Bottleneck Removal Algorithm for
Dynamic Compaction and Test Cycles Reduction

Srimat T. Chakradhar
C& C Research Laboratories
NEC USA, Princeton, NJ 08540, USA

ABSTRACT: We present a new, dynamic algorithm for test sequence compaction
and test cyclereduction for combinational and sequential cir cuits. Several dynamic
algorithms for compaction in combinational circuits have been proposed but, to
the best of our knowledge, no dynamic method has been reported in theliterature
for compaction in non scan sequential circuits. Our algorithm is based on two
key ideas: (1) we first identify bottlenecksthat prevent vector compaction and test
cyclereduction for test sequences gener ated thusfar, and (2) futuretest sequences
are generated with an attempt to eliminate bottlenecks of earlier generated test
sequences. |If all bottlenecks of a sequence are eliminated, then the sequence is
dropped from thetest set. Thefinal test set generated by our algorithmisminimal
in the following sense. Static vector compaction or test cycle reduction using
set-covering or extended set-covering approaches (for example, reverse or any
other order of fault smulation, with any specification of unspecified inputsin test
sequences) cannot further reduce the number of vectors. Experimental results on
scan and non scan sequential circuitsarereported todemonstrate the effectiveness
of our algorithm.

1. INTRODUCTION

Reduction in test application time and test set size is highly de-
sirable to reduce the overall costsincurred in fabricating and testing
alarge number of chipsthat implement a specific design. Small test
sets are desirable because testers have a fixed memory size. The
application of atest set larger than the tester memory size will re-
quire repeated loading of the tester memory, which is an expensive
process. Hardware modifications like full or partial scan that are
employed to ease the task of test generation significantly increase
the test application time. Thisis mainly dueto the extratester clock
cycles needed to load specific logic valuesinto scan flip-flops (FFs)
and observe circuit responsescollected in the scan FFs.

For full scan design circuits, the number of tester clock cycles
requiredto apply agiventest setisroughly proportional to theproduct
of the number of vectorsin the test set and the number of scan FFs
in the design. The amount of tester memory required to store a test
set is proportional to the number of vectors in the test set, and the
number of bits per vector. In order to reduce both test application
time and meet tester memory requirements, several combinational
test generatorsaimed at generating test setsthat contain fewer vectors
have been developed. These methods can be classified as static or
dynamic. Static methods attempt to reduce the number of vectorsin
an already generated test set [1, 2, 3]. Dynamic methods consider
vector compaction during the generation of the test set [4, 5]. Other
methodsto reduce test application time design the scan path so asto
reduce the number of cyclesrequired to scan-in a vector or scan out
the circuit response|[6, 7].

Hybrid approaches employing both combinational and sequen-
tial test generation methods have been investigated to reduce the test
application time for full scan designs[8, 9]. The test set generated
by these methods consists of vectorsthat have to be scannedin, and
vectors that do not require any scan-in. A recent technique recog-
nized that full scan-in of the vector or full scan out of the circuit
response may be an overkill [10]. They propose a static method of

Anand Raghunathan
Department of Electrical Engineering

Princeton University, Princeton, NJ 08544, USA

test cycle reduction based on the partial scan-in and scan-out of test
vectors and circuit response, respectively. They also re-order the
FFs in the scan chain to reduce the test application cycles required
for agiven test set.

For sequential circuitswith little or no scan, static methods have
been proposed to reduce the size of the test set or test application
cycles[11]. Recently, dynamicmethodsfor reducingtest application
cycles in partial scan design circuits have been suggested [9, 12].
However, to the best of our knowledge, no dynamic compaction
method for non scan sequential circuits has been reported in the
literature. Another method for dynamic compaction for sequential
circuits is also reported in this proceedings[13].

1.1 Overview

Our dynamic algorithmisbased ontwo key ideas: (1) weidentify
bottlenecks that prevent vector compaction and test cycle reduction
for thetest sequencesgenerated thusfar, and (2) future test sequences
are generated with an attempt to eliminate bottlenecks of earlier gen-
erated test sequences. Since our algorithm relies on identification
and elimination of test sequencebottlenecks, werefer to our method
as the bottleneck elimination framework. If a newly generated test
seguence eliminates bottlenecks of an earlier test sequence, then we
drop the earlier sequence. The dropped sequence is not included
in the final test set. We demonstrate that vector compaction and
test cycle reduction can be conflicting goals. Our method generates
minimal test sets because static vector compaction or test cycle re-
duction using set-covering or extended set-covering approaches (for
example, fault simulating the generated test sequencesin reverse or
any other order along with any specification of unspecified inputs)
cannot further reduce the number of vectors or test cycles. The
bottleneck elimination framework can be used in conjunction with
any combinational or sequential test generator and fault simulator.
Though we only consider the stuck-at fault model in this paper, the
framework is applicable to other fault modelsaswell. Experimental
results on scan and non scan versions of the ISCAS-89 benchmarks
and large production VLSI circuits are included.

2. BACKGROUND

A test vector isaset of logic values (0, 1, or X) that are simulta-
neously applied to the primary inputs of the circuit. A test sequence
is an ordered set of test vectors that detect a target fault. A test set
is an unordered set of test sequences. For full scan design circuits,
a test sequence consists of only one test vector. The size of a test
seguenceis the number of test vectorsin the sequence. The size of
a test set is the number of vectorsin all its test sequences. Given
atest set, afault is essential if only one test sequence can detect
the fault. Such faults can be easily identified during fault simulation
by dropping a fault only after it has been detected twice [5]. Any
approach that selects a subset of test sequences from a given test
set for covering all target faults will be referred to as a set-covering
approach. Notethat test sequencesare not modifiedin aset-covering
approach, except when merging vectors (See section 3). Anexample

of the set-covering approach is the technique of fault simulating the
test sequencesin reverse order of their generation [1] or any other
order, and dropping test sequencesthat do not detect any additional
faults. A set-covering approach that also changestest sequencesby
arbitrarily specifying a0 or 1 value for the unspecified inputsis re-
ferred to as an extended set-covering approach. A test set is optimal
with respect to a set-covering (extended set-covering) approach if
none of its vectors or sequences can be dropped by a set-covering
(extended set-covering approach).

3.VECTOR COMPACTION BOTTLENECKS

For the sake of clarity, we illustrate vector compaction bottle-
necksin combinational (full scan) circuits and sequential (partial or
non scan) circuits separately. Consider atest set for acombinational
circuit. Assumethat every test vector inthe test set isfully specified.
In addition, if every test vector has an essential fault, then the test
set cannot be further reduced using any set-covering approach. This
is becauseevery test vector detects an essential fault and dropping a
vector from the test set will result in a decreasein fault coverage.

If somevectorsinthe test set are partially specified, it is possible
to merge two vectors into a single vector [11]. This merging is
possible if the corresponding primary inputs of the two vectors do
not have conflicting value assignments. However, if thetest set does
not haveapair of vectorsthat can be merged, then the size of this test
set cannot be further reduced using a set-covering approach. These
observations suggest two bottlenecksthat prevent dropping of a test
vector v from agiven test set:

CB1. v detects one or more essential faults.

CB2. » cannot be merged with any other test vector in the test set.

If avector doesnot satisfy condition CB1, then it can be dropped
from the test set. Note that it is possible for atest vector to satisfy
condition CB1 but violate condition CB2. If this happens, then the
test vector can be merged with another vector in the test set. The
essential faults for the test vector are also essential faults for the
merged vector.

Lemmal: A test vector belongs to the optimal test set computed
by a set-covering approach if and only if the test vector satisfies
conditionsCB1 and CB2.

o

G3 B G17

Gl
G2 >,) >
ora G12 =

Figure 1: Circuit s27 of the ISCAS-89 benchmark set.

For sequential circuits, atarget fault may require atest sequence
consisting of more than one vector. Consider a test set that detects
all target faults, in which each test sequence detects at least one
essential fault. Furthermore, assume that no test sequencein this
set is an ordered subseguence of any other test sequence. If test
vectors have unassignedinputs, assumethat no assignment of values
to the unassigned signals will result in any test sequence becoming
an ordered subsequence of any other test sequence. If every test
seguence detects an essential fault, then, no set-covering approach
can further reduce the number of sequences or vectors in the test
set. These observationstranslate into the following bottlenecksthat
prevent a sequence s from being dropped from atest set:

SCBL1. s detectsone or more essential faults.

SCB2. s isnot an ordered subsequence of any other test sequence
in the test set.

Again, it ispossiblethat atest sequencesatisfiescondition SCB1
but it may violate condition SCB2. If thishappens, then the sequence
can be merged with another sequencein the test set. Essential faults
for thetest sequenceareal so essential faultsfor the merged sequence.

Lemma 2: Atest sequencebelongsto the optimal test set computed
by a set-covering approach if and only if the test sequence satisfies
conditions SCB1 and SCB2.

After identifying the bottlenecks for a test sequence, future test
seguences can be generated with an attempt to eliminate the bottle-
necks of the test sequence. We illustrate this idea using separate
examples for combinational and sequential circuits.

Table 1: First three test vectors for the full scan version of s27.

Vector | GO GL || G2 || G3]| G5 G6 || G7
1 0 0 0 0 0 1 1
2 1 1 0 0 0 1 0
3 0 0 0 0 0 1 0

Table 2: Test vector for fault G2 s-a-0.

GOTGI G2] G3] G5 G6 [G7
X 0 0 0 0 1 1

Consider the circuit s27 that is part of the |ISCAS-89 benchmark
set. Thenetlist for this circuit is shown in Figure 1. Thiscircuit has
three FFs G5, G6 and G7. It hasfour primary inputs GO, G1, and
(G2 and G3. Thiscircuit has one primary output G17. If we assume
that all three FFs have been scanned, then the full scan design circuit
now has three new primary inputs (G5, G6 and G7) and primary
outputs (G'10, G11 and G13). Thefirst three test vectors produced
by the test generator TRAN [14] are shown in Table 1. At this point,
every one of the three vectors has an essential fault. For example,
vectors 1, 2 and 3 detect essential faults 6 s-a-1, G14 s-a-1, and
G'12 s-a-0, respectively. Also, no vector can be merged with any
of the other two vectors. Therefore, conditions CB1 and CB2 are
satisfied for every one of these vectors. Consider test vector 1. It
detects three essential faults: G6 s-a-1, G7 s-a-0 and G14 — G10
s-a0. It can be easily verified that these faults are not detected by
test vectors 2 or 3. To drop test vector 1, future test vectors will
have to eliminate the bottlenecks of vector 1. The next target fault
selected by TRAN is G2 s-a-0. This fault is chosen since it has not
yet been detected. The test vector shown in Table 2 is generated.
Thisvector has an unspecifiedinput. Also, it detectsall the essential
faults of vector 1 except G6 s-a-1. Furthermore, specifying GO to a
0 or 1 does not detect any additional undetected faults. To eliminate
vector 1, we attempt to extend the vector of Table 2 to detect the fault
G6s-al. TRAN targets thefault G6 s-a-1 and succeedsin extending
the current vector to detect this fault. The extended vector is shown
asvector 4in Table 1. Sincethebottleneck CB1 for test vector 1 has
been eliminated, we drop the vector.

Table 3: Test sequencefor fault G17 s-a-0.

Sequence | GO [G1] G2 || G3
1 0 1 1 0
1 0 1 1

Consider again the circuit s27. Assumethat no FFs are scanned.
A commercial segquential test generator targets the fault G17 s-a-0
and generates the test sequence shown in Table 3. We will refer
to this sequence as the first sequence. The next target undetected
fault selected by the test generator is G11 — (/10 s-a-0 and the test
generator generates the sequence shown in Table 4. This sequence

has several vectors with unspecified inputs. This flexibility can
be utilized to eliminate the bottlenecks of the first sequence. Fault
simulation of the sequencein Table4 revealsthat all but one (G112 —
(13 s-a-0) of the essential faults of the first sequence are detected.
Now, to eliminate the bottlenecksof thefirst sequence, we attempt to
extend the current test sequenceto detect the essential fault G12 —
(13 s-a0 of the first sequence. The test generator successfully
extends the test sequenceto obtain the sequence shown in Table 5.
Sincethebottleneck SCB1 for thefirst sequencehasbeen eliminated,
we drop the first sequence. It is interesting to note that the first
seguenceis not a sub-sequenceof the second sequence, but it can be
dropped from the test set.

Table 4: Test sequencefor fault G11 — G'10 s-a-0.

Sequence | GO [GI] G2 || G3
2 1 X 0 0

0 X 1 1

X 0 X 1

Table 5: Extended test sequencefor fault G11 — G'10 s-a-0.

Sequence | GO [G1I] G2 || G3
2 1 1 0 0

0 1 1 1

1 0 1 1

4. TEST CYCLE BOTTLENECKS

For a non scan circuit, the number of test cycles required to
apply the test set is equal to the number of test vectors in the test
set. Therefore, reducing the number of test vectors will aso reduce
the test application cycles. However, for partial or full scan design
circuits, the number of test application cyclesis significantly greater
than the number of test vectors in the test set. This is because
additional test application cycles are required to scan-in the values
of scan FFsand scan out the circuit responsesstored in the scan FFs.
If afull scan design circuit has F' scan FFs and the test set has T
vectors, then the number of test application cycles required by the
test setisT'(F + 1) + F. Thisanalysis assumes scan-in and scan-
out of every FF value. However, it may not be necessary to scan-in
valuesfor all scan FFs or scan-out values of all scan FFs[10].

Under the partial scan-in and scan-out model, test sets with
the same number of test vectors may require significantly different
number of test application cycles. As an example, consider again
the full scan design version of circuit s27. The exact order of FFs
in the scan chainis typically decided based on the layout in order to
minimize routing overhead. For this design, assume that FF G'7 is
connected to the scan-in pin and FF G'6 is connected to the scan-out
pin. Therefore, three test cycles are required to load a desired value
into FF G6. Only one test cycle is required to observe the circuit
response stored in FF G6. Similarly, only onetest cycle is required
to load the desired valueinto FF G7 but three test cyclesare required
to observe the response stored in FF G'7.

Table 6: Test set for three faultsin circuit s27.

Vector [GO[[GI[G2 G3]| G5 G6 [G7
1 0 1 1 1 0 0
2 1 X X X X X

X
X

Consider atarget fault set consisting of thefollowing threefaults:
G2 — (G13 sa0, G12 sa1 and G14 — G10 s-a1l. A possible
test set for these faults is shown in Table 6. Test vector 1 detects
thefirst two faults. Thisvector will require three test cyclesto load
the desired values into FFs G5 and G6. One test cycle is used to
apply the primary input values and to allow the circuit to respond
to the input stimulus. This test vector also requires observation of
circuit responsestored onsignalsG13and G17. Threetest cyclesare

required to observe the value on signal G13. Therefore, seven test
cyclesare required for the application of thistest vector. The second
test vector detects the remaining fault G14 — G110 s-a-1. This
vector does not require any specific valuesto beloaded into the scan
FFs. Onetest cycleis required to apply the vector. Since the fault
is detectable at the pseudo primary output G'10, two additional test
cycles are required to observe the value of signal G10. Therefore,
the test set requires ten test application cycles.

An alternative test set for the target faults is shown in Table 7.
Again, thistest set al so hastwo vectors. However, thefirst test vector
detects the fault G2 — (13 s-a-0 and the second vector detectsthe
remaining faults. The first vector requires no scan-in cycles. One
test cycle is required to apply the primary inputs and three cycles
are required to observe the response at signal G13. The second
test vector also requires no scan-in cycles. It requires one cycle to
apply the primary input values and two cyclesto observe the faulty
response at signal G10. Therefore, this test set requires only seven
test cycles. Both test vectors in the test set of Table 6 exhibit the
following characteristics: (i) the vector detects at |east one essential
fault, and (2) the maximum scan-in or scan-out cycles needed to set
up or observe the circuit response, respectively, is required for the
detection of essential faults covered by the vector.

Table 7: Alternative test set for three faultsin circuit s27.

Vector [GO[[GI G2 G3] G5 G661 G7
1 X 1 1 X X X X
2 1 1 0 X X X X

For a given test set, the test cycles for scan-in (or scan-out) of
all test vectorsis clearly a lower bound on the test cycles required
for the test set. In practice, we have observed that the number of test
cyclesrequired to scan-in all test vectorsin atest set is significantly
higher than the number of test cyclesrequired to scan-outtherelevant
circuit responsesfor all test vectors. If atest vector detects a faullt,
it is possible that detection of the fault is not compromised when
some of the scan FF valuesare | eft unspecified. Thiswill modify the
vector and may result in anew vector that requires fewer scancycles.
A fault is ascan bottleneck for a vector if no scan FF values can be
unspecified to reduce the scan-in cyclesrequired by the vector. Scan
FF values are unspecified without compromising the detection of
the fault. A similar analysisis possible for the scan-out case where
detection of the fault is not compromised when circuit response in
some of the scan FFsis not observed.

The bottlenecks that prevent further reduction in the number of
scan-in cyclesrequired by atest vector are asfollows:

TCBJ1. The vector detects one or more essential faults.
TCB2. The scan bottleneck of the vector is an essential fault.

If condition TCBL1 is violated, then the vector can be dropped.
If condition TCB2 is violated, then the vector can be trimmed to
reduce the scan-in cyclesrequired by the vector. Trimming involves
un-specifying state bits in the test vector so that the new vector still
detects all essential faults of the original vector but requires fewer
scan-in cycles.

Future test vectors can be generated with an attempt to eliminate
test cycle bottlenecks of already generated vectors. As an example,
consider again thefirst vector inthetest set shown in Table 6. Thefirst
vector detects two essential faults and the fault G12 s-a-1 requires
that the FF (G6 be set to a particular value. Therefore, detection of
this essential fault requires three scan-in cyclesand it is a bottleneck
for further reducing the scan-in requirement of the vector. The
second test vector in Table 6 has several unspecifiedinputs and FFs.
This flexibility can be used to extend the vector to eliminate the
bottlenecks of the first vector. The second vector can be extended to
detect thefault G12 s-a-1. The extended vector isidentical to vector

2 in the test set shown in Table 7. Now, the fault G12 s-a-1 is no
more an essential fault for vector 1. Therefore, this vector can be
trimmed by un-specifying FFs G5 and G6. The trimmed vector is
identical to the first vector in the test set of Table 7.

Lemma3: Consider a test set, obtained using set-covering and
trimming, that requiresthe least number of test application cycles.
A test vector belongsto this test set if and only if the vector satisfies
conditionsTCB1 and TCB2.

For partial scan circuits, a test sequence may consist of a series
of vectors. The scan-in cycles required by the test sequenceis the
sum of scan-in cyclesrequired by each vector in the sequence. If the
seguence satisfies the following conditions, then the scan-in cycles
required by the sequence cannot be reduced by trimming:

STCB1. The sequencedetects one or more essential faults.

STCB2. Trimming any vector inthe sequencewill cause an essential
fault to be undetectable by the sequence.

5.COMPACTION Vs. CYCLE REDUCTION

For partial or full scan designs, the smallest test set may not
always require the least number of test cycles. As an example,
consider the following two faultsin circuit s27: G10 s-a-1 and G17
s-a0. If we assume that all FFs are scanned, then a possible test
vector that detects both faults is shown in Table 8. This test vector
requires three scan-in cycles, one cycle to apply the primary inputs
and two scan-out cycles. However, Table 9 gives an alternative test
set that has more vectors but this test set requires fewer test cycles.
Test vector 1 detects the fault G10 s-a-1. This vector requires no
scan-in cycles, one cycle to apply the primary input values and two
scan-out cycles to observe the response at signal G10. The second
vector detectsthe fault G17 s-a-0. Thisvector also requires no scan-
in cycles, onecycleto apply the primary input valuesand no scan-out
cyclessince G17 isaprimary output. Therefore, the alternative test
set requires only four test application cycles.

Table 8: Test vector for detecting faults G10 s-a-1 and G17 s-a-0.

Vector [GO[[GI[G2 G3]| G5 G6 [G7
1 0 X X X X 0 X

Table 9: Test set for detecting faults G10 s-a-1 and G17 s-a-0.

Vector [GO[[GI[G2 G3]| G5 G6 [G7
1 0 X X X X X X
2 1 X X X X X X

6. BOTTLENECK ELIMINATION FRAMEWORK

A dynamic optimization framework that attempts to eliminate
test sequence bottlenecks is embodied in the procedure BOTTLE-
NECK _FRAMEWORK. The framework can be used to either optimize
test set size or the test application cycles required by atest set. The
algorithm begins by selecting an undetected fault. A test generator
is used to generate the test sequence. No restrictions are placed on
the test generation algorithm or the heuristics employed by the test
generator. Typically, not all primary inputs and scan FFs have to
be assigned values 0 or 1 to detect the target fault. We assume that
the test generator does not randomly assign values to signals that
were left unspecified in the test sequence. Ideally, the test generator
should assign valuesto as few primary input signals and scan FFsas
possible to detect the target fault.

Procedur e BOTTLENECK _FRAMEWORK (circuit, faultlist)

while (undetected faults exist){

Pick next undetected fault.

Generate test sequence’ cvrrent -

EXTEND_SEQUENCE(T -ourrent)

ELIMINATE_ BOTTLENECKS(7 coprrent)

Fault simulate test sequenceTurrent -

while (aprior test sequenceT,ior has no bottlenecks){
Drop or trim test sequence v ;or -
RECOMPUTE_BOTTLENECKS()

COMPUTE_SEQUENCE_BOTTLENECKS(T -urent)

Thetest sequenceis fault simulated to identify other fortuitously
detected faults. A fault is dropped during fault simulation only after
it has been detected twice. This is unlike the more conventional
fault simulation where a fault is dropped after it has been detected
once. The list of essential faults for the prior test sequences can
be incrementally updated during the fault simulation of the current
test sequence. The fault simulator records the first and second test
seguence, if any, that detect a fault. Therefore, given a fault, it is
easy to identify if it isan essential fault. Also, theinformation about
the test sequencethat detectsthe fault is readily available.

The unspecified signalsin a test sequence can be suitably spec-
ified to detect remaining undetected target faults. We will refer
to this sequence as the primary sequence. The procedure Ex-
TEND_SEQUENCE USes a test generator to suitably specify the un-
specified signals in the primary sequence. The sequence obtained
after specifying unspecified signalsin the primary sequenceis called
the secondary sequence. During this phase, the test generator may or
may not increase the number of vectorsin the sequence. In full scan
design circuits, the primary sequencefor any stuck-at fault has only
one vector. Also, detection of any target stuck-at fault will require
at most onevector. Therefore, the primary and secondary sequences
have only one vector. For partial or non scan circuits, the sec-
ondary sequence can have more vectors than the primary sequence.
However, the primary sequence is a subsequence of the secondary
seguence. Note that the primary sequence detects at least one fault
that is not detected by any of the prior sequences. Therefore, the
secondary sequence cannot be dropped because of the bottleneck
CB1lor SCB1.

The procedure ELIMINATE_BOTTLENECK S attempts to further ex-
tend the secondary sequence. However, the goal this time is to
eliminate essential faults that are bottlenecksof prior test sequences.
A possible order for considering the prior test sequencesis to sort
them based on increasing number of essential faults. A test sequence
with the fewest essential faults can be selected and the test generator
attempts to extend the secondary sequence to detect these essen-
tial faults. During this phase, we record the test sequences whose
bottlenecks havebeen eliminated. These sequencesarepossible can-
didates that can be dropped or trimmed. Note that it is not possible
to simultaneously drop or trim all these sequences. For example, as-
sume that sequences7: and 7% have been short listed to be dropped.
Consider afault f that isonly detected by sequencesTy and7%. This
fault is not an essential fault since it is detected by two sequences.
Therefore, thisfault is not a bottleneck for either 71 or 7>. However,
simultaneous dropping of both sequenceswill result in aloss of fault
coveragesincethefault f isnot detectableby any prior test sequence.
If simultaneous dropping of test sequencesis desired, then some of
the detected faults will now become undetected. These newly unde-
tected faults are either fortuitously detected during fault simulation
of future test sequencesor they will haveto be explicitly targeted by
atest generator. Trimming a sequence has similar ramifications.

Whenever atest sequenceis dropped or trimmed, this changes
the compaction bottlenecks and test cycle bottlenecks of already
generated test sequences. Consider the dropping of test sequence
T;. Only non-essential faults that are detected for thefirst or second
time by the test sequence7; (double detected faults) could possibly
becomeessential faults. Whether thesefaults are essential or not can
be determined quickly, asfollows. Sincefault simulation recordsthe
first and second test sequence, if any, that detect every fault, we can
easily computethe earliest test sequence”; that detects any of these
non-essential faults. Bottleneck statistics of sequence?; and earlier
seguencesremain unchanged. We fault simulate only test sequences
generated after test sequence”; with the non-essential faults of 7;
asthe target fault list. We now have accurate information about the
essential faults and we update the bottleneck statistics of these test
sequences.

If every prior test sequence has bottlenecks that could not be
eliminated by the current test sequence, then the procedure Com-
PUTE_SEQUENCE_BOTTLENECKS determines the bottlenecks for the
current test sequence. Theessential fault list for thisvector is readily
available from fault simulation. If test cycle reduction is desired,
then scan bottlenecks are also computed for the current sequence.

7.MINIMALITY OF TEST SET

Static compaction techniques typically select a subset of se-
guences from a given test set that detects all target faults. The
optimal subset of sequences has the least number of vectors among
various subsets of sequencesthat detect all target faults. The subset
selection problem belongs to the class of NP-complete problems.
One heuristic that has been proposed to perform static compactionis
reverse fault simulation [1]. Note that such methods do not modify
any vector in thetest set. In particular, they do not attempt to specify
valuesto unspecified signalsin the test sequencesin order to merge
test sequences. Thetest set obtained using the bottleneck elimination
approachis aminimal test set.

Theorem1: A test set derived using procedure BOTTLE-
NECK _FRAMEWORK cannot be further compacted using a set-
covering approach.

The scan-in and scan-out cycles required for any vec-
tor (sequence) in a test set produced by procedure BOTTLE-
NECK _FRAMEWORK cannot be further reduced. However, test ap-
plication cycles of the test set also depend on the order in which
test vectors (sequences) are applied [10]. Several methods have
been proposed that modify the test set during static vector com-
paction. A popular techniqueis to randomly or judiciously specify
unspecified signal s so that two sequencescan be merged into asingle
seguence. This technique has been used for vector compaction in
combinational [2] and sequential [11] circuits. Thesetechniquesare
examples of extended set-covering approaches.

Theorem 2: A test set 7T1...7;, that is derived using procedure
BOTTLENECK _FRAMEWORK cannot be further compacted using an
extended set-covering approach if the following conditions are sat-
isfied during the generation of sequence7;,1 <1 < n:

1. ProcedureEX TEND_SEQUENCE considersall faults not detected
by sequencesTi ... 7T;_1 while extending the primary test se-
quence.

2. Procedure BOTTLENECK _FRAMEWORK considers all essential
faults of sequencesT ... T;_1.

Recently, a static compaction method for combinational circuits
has been proposed that replaces existing test vectors in a test set

with entirely new test vectors that are obtained by using a test gen-
erator [3]. For sequential circuits, static compaction techniquesthat
significantly modify the test sequencesin atest set have also been
proposed [11]. In the present work, a prior test sequencemay satisfy
both conditions SCB1 and SCB2, but it may be possibleto eliminate
one or more more vectors in the sequence without compromising
the detection of any essential fault. However, this implies that the
prior test sequence is modified after it has been generated. These
techniques do not fall into the category of set-covering or extended
set-covering approaches. Such static compaction approachescan be
applied to further reduce the size of test sets derived by procedure
BOTTLENECK _FRAMEWORK.

8. IMPLEMENTATION AND RESULTS

The bottleneck elimination framework was implemented in
the C' programming language. The program BEeccs (Bottleneck
Elimination for Compaction and Cycle reduction in Sequential cir-
cuits) performs dynamic vector and test cycle reduction for scan and
non scan circuits. For full scan designs, BECCS usesthe test genera-
tor TRAN and a single-fault single-vector fault simulator. For partial
scan or non scan circuits, BECCS relies on a commercial sequential
test generator that has its own fault simulator. No modifications
were made to heuristics used by the test generatorsfor selecting tar-
get undetected faults, or for generating atest for a given target fault.
Furthermore, no pre-processing like finding independent fault setsor
fault ordering [5] was attempted. All experiments were performed
on a Silicon Graphics Challenge L series machine.

BEccs executes the steps embodied in the procedure BOTTLE-
NECK _FRAMEWORK. The specific implementation of procedure Ex-
TEND_SEQUENCE can either consider all faults in a target fault set
that are not detected by test sequences generated thus far or it can
consider a pre-specified number of undetected faults. The latter fea-
ture is especially useful for significantly reducing the run time of
Beccs without unduly increasing the test set. The implementation
of procedure ELIMINATE_BOTTLENECK S considersall essential faults
of test sequences generated thus far. Although not attempted here,
information about independent faults [5] can be used to reduce the
number of faults considered by procedure EXTEND_SEQUENCE or
procedure ELIMINATE_BOTTLENECKS.

8.1 Full scan design cir cuits

Vector compaction results for full scan versions of the ISCAS-
89 benchmark circuits are shown in Table 10. Test set sizes are
reported for (1) the underlying test generator TRAN that does not
employ any test set reduction techniques, (2) for the best known
test sets published in the literature [5] using a dynamic compaction
technique, and (3) for the dynamic compactor BEccs. Column Test
set sizes shows the number of test vectors obtained by the three
methods. Column KP93 showsthe test set sizes obtained using the
dynamic compaction method describedin [5]. Thesizeof thetest set
obtained using BEccs is comparableto the best known test set sizes.
For circuits s344, 13207 and s15850, BECcs producesasmaller test
set. Thisisinteresting sincethe current prototype of BECCS makesno
modificationsto the heuristics used by the test generator. In contrast,
the dynamic compaction technique of [5] integrates several heuristics
like maximal compaction, rotating backtrace, fault ordering based
on independent fault sets and others into the test generation process.

Thetest sets generated by BEccs provide the maximum possible
fault coverage since the fault efficiency, as shown in column FE,
is 100% for al circuits. The computation time required by BEccs
is shown in column CPU sec. Times required for test generation
and fault simulation are shown separately, under columns ATG and
FS, respectively. We used a single-pattern single-fault simulator for
these experiments. Significant reduction in fault simulation time is
possibleby using aparallel-fault or parallel-pattern fault simulator. A

Table 10: Test set statistics for full scan designs.

Ckt. Test set sizes FE | Beccs CPU sec.

TRAN | KP93 | BECCS | (%) ATG FS
s27 15 - 6 | 100 0.0 0.0
s208 47 27 29 | 100 0.3 0.2
s298 55 23 24 | 100 0.3 0.3
s344 36 15 14 | 100 0.2 0.2
s349 36 13 14 | 100 0.2 0.2
s382 54 25 27 | 100 0.3 0.3
s386 100 64 68 | 100 0.3 04
400 52 24 27 | 100 0.2 0.3
420 85 43 45 | 100 1.0 0.8
444 49 24 26 | 100 0.3 0.6
s510 76 55 57 | 100 0.8 0.6
s526 116 51 53 | 100 0.6 0.7
s526n 116 51 53 | 100 0.8 1.0
s641 101 24 25 | 100 2.8 17
s713 102 24 29 | 100 23 11
s820 196 95 96 | 100 18 23
s832 197 96 97 | 100 17 2.7
s838 152 75 76 | 100 51 3.7
s953 132 79 83 | 100 2.0 4.2
51196 240 117 124 | 100 9.9 9.6
51238 255 129 131 | 100 9.3 8.4
51423 130 34 36 | 100 135 8.8
51488 214 102 109 | 100 3.2 6.9
51494 213 101 104 | 100 24 7.3
s5378 432 104 116 | 100 69.4 80.3
s9234 666 116 168 | 100 | 409.0 | 3624
513207 744 239 238 | 100 | 3342 | 4845
515850 722 113 104 | 100 | 2462.0 | 876.2
s35932 79 - 13 | 100 | 144.2 | 31094
s38417 | 1601 91 107 | 100 | 1036.0 | 5551.0
s38584 | 1240 - 128 | 100 | 1960.2 | 8288.4

reductionintest generationtimeis possibleby limiting the number of
undetectablefaults considered in extending a primary test sequence.

Test cyclesfor full scan-in/scan-out model can be easily derived
from Table 10, using the formula given in Section 4. Table 11
shows the test cycles required for the test set obtained from BEccs
under the partial scan-in/scan-out model. We implemented a greedy
heuristic method for ordering the vectorsin atest set to minimize test
application cycles. We found that for all the circuits, the heuristic
ordering resulted in test application cyclesthat were within 5% of the
lower bound described in Section 4. Under column Best known, we
report the best known number of test cyclesrequired by apartial scan-
in and scan-out model [10]. They only report results for the smaller
ISCAS-89circuits. A’-’" inTable 11 indicatesthat no published data
is reported for the corresponding circuit. Note that unlike BECCS,
the method of [10] re-orders FFs in the scan chain to reduce test
cycles. They determinethe best order of scan FFsbased onthe given
test set for the circuit. However, it is often desirable to determine
the order of FFs in the scan chain based on the layout rather than
the test set in order to minimize the routing overhead. BEccCs can
produce test sets for any given order of FFsin the scan chain (for
the experiments, we assumed the order of FFsin the scan chainto be
the same asthe order in which the FFsare instantiated in the netlist).
The column Red. shows the reduction in test cycles achieved by
using the partial scan-in and scan-out model as opposed to the full
scan-in and scan-out model.

The results of Table 11 show that BECCS test sets require fewer
test cycles than the best known figures to date for several circuits
(5344, s420, 820, 5832, 5838, s1494). For thelarger circuits(s9234
and later), no previously reported results exist. The test cycles
required by test sets derived from Beccs can be further reduced
using static re-ordering of scan FFs[10].

Table 11: Test cyclesfor full scan designs.

Ckt. Partial scan-in/scan-out | % Red.
Best known BECCS
s27 - 25 741
s208 224 230 14.50
s298 308 342 8.56
s344 241 229 418
s349 223 223 6.69
s382 361 563 8.45
s386 462 473 1.87
s400 - 565 8.13
420 664 639 18.18
s444 346 470 20.74
s510 - 400 1.23
s526 789 1056 11.04
s526n - 1043 12.13
s641 377 412 20.62
s713 - 454 24.21
s820 602 575 1.03
s832 592 579 1.36
s838 2300 1891 25.55
953 580 2258 10.36
s1196 664 1121 52.78
s1238 651 1150 54.13
s1423 1935 2658 4,18
s1488 757 763 0.78
s1494 751 728 0.82
s5378 16175 17670 16.09
9234 - 34425 11.05
513207 - 118175 26.20
s15850 - 49881 20.56
s35932 - 23659 2.26
s38417 - 170436 3.60
38584 - 185508 1.03

8.1.1 Production VL SI circuits

We used BEccs to perform vector compaction for large produc-
tion VLS circuits that consist of about 5,000 to 50, 000 gates. The
number of inputs, outputs, and gates in these circuits are shown in
Table 12, under the columnsInputs, Outputs and Gates, respectively.
Unlike the ISCAS-89 benchmarks, these circuits also contain non-
Boolean primitives like tristate buffers, bidirectional buffers, and
bus configurations. Vector compaction results for these circuits are
shown in Table 13. The columnsin Table 13 are similar to Table 10.
Table 13 shows that BEccs produces test sets that are up to 12.9
times smaller than the test sets produced by the base test generator
that does not attempt any compaction.

Table 12: Production VLSI circuit characteristics

Ckt. T Tnputs | Outputs | Gates
cktl 336 340 | 7803
ckt2 551 654 | 4656
ckt3 134 32 | 6025
ckt4 1133 1106 | 31416
ckt5 2131 2304 | 49623

Table 13: Compaction resultsfor full scan production circuits.

Ckt. Test set sizes FE Beccs CPU sec.
TRAN BECCS | (%) ATG FS
cktl 899 263 | 100 | 1089.0 563.6
ckt2 636 126 | 100 151.0 247.0
ckt3 273 175 | 100 | 1420.9 651.2
cktd 721 56 | 100 | 13534 | 66434
ckt5 5228 596 | 100 | 98773.4 | 23443.5

8.2 Partial or non scan design circuits
BEccs uses a commercial sequential test generator to perform

test generation for target faults in partial or non scan design circuits.
Since the source code of the test generator is unavailable, it wasin-
tegrated into BEccs using 350 lines of Bourne Shell scripts. Clearly,
no modification of heuristics used by the test generator is possible.
Information was exchanged between Beccs and the test generator
by reading and writing files. BEccs maintains and updatesthe list of
target faults, undetected faults and essential faults by making several
callsto thefault simulator. Every timethe fault simulator iscalled, it
readsthe circuit and fault list, setsup several internal data structures
and performs fault simulation. Beccs always calls thetest generator
with asingletarget fault. The test generator readsin the circuit, sets
up several data structures and performs test generation for only the
target fault supplied by Beccs. This significant overhead that isin-
curred for every fault, that can be easily eliminated if the source code
of the sequential test generator and fault simulator were available.

Thetest generator has afeature that is useful in extending a pri-
mary test sequence. It acceptsconstraints on the valuesthat primary
input signals can assumein different clock cycles. These constraints
are honored during test generation, i.e., all generated tests satisfy
these constraints. BECCS uses this feature of the test generator to
extend a primary sequence. The known signal valuesin the primary
test sequence are translated into a set of constraints on the primary
input signals. These constraints are specified in a separate file that
is passed on to the test generator for every fault processed by the
test generator. Since BECCS interfaces with the sequential circuit

Table 14: Test sets for non scan designs.

Ckt. TG Static comp. BECCS
Vec. FE | Vec. FC | Vec. FE | Red.
(%) (%) (%) | (%)
s208 | 211 | 100 | 187 | 688 | 129 | 100 39
s386 | 374 | 100 | 270 | 87.4 | 229 | 100 39
$420 | 211 | 100 | 206 | 46.6 | 134 | 100 37
s713 | 221 | 100 | 192 | 819 | 132 | 100 40

test generator and fault simulator at a very high level, measuring
CPU secondsfor this experiment is not meaningful. However, this
integration serves an important purpose. It can be used to examine
the quality (size) of test sets that can be obtained using the bottle-
neck elimination framework for sequential circuits. Table 14 reports
compaction results for non scan circuits. Results for three methods
are included. Under column TG, we report the number of vectors
generated by the underlying test generator and the fault efficiency
achieved by the test generator. Since no dynamic vector compaction
techniquefor sequential circuits hasbeen published in the literature,
we compareour techniqueto astatic compaction techniquedescribed
in [11]. They describe several static compaction techniquesthat re-
sult in test sets with different fault coverages. We only consider
the test set with the highest fault coverage. Thisis afair compari-
son because BEccs achieves the maximum possible fault coverage
(100% fault efficiency) for all the example circuits. Column Static
comp. showsthe number of vectors(in column Vector s) and the fault
coverage (in column Fault Cov.) achieved by the test compaction
technique described in [11]. They do not report the fault efficiency
of their test set. Column BEccs shows the number of vectors in
the test set obtained by using the program BEccs. The percentage
reduction in test set that is obtained by using BEccs instead of the
underlying test generator is shown in column Red.

The test sets derived using BEccs are significantly smaller than
thetest setsderived using the underlying test generator or static com-
paction techniques. Theseresults are significant for several reasons:
(1) test set reduction of as much as 40% is possible using BEccs
as compared to the underlying test generator, (2) BEccs uniformly
produces significantly smaller test sets than the static compaction
method for all the example circuits, and (3) some of the static com-

paction techniques described in [11] can be used to further reduce
the test set derived using BECcs. Also, more vectors may haveto be
added to the test sets of the static compaction approach to achieve
100% fault efficiency. These results show that the bottleneck elim-
ination framework is effective in reducing the test set sizes for non
scan circuits.

9. CONCLUSION

A new, dynamic vector compaction and test cycle reduction al-
gorithm for combinational and sequential circuitswas proposed. The
algorithm identifies bottlenecks that prevent compaction and cycle
reduction and generates future test sequencesto eliminate the bot-
tlenecks of earlier generated sequences. An important advantage of
our algorithm is its applicability to both combinational and sequen-
tial circuits. The bottleneck removal algorithm can also be used to
derive small test sets for other fault modelslike delay faults. Exper-
imental results reveal that our framework producestest sets that are
closeto or better than the best reported previously. Although not at-
tempted here, careful instrumentation of the test generator heuristics
for vector compaction [5], use of independent faults, fault ordering,
and static compaction techniques [3], can be incorporated into the
framework for further reducing the size of test sets. We are cur-
rently implementing the proposed bottleneck elimination framework
as part of the sequential test generator system SesT [15], to obtain
compact test setsfor large sequential circuits.

REFERENCES

[1] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A Highly Efficient
Automatic Test Pattern Generation System,” |EEE Trans. Computer-Aided Design,
vol. 7, pp. 126-136, Jan. 1988.

[1] L. N. Reddy, |. Pomeranz, and S. M. Reddy, “ROTCO: A Reverse Order Test
Compaction Technique,” in Proc. EURO-ASIC Conf., pp. 189-194, Sept. 1992.

[3] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “On Compacting Test
Sets by Addition and Removal of Test Vectors,” in VLSl Test Symp., pp. 202-207,
Apr. 1994.

[4] P. Goel and B. C. Rosales, “PODEM-X: An Automatic Test Generation System
for VLSI Logic Structures,” in Proc. 18th ACM/IEEE Design Automation Conf.,
pp. 260268, June 1981.

[5] S.Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “ Cost-Effective Genera-
tion of Minimal Test Sets for Stuck-at Faultsin Combinational Logic Circuits,” in
Proc. 30th ACM/IEEE Design Automation Conf., pp. 102—106, June 1993.

[6] S. Narayanan, R. Gupta, and M. Breuer, “Configuring Multiple Scan Chains for
Minimum Test Time,” in Proc. Int. Conf. Computer-Aided Design, pp. 4-8, Nov.
1992.

[7]1 B.Vinnakotaand N. K. Jha, “ Synthesisof Sequential Circuitsfor Parallel Scan,” in
Proc. European Design Automation Conf., pp. 366-370, Mar. 1992.

[8] D. K. Pradhan and J. Saxena, “A Design for Testability Scheme to Reduce Test
Application Timein Full Scan,” in Proc. VLS Test Symp., pp. 55-60, Apr. 1992.

[9] E. M. Rudnick and J. H. Patel, “A Genetic Approach to Test Application Time
Reduction for Full Scan and Partial Scan Circuits,” in Proc. 8th Int. Conf. VLS
Design, Jan. 1995.

[10]Y. Higami, S. Kajihara, and K. Kinoshita, “A Reduced Scan Shift Method for
Sequential Circuit Testing,” in Proc. Int. Test Conf., pp. 624-630, Oct. 1994.

[11] T. M. Niermann, R. K. Roy, J. H. Patel, and J. A. Abraham, “ Test Compaction for
Sequential Circuits,” |EEE Trans. Computer-Aided Design, vol. 11, pp. 260-267,
Feb. 1992.

[12] S. Y. Leeand K. K. Saluja, “ Sequential Test Generation with Reduced Test Clocks
for Partial Scan Designs,” in Proc. VLS Test Symp., pp. 220225, April 1994.

[13]1. Pomeranz and S. M. Reddy, “On Generating Compact Test Sequencesfor Syn-
chronous Sequential Circuits,” in Proc. European Design Automation Conf., Sept.
1995.

[14]S. T. Chakradhar, V. D. Agrawal, and S. Rothweiler, “A Transitive Closure Al-
gorithm for Test Generation,” |IEEE Trans. Computer-Aided Design, vol. 12,
pp. 1015-1028, July 1993.

[15] X. Chenand M. L. Bushnell, “ Dynamic State and ObjectiveL earning for Sequential
Circuit Test Generation Using Decomposition Equivalence,” in Proc. of the 24th
Int. Symp. Fault Tolerant Comput., pp. 446455, June 1994.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

