEAS-I system.

4 Proposed Method
The problem addressed in this paper for design-

ing an optimal pipelined instruction set processor in
PEAS-I is called IMSP-2P (`P' stands for Pipeline)
and can be considered as an extension of IMSP-2 to-
ward the pipelined architecture. Our goal is to detect
and resolve pipeline hazards and to increase the per-
formance of pipelined ASIP to be designed as much as
possible in the new problem formalization.

4.1 IMSP-2P Formalization

Find a solution vector

X = (x0; x1; � � � ; xn)

which minimizes the objective function:

T (X) =

NX
j=1

(Fj � (t(Bj ; X) + cj)) � b ; (1)

subject to the constraints:

X
xi2S

a(xi) � A max; (2)

X
xi2S

p(xi) � P max; (3)

where

S =

n[
i=0

fxig (4)

4.2 Consideration

We have developed a HW/SW partitioning-
oriented pipeline scheduling algorithm [7] to estimate
t(Bj ;X) for basic block Bj for given HW resources
X. The pipeline control hazards are addressed in
introducing the coe�cients cj . Note that the num-
ber of clock cycles due to control hazards is equal toPN

j=1(Fj � cj) � b . The pipeline scheduling algo-

rithm detects and resolves all types of data hazards
and structural hazards by ensuring that no more than
one instruction can be issued or completed at each con-
trol step. Therefore, the IMSP-2P solver estimates the
pipeline execution cycles accurately if the code opti-
mization is performed by the same strategy taken in
the scheduling algorithm.

4.3 IMSP-2P Solver

4.3.1 Input and Output

The input to the IMSP-2P solver includes the follow-
ing items:

(1) the GCC's RTL code of the given application pro-
gram,

(2) Fj 's for j = 1, � � �, N ,

(3) b (# clock cycles reduced by un-taken branches),

(4) area and power consumption constraints A max
and P max, and

(5) the module information database, which
includes execution cycle count, latency, area,
and power consumption of each implementation
method of all operations.

The output of the IMSP-2P solver includes the opti-
mum implementation method of each basic operation
and pipelined schedules of basic blocks. The instruc-
tion set of the designed ASIP will include the primi-
tive operations as default and those basic operations
that are selected to be implemented in HW. The algo-
rithm tries to automatically integrate the functional
modules, which share basic operations, into one HW
module whenever possible.

4.3.2 Algorithm

The IMSP-2P can also be solved using the branch-
and-bound method as IMSP-2 can. The key to solving
problems e�ciently by this method is to �nd a tight
lower-bound function to prune as many non-optimum
solutions as early as possible. The lower-bound func-
tion used in the IMSP-2P solver is as follows:

Lower bound = (f0 + Stallfast)

+

d�1X
i=1

(fi � ui(xi)) +

nX
i=d

fi ; (5)

ui(xi) =

�
1; if xi is a HW implementation ;
ti(xi); if xi is a SW implementation ;

where the parameter d represents the depth of the
node under consideration. The �rst term in Eq.(5)
represents the value independent of X, where Stallfast
is the number of stalls in executing the given applica-
tion program using the hypothetical FUs of one cycle
denoted by Xfast and is computed as follows:

Stallfast = T (Xfast)�

nX
i=0

fi ; (6)

where T (Xfast) is computed by using Eq.(1).
The second term in the lower-bound in Eq.(5) rep-

resents the value less than determined cost of the al-
ready searched path, while the third term represents
the minimum cost of the remaining path. Note that
instructions are executed in a pipeline manner and
can be overlapped. Therefore, in the best case, in-
structions may be overlapped maximally and there are
no idle clock cycles. In this case, instructions will be
executed as if they were executed in one cycle each.
However, when operations are implemented in SW,
they cannot be overlapped since only the Kernel is in

charge of their execution. This principle also explains
why we used the hypothetical FUs Xfast in de�ning
the lower-bound function. Also, note that execution
frequency counts fi's (i = 0; 1; :::; n) are computed
by using the inputs (1) and (2). Please note that the
module sharing capability and heuristic reordering are
the same as in the IMSP-2 solver.

5 Experiments and Results
The IMSP-2P algorithm has been implemented in

C and examined on a workstation. A set of sample
programs has been performed to evaluate the e�ec-
tiveness and e�ciency of the algorithm.

5.1 Module Library

We use a module library with both non-pipelined
FUs and pipelined FUs such as multipliers and di-
viders generated using a high-level synthesis system
called PARTHENON [9] and cell library VSC470.lib
(0.8�mCMOS) from VLSI Technology, Inc. A 16 MHz
clock was assumed in the design of HW modules. The
database contains 14 basic operations, each of them
has di�erent implementation methods ranging from 2
to 11. The number of leaf nodes in the search tree
is of 112 � 74 � 28 = 74; 373; 376. The whole search
tree ranges from 8:2� 107 to 1:5� 108 nodes depend-
ing on the order of variables (xi's) to be examined.
Therefore, it is necessary to have an e�cient strategy
to explore the search space to get an optimal solution
in a reasonable time.

Table 1: Part of Module Database with Pipelined

Multipliers and Dividers

Module Gate Power* L D Implied

Name Count Operations

kernel** 14918 18062.3 1 1 (primitive)

b alsft 756 876.3 1 1 ashl, ashr,

lshl, lshr

extend 137 172.8 1 1 extendhi,
extendqi,

z extendhi,
z extendqi

mul csa 7747 11106.9 1 1 mul, umul
mul 3clk 6118 8008.5 3 3
mul bpr 3161 3643.0 17 17
mul seq 2393 2777.1 32 32

mul seq p4 14567 17138.4 4 32
mul seq p8 7586 8989.1 8 32
mul seq p16 4052 4829.7 16 32
mul bpr p2 19552 23103.2 2 16
mul bpr p4 10149 12029.9 4 16
mul bpr p8 5400 6497.5 8 16

div 2seq 5808 6910.4 19 19 div, udiv,

div seq 3396 3931.4 35 35 mod, umod
div seq p17 5458 6628.6 17 34
div 2seq p3 29127 34804.9 3 18
div 2seq p6 15499 18362.8 6 18
div 2seq p9 10744 12713.5 9 18

* Unit: �Watt/MHz ** with 8 registers
L: Latency (cycles) D: Delay (cycles)

Part of the module information database used in
the experiments is shown in Table 1. In this table,
`kernel' represents the minimal HW components. The
module `b alsft' denotes a barrel shifter that performs
both arithmetic and logical shift operations such as
ashl, ashr, lshl, and lshr. The module `extend'

performs extension operations such as extendhi, ex-
tendqi, z extendhi, and z extendqi. The mod-
ules `mul csa', `mul 3clk', `mul bpr', and `mul seq' de-
note multipliers that execute a 32-bit � 32-bit mul-
tiplication such as mul or umul in 1, 3, 17, and 32
clock cycles, respectively. The modules `div 2seq' and
`div seq' represent dividers that execute 32 bit divi-
sion operations such as div, udiv, mod, and umod

in 19 and 35 clock cycles, respectively. These mod-
ules are non-pipelined, therefore, each delay and la-
tency are the same. The pipelined multipliers are de-
noted as `mul seq p4', � � �, `mul bpr p8', and dividers
as `div seq p17', � � �, `div 2seq p9'.

Table 2: Expected execution cycles of

SW implemented operations

Basic #Cycles Basic #Cycles

Operation Operation

div 216 mul 96

udiv 202 umul 91

mod 214 trunchi 2

umod 201 truncqi 1

ashl 31 extendhi 10

ashr 31 extendqi 9

lshl 31 z extendhi 2

lshr 31 z extendqi 1

Another part of the module database describes the
expected execution cycles for each basic operation to
be implemented in SW by using the `kernel' only. This
part is shown in Table 2, where trunchi and truncqi

represent the truncation operations.

5.2 Sample Programs

The sample programs used in the experiments are
as follows:
(1) ESS : Equation System Solver program, which
solves a system of two linear equations using Cramer's
rule.
(2) IMC : Inverse Matrix Calculator program that
computes the inverse of a non-singular 3 � 3 matrix
using Cramer's rule.
(3) di�eq : A program for solving a second order dif-
ferential equation from Ref. [8].

These sample programs were fed to APA of the
PEAS-I system. The code optimization was per-
formed by the Gnu C Compiler [6].

5.3 Algorithm E�ciency

Experimental results show that the proposed algo-
rithm with the lower bound function in Eq.(5) is very
e�cient. Selecting the optimum architecture out of
7:44�107 combinations is not an easy task, even to be
solved by using the integer linear programming (ILP)
approach.

An analyzer has been developed to reduce the
search space and to get necessary information for the
proposed algorithm, such as GCC RTL code, execu-
tion frequency (Fj) of each basic block (BB), data de-
pendencies between instructions in BB, and the num-

ber of basic operation types in each BB. A basic block
is said to be dependent on X if it contains instruc-
tion(s) with the basic operation(s), otherwise it is
called independent of X. Note that a combination of
implementation methods X is determined when a leaf
node in the search tree has been reached. Then, using
the pipeline scheduler [7] the IMSP-2P algorithm com-
putes the values t(Bj ; X) for BBs only when these BBs
are dependent on X, for other BBs (i.e., independent
of X) they are computed only once before exploring
the search tree.

It has been found that the number of BBs depen-
dent on X (denoted as N 0) is usually much smaller
than the total number of BBs of the given application
program. The number of basic operation types is six
for these sample programs. The reduced search space
contained 4935 nodes. The analyzed results are sum-
marized in Table 3. The number of performed exper-
iments is shown in Table 3 (#Cases) for each sample
program. Note that while the total number of nodes
in each reduced search tree is about 5000, the aver-
age numbers of visited nodes are 75, 114, and 112 for
the ESS, IMC and di�eq examples, respectively. That
means Eq.(5) employs a good lower bound function.
Throughout the experiment, the algorithm gave the
optimum solution within a few seconds on a SPARC-
station 10 workstation, including the time for analyz-
ing the input data to get necessary information such
as data
ow graph, the number of basic operations,
reduced search space, and so on. For a given area
constraint, the IMSP-2P solver has taken CPU time
of 2.6s, 2.3s, and 2.1s in average for IMC, ESS, and
di�eq, respectively.

Table 3: Analyzed results and statistics

Specification ESS IMC diffeq

N 66 76 50

N 0 7 7 7

b 1673 2470 447

Basic Operation Types 6 6 6

Nodes of Reduced Tree 4935 4935 4935

Cases 26 31 29

Visited Nodes in Average 75 114 112

5.4 Algorithm E�ectiveness

The e�ectiveness of the IMSP-2P algorithm has
been evaluated by using it to select the implementa-
tion methods of the basic operations. The IMSP-2P
selected the optimum partitioning for di�erent values
of area constraint. The power consumption was ig-
nored to simplify the experimental cases.

FUs needed to implement basic operations for these
sample programs are a multiplier, a divider, a barrel-
arithmetic shifter, an extender and so on, where the
multiplier and the divider can be pipelined or non-
pipelined.

Figures 2 and 3 show estimation errors by IMSP-2
and IMSP-2P, respectively. Note that IMSP-2P can
estimate the execution cycles much more accurately
than IMSP-2. That is, estimation errors are below
1.3% for designs with gate count constraints exceed-
ing 22 Kgates, where all operations are implemented
in HW. On the other hand, the estimation errors by

IMSP-2 range from 5% to 20% because of not taking
into account the pipeline hazards.

0

5

10

15

20

25

30

35

40

15 20 25 30 35

ES
TIM

AT
IO

N
 ER

RO
R

(%
)

AREA CONSTRAINT (Kgates)

IMSP-2 Error for ESS

IMSP-2 Error for IMC

IMSP-2 Error for diffeq

Figure 2: Estimation errors by IMSP-2

0

5

10

15

20

25

30

35

40

15 20 25 30 35

ES
TIM

AT
IO

N
 ER

RO
R

(%
)

AREA CONSTRAINT (Kgates)

IMSP-2P Error for ESS

IMSP-2P Error for IMC

IMSP-2P Error for diffeq

Figure 3: Estimation errors by IMSP-2P

Please note that in the scheduling process it was as-
sumed that each SW implemented basic operation is
executed in the expected �xed number of clock cycles
as shown in Table 2. In practice, these SW imple-
mented basic operations will take di�erent execution
cycles depending on the input data. In the measure-
ment of the execution cycles, the actual behavior of
these SW implementated basic operations were sim-
ulated. As a result, the execution cycle estimation
reported by IMSP- 2P will contain some error as in
the case of IMSP-2 due to the execution cycles depen-
dent on input data (up to 25% and 32% as shown in
Figures 2 and 3, respectively.)

Some of the design results for IMC are shown in Ta-
ble 4. In this table, the second column represents area
constraints A max in Kgates. The third column rep-
resents the estimated execution cycles (T (X)) by the
IMSP-2P solver. The fourth column shows the execu-
tion cycle errors (Err) measured by using the simu-
lator generated by the PEAS-I system, assuming that
the HW interlock is used. Note that estimation errors
are almost 0% for designs with all HW implemented
operations. The last column shows the HW modules

that implement basic operations to be implemented by
HW. The optimum instruction set is then de�ned on
the selected HW modules. For example, in design #7
with A max = 20 Kgates only the modules `b alsft'
and `div seq' have been chosen together with the ker-
nel, therefore the instruction set of the designed ASIP
contains the primitive operations and those basic op-
erations belonging to `b alsft' and `div seq', i.e. ashr,
ashl, lshr, lshl, div, udiv, mod, and umod. The
remaining basic operations such as mul, extendhi,
and so on are implemented in SW using the Kernel.
For any given area constraint, the shown partition-
ing represents the optimum one. Other combinations
were not selected by the algorithm because of their
inferiority. The design results for the ESS and di�eq
programs are not shown here due to lack of space.

Table 4 : Estimated execution cycles, estimation errors

and selected HW modules for IMC by IMSP-2P

A max T (X) Err Selected HW Modules
Kgates Cycles (%) (with kernel)

1 55 60689 0.5 b alsft extend mul csa

div 2seq p3

2 40 63068 0.1 b alsft extend mul 3clk

div 2seq p6

3 35 64817 0.1 b alsft extend mul 3clk

div 2seq p9

4 30 71400 0.0 b alsft extend div 2seq

mul csa

5 25 84329 0.0 b alsft extend div 2seq

mul bpr

6 22 112396 1.7 b alsft div seq mul seq

7 20 164296 27.9 b alsft div seq

8 19 205096 31.6 extend div seq

9 18 344448 9.1 b alsft extend

10 16 353088 8.4 b alsft

11 15 402528 4.1 (kernel only)

Another major feature of IMSP-2P is that it can
reduce the pipeline execution cycles by optimally se-
lecting the pipelined FUs in comparing to the IMSP-
2 solver. In experiments, the performance (via the
execution cycles of the application program) of the
designed ASIPs was measured by using the PEAS-I
simulator. It is found that up to 4.2%, 8.4%, and
6.7% execution cycle reduction rates due to selecting
the pipelined FUs by IMSP-2P compared to IMSP-2
were achieved for the ESS, IMC, and di�eq examples,
respectively.

6 Conclusion and Future Work

We have proposed an e�cient method to design
an optimal pipelined instruction set processor in
the PEAS-I system. The method uses the pipeline
scheduler which is capable of detecting and resolv-
ing pipeline hazards and handling multicycle opera-
tions simultaneously. The method with IMSP-2P is
introduced as a HW/SW partitioning problem and
selects the implementation method of the operations
that implement a pipelined ASIP instruction set so
that the performance is maximized under the given
design constraints. The e�ectiveness of the IMSP-2P
algorithmwas demonstrated through design examples.
The method estimates the performance of a designed
pipelined ASIP accurately for most designs. Consid-

erable execution cycle reduction rates due to selecting
pipelined FUs have been obtained. The algorithm is
so e�cient that all the optimal solutions performed in
the experiments in partitioning process were obtained
within a few seconds on a conventional workstation.

The estimation error reduction for SW imple-
mented operations is left for future work. Our future
work also includes the development of a HW/SW par-
titioning algorithm for pipelined ASIP design with the
least gate count under a given power consumption and
execution cycle constraints. Moreover, the design with
the lowest power consumption under gate count and
execution cycle constraints is also planned.

Acknowledgments

Authors would like to express their thanks to NTT
Communication Science Laboratories, VLSI Technol-
ogy, Inc., Science Create, Co. Ltd., Japan, for their
kind help and assistance. Part of this research is sup-
ported in part by a research grant from the Ministry of
Education, Science and Culture of Japan under con-
tracts No's. 07558038 and 07680353.

References

[1] Hennessy, J.L., and Patterson, D.A., Computer Archi-

tecture: A Quantitative Approach, Morgan Kaufmann

Publishers, 1990.

[2] Alomary, A., Nakata, T., Honma, Y., Sato, J., Hikichi,

N., and Imai, M., \PEAS-I: A Hardware/Software Co-

design System for ASIPs," Proc. of EURO-DAC'93,

pp. 2 { 7, 1993.

[3] Imai, M., Alomary, A., Sato, J., and Hikichi, N.,

\An Integer Programming Approach to Instruction

Implementation Method Selection Problem," Proc. of

EURO-DAC'92, pp. 106 { 111, 1992.

[4] Alomary, A., Nakata, T., Honma, Y., Imai, M., and Hi-

kichi, N., \ An ASIP Instruction set Optimization Al-

gorithm with Functional Module Sharing Constraint,"

Proc. of ICCAD-93, pp. 526 { 532, 1993.

[5] Huang, I-J., and Despain, A.M., \Synthesis of In-

struction Sets for Pipelined Microprocessors,"Proc. of

DAC'94, pp.5 { 11, 1994.

[6] Stallman, R., Using and Porting GNU C Compiler,

Free Software Foundation, Version 1.40, 1991.

[7] Binh, N.N., Imai, M., Shiomi, A., Sato, J., and Hi-

kichi, N., \A Pipeline Scheduling Algorithm for In-

struction Set Processor Design Optimization," Proc.

of APCHDL'94, Toyohashi, Japan, pp. 59 { 66, Oct.

1994.

[8] Paulin, P.G., Knight, J.P., and Girczyc, E.F., \HAL:

A Multi-paradigm Approach to Automatic Data Path

Synthesis," Proc. of DAC'23, pp. 263 { 270, 1986.

[9] Nakamura, Y., Oguri, K., and Nagoya, A., \Synthe-

sis from Pure Behavioral Descriptions," in High-Level

VLSI Synthesis, Camposano, R., and Wolf, W., eds,

pp. 205 { 229, Kluwer Academic Publishers, 1991.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

