
Bottleneck Removal Algorithm for
Dynamic Compaction and Test Cycles Reduction

Srimat T. Chakradhar
C& C Research Laboratories

NEC USA, Princeton, NJ 08540, USA

Anand Raghunathan
Department of Electrical Engineering

Princeton University, Princeton, NJ 08544, USA

ABSTRACT: We present a new, dynamic algorithm for test sequence compaction
and test cycle reduction for combinational and sequential circuits. Several dynamic
algorithms for compaction in combinational circuits have been proposed but, to
the best of our knowledge, no dynamic method has been reported in the literature
for compaction in non scan sequential circuits. Our algorithm is based on two
key ideas: (1) we first identify bottlenecks that prevent vector compaction and test
cycle reduction for test sequences generated thus far, and (2) future test sequences

are generated with an attempt to eliminate bottlenecks of earlier generated test
sequences. If all bottlenecks of a sequence are eliminated, then the sequence is
dropped from the test set. The final test set generated by our algorithm is minimal
in the following sense. Static vector compaction or test cycle reduction using
set-covering or extended set-covering approaches (for example, reverse or any
other order of fault simulation, with any specification of unspecified inputs in test
sequences) cannot further reduce the number of vectors. Experimental results on
scan and non scan sequential circuits are reported to demonstrate the effectiveness
of our algorithm.

1. INTRODUCTION

Reduction in test application time and test set size is highly de-
sirable to reduce the overall costs incurred in fabricating and testing
a large number of chips that implement a specific design. Small test
sets are desirable because testers have a fixed memory size. The
application of a test set larger than the tester memory size will re-
quire repeated loading of the tester memory, which is an expensive
process. Hardware modifications like full or partial scan that are
employed to ease the task of test generation significantly increase
the test application time. This is mainly due to the extra tester clock
cycles needed to load specific logic values into scan flip-flops (FFs)
and observe circuit responses collected in the scan FFs.

For full scan design circuits, the number of tester clock cycles
required to apply a given test set is roughly proportional to the product
of the number of vectors in the test set and the number of scan FFs
in the design. The amount of tester memory required to store a test
set is proportional to the number of vectors in the test set, and the
number of bits per vector. In order to reduce both test application
time and meet tester memory requirements, several combinational
test generators aimed at generating test sets that contain fewer vectors
have been developed. These methods can be classified as static or
dynamic. Static methods attempt to reduce the number of vectors in
an already generated test set [1, 2, 3]. Dynamic methods consider
vector compaction during the generation of the test set [4, 5]. Other
methods to reduce test application time design the scan path so as to
reduce the number of cycles required to scan-in a vector or scan out
the circuit response [6, 7].

Hybrid approaches employing both combinational and sequen-
tial test generation methods have been investigated to reduce the test
application time for full scan designs [8, 9]. The test set generated
by these methods consists of vectors that have to be scanned in, and
vectors that do not require any scan-in. A recent technique recog-
nized that full scan-in of the vector or full scan out of the circuit
response may be an overkill [10]. They propose a static method of

test cycle reduction based on the partial scan-in and scan-out of test
vectors and circuit response, respectively. They also re-order the
FFs in the scan chain to reduce the test application cycles required
for a given test set.

For sequential circuits with little or no scan, static methods have
been proposed to reduce the size of the test set or test application
cycles [11]. Recently, dynamic methods for reducing test application
cycles in partial scan design circuits have been suggested [9, 12].
However, to the best of our knowledge, no dynamic compaction
method for non scan sequential circuits has been reported in the
literature. Another method for dynamic compaction for sequential
circuits is also reported in this proceedings [13].

1.1 Overview
Our dynamic algorithm is based on two key ideas: (1) we identify

bottlenecks that prevent vector compaction and test cycle reduction
for the test sequencesgenerated thus far, and (2) future test sequences
are generated with an attempt to eliminate bottlenecks of earlier gen-
erated test sequences. Since our algorithm relies on identification
and elimination of test sequence bottlenecks, we refer to our method
as the bottleneck elimination framework. If a newly generated test
sequence eliminates bottlenecks of an earlier test sequence, then we
drop the earlier sequence. The dropped sequence is not included
in the final test set. We demonstrate that vector compaction and
test cycle reduction can be conflicting goals. Our method generates
minimal test sets because static vector compaction or test cycle re-
duction using set-covering or extended set-covering approaches (for
example, fault simulating the generated test sequences in reverse or
any other order along with any specification of unspecified inputs)
cannot further reduce the number of vectors or test cycles. The
bottleneck elimination framework can be used in conjunction with
any combinational or sequential test generator and fault simulator.
Though we only consider the stuck-at fault model in this paper, the
framework is applicable to other fault models as well. Experimental
results on scan and non scan versions of the ISCAS-89 benchmarks
and large production VLSI circuits are included.

2. BACKGROUND

A test vector is a set of logic values (0, 1, or X) that are simulta-
neously applied to the primary inputs of the circuit. A test sequence
is an ordered set of test vectors that detect a target fault. A test set
is an unordered set of test sequences. For full scan design circuits,
a test sequence consists of only one test vector. The size of a test
sequence is the number of test vectors in the sequence. The size of
a test set is the number of vectors in all its test sequences. Given
a test set, a fault is essential if only one test sequence can detect
the fault. Such faults can be easily identified during fault simulation
by dropping a fault only after it has been detected twice [5]. Any
approach that selects a subset of test sequences from a given test
set for covering all target faults will be referred to as a set-covering
approach. Note that test sequencesare not modified in a set-covering
approach, except when merging vectors (See section 3). An example



of the set-covering approach is the technique of fault simulating the
test sequences in reverse order of their generation [1] or any other
order, and dropping test sequences that do not detect any additional
faults. A set-covering approach that also changes test sequences by
arbitrarily specifying a 0 or 1 value for the unspecified inputs is re-
ferred to as an extended set-covering approach. A test set is optimal
with respect to a set-covering (extended set-covering) approach if
none of its vectors or sequences can be dropped by a set-covering
(extended set-covering approach).

3. VECTOR COMPACTION BOTTLENECKS

For the sake of clarity, we illustrate vector compaction bottle-
necks in combinational (full scan) circuits and sequential (partial or
non scan) circuits separately. Consider a test set for a combinational
circuit. Assume that every test vector in the test set is fully specified.
In addition, if every test vector has an essential fault, then the test
set cannot be further reduced using any set-covering approach. This
is because every test vector detects an essential fault and dropping a
vector from the test set will result in a decrease in fault coverage.

If some vectors in the test set are partially specified, it is possible
to merge two vectors into a single vector [11]. This merging is
possible if the corresponding primary inputs of the two vectors do
not have conflicting value assignments. However, if the test set does
not have a pair of vectors that can be merged, then the size of this test
set cannot be further reduced using a set-covering approach. These
observations suggest two bottlenecks that prevent dropping of a test
vector v from a given test set:

CB1. v detects one or more essential faults.

CB2. v cannot be merged with any other test vector in the test set.

If a vector does not satisfy condition CB1, then it can be dropped
from the test set. Note that it is possible for a test vector to satisfy
condition CB1 but violate condition CB2. If this happens, then the
test vector can be merged with another vector in the test set. The
essential faults for the test vector are also essential faults for the
merged vector.

Lemma 1: A test vector belongs to the optimal test set computed
by a set-covering approach if and only if the test vector satisfies
conditions CB1 and CB2.

G17

G8G6

G0

G1
G2

G3

G5

G7 G9

G10

G11

G12G13

G14

G15

G16

Figure 1: Circuit s27 of the ISCAS-89 benchmark set.
For sequential circuits, a target fault may require a test sequence

consisting of more than one vector. Consider a test set that detects
all target faults, in which each test sequence detects at least one
essential fault. Furthermore, assume that no test sequence in this
set is an ordered subsequence of any other test sequence. If test
vectors have unassigned inputs, assume that no assignment of values
to the unassigned signals will result in any test sequence becoming
an ordered subsequence of any other test sequence. If every test
sequence detects an essential fault, then, no set-covering approach
can further reduce the number of sequences or vectors in the test
set. These observations translate into the following bottlenecks that
prevent a sequence s from being dropped from a test set:

SCB1. s detects one or more essential faults.

SCB2. s is not an ordered subsequence of any other test sequence
in the test set.

Again, it is possible that a test sequencesatisfies condition SCB1
but it may violate condition SCB2. If this happens, then the sequence
can be merged with another sequence in the test set. Essential faults
for the test sequenceare also essential faults for the merged sequence.

Lemma 2: A test sequence belongs to the optimal test set computed
by a set-covering approach if and only if the test sequence satisfies
conditions SCB1 and SCB2.

After identifying the bottlenecks for a test sequence, future test
sequences can be generated with an attempt to eliminate the bottle-
necks of the test sequence. We illustrate this idea using separate
examples for combinational and sequential circuits.

Table 1: First three test vectors for the full scan version of s27.
Vector G0 G1 G2 G3 G5 G6 G7

1 0 0 0 0 0 1 1
2 1 1 0 0 0 1 0
3 0 0 0 0 0 1 0

Table 2: Test vector for fault G2 s-a-0.
G0 G1 G2 G3 G5 G6 G7
x 0 0 0 0 1 1

Consider the circuit s27 that is part of the ISCAS-89 benchmark
set. The netlist for this circuit is shown in Figure 1. This circuit has
three FFs G5, G6 and G7. It has four primary inputs G0, G1, and
G2 and G3. This circuit has one primary output G17. If we assume
that all three FFs have been scanned, then the full scan design circuit
now has three new primary inputs (G5, G6 and G7) and primary
outputs (G10, G11 and G13). The first three test vectors produced
by the test generator TRAN [14] are shown in Table 1. At this point,
every one of the three vectors has an essential fault. For example,
vectors 1, 2 and 3 detect essential faults G6 s-a-1, G14 s-a-1, and
G12 s-a-0, respectively. Also, no vector can be merged with any
of the other two vectors. Therefore, conditions CB1 and CB2 are
satisfied for every one of these vectors. Consider test vector 1. It
detects three essential faults: G6 s-a-1, G7 s-a-0 and G14 ! G10
s-a-0. It can be easily verified that these faults are not detected by
test vectors 2 or 3. To drop test vector 1, future test vectors will
have to eliminate the bottlenecks of vector 1. The next target fault
selected by TRAN is G2 s-a-0. This fault is chosen since it has not
yet been detected. The test vector shown in Table 2 is generated.
This vector has an unspecified input. Also, it detects all the essential
faults of vector 1 except G6 s-a-1. Furthermore, specifying G0 to a
0 or 1 does not detect any additional undetected faults. To eliminate
vector 1, we attempt to extend the vector of Table 2 to detect the fault
G6 s-a-1. TRAN targets the fault G6 s-a-1 and succeeds in extending
the current vector to detect this fault. The extended vector is shown
as vector 4 in Table 1. Since the bottleneck CB1 for test vector 1 has
been eliminated, we drop the vector.

Table 3: Test sequence for fault G17 s-a-0.

Sequence G0 G1 G2 G3
1 0 1 1 0

1 0 1 1

Consider again the circuit s27. Assume that no FFs are scanned.
A commercial sequential test generator targets the fault G17 s-a-0
and generates the test sequence shown in Table 3. We will refer
to this sequence as the first sequence. The next target undetected
fault selected by the test generator is G11 ! G10 s-a-0 and the test
generator generates the sequence shown in Table 4. This sequence



has several vectors with unspecified inputs. This flexibility can
be utilized to eliminate the bottlenecks of the first sequence. Fault
simulation of the sequencein Table 4 reveals that all but one (G12 !
G13 s-a-0) of the essential faults of the first sequence are detected.
Now, to eliminate the bottlenecks of the first sequence,we attempt to
extend the current test sequence to detect the essential fault G12 !
G13 s-a-0 of the first sequence. The test generator successfully
extends the test sequence to obtain the sequence shown in Table 5.
Since the bottleneck SCB1 for the first sequencehas been eliminated,
we drop the first sequence. It is interesting to note that the first
sequence is not a sub-sequence of the second sequence, but it can be
dropped from the test set.

Table 4: Test sequence for fault G11 ! G10 s-a-0.

Sequence G0 G1 G2 G3
2 1 x 0 0

0 x 1 1
x 0 x 1

Table 5: Extended test sequence for fault G11 ! G10 s-a-0.

Sequence G0 G1 G2 G3
2 1 1 0 0

0 1 1 1
1 0 1 1

4. TEST CYCLE BOTTLENECKS
For a non scan circuit, the number of test cycles required to

apply the test set is equal to the number of test vectors in the test
set. Therefore, reducing the number of test vectors will also reduce
the test application cycles. However, for partial or full scan design
circuits, the number of test application cycles is significantly greater
than the number of test vectors in the test set. This is because
additional test application cycles are required to scan-in the values
of scan FFs and scan out the circuit responses stored in the scan FFs.
If a full scan design circuit has F scan FFs and the test set has T
vectors, then the number of test application cycles required by the
test set is T (F + 1) + F . This analysis assumes scan-in and scan-
out of every FF value. However, it may not be necessary to scan-in
values for all scan FFs or scan-out values of all scan FFs [10].

Under the partial scan-in and scan-out model, test sets with
the same number of test vectors may require significantly different
number of test application cycles. As an example, consider again
the full scan design version of circuit s27. The exact order of FFs
in the scan chain is typically decided based on the layout in order to
minimize routing overhead. For this design, assume that FF G7 is
connected to the scan-in pin and FF G6 is connected to the scan-out
pin. Therefore, three test cycles are required to load a desired value
into FF G6. Only one test cycle is required to observe the circuit
response stored in FF G6. Similarly, only one test cycle is required
to load the desired value into FF G7 but three test cycles are required
to observe the response stored in FF G7.

Table 6: Test set for three faults in circuit s27.
Vector G0 G1 G2 G3 G5 G6 G7

1 0 1 1 1 0 0 x
2 1 x x x x x x

Considera target fault set consisting of the following three faults:
G2 ! G13 s-a-0, G12 s-a-1 and G14 ! G10 s-a-1. A possible
test set for these faults is shown in Table 6. Test vector 1 detects
the first two faults. This vector will require three test cycles to load
the desired values into FFs G5 and G6. One test cycle is used to
apply the primary input values and to allow the circuit to respond
to the input stimulus. This test vector also requires observation of
circuit responsestored on signalsG13 andG17. Three test cycles are

required to observe the value on signal G13. Therefore, seven test
cycles are required for the application of this test vector. The second
test vector detects the remaining fault G14 ! G10 s-a-1. This
vector does not require any specific values to be loaded into the scan
FFs. One test cycle is required to apply the vector. Since the fault
is detectable at the pseudo primary output G10, two additional test
cycles are required to observe the value of signal G10. Therefore,
the test set requires ten test application cycles.

An alternative test set for the target faults is shown in Table 7.
Again, this test set also has two vectors. However, the first test vector
detects the fault G2 ! G13 s-a-0 and the second vector detects the
remaining faults. The first vector requires no scan-in cycles. One
test cycle is required to apply the primary inputs and three cycles
are required to observe the response at signal G13. The second
test vector also requires no scan-in cycles. It requires one cycle to
apply the primary input values and two cycles to observe the faulty
response at signal G10. Therefore, this test set requires only seven
test cycles. Both test vectors in the test set of Table 6 exhibit the
following characteristics: (i) the vector detects at least one essential
fault, and (2) the maximum scan-in or scan-out cycles needed to set
up or observe the circuit response, respectively, is required for the
detection of essential faults covered by the vector.

Table 7: Alternative test set for three faults in circuit s27.
Vector G0 G1 G2 G3 G5 G6 G7

1 x 1 1 x x x x
2 1 1 0 x x x x

For a given test set, the test cycles for scan-in (or scan-out) of
all test vectors is clearly a lower bound on the test cycles required
for the test set. In practice, we have observed that the number of test
cycles required to scan-in all test vectors in a test set is significantly
higher than the number of test cycles required to scan-out the relevant
circuit responses for all test vectors. If a test vector detects a fault,
it is possible that detection of the fault is not compromised when
some of the scan FF values are left unspecified. This will modify the
vector and may result in a new vector that requires fewer scan cycles.
A fault is a scan bottleneck for a vector if no scan FF values can be
unspecified to reduce the scan-in cycles required by the vector. Scan
FF values are unspecified without compromising the detection of
the fault. A similar analysis is possible for the scan-out case where
detection of the fault is not compromised when circuit response in
some of the scan FFs is not observed.

The bottlenecks that prevent further reduction in the number of
scan-in cycles required by a test vector are as follows:

TCB1. The vector detects one or more essential faults.

TCB2. The scan bottleneck of the vector is an essential fault.

If condition TCB1 is violated, then the vector can be dropped.
If condition TCB2 is violated, then the vector can be trimmed to
reduce the scan-in cycles required by the vector. Trimming involves
un-specifying state bits in the test vector so that the new vector still
detects all essential faults of the original vector but requires fewer
scan-in cycles.

Future test vectors can be generated with an attempt to eliminate
test cycle bottlenecks of already generated vectors. As an example,
consider again the first vector in the test set shown in Table 6. The first
vector detects two essential faults and the fault G12 s-a-1 requires
that the FF G6 be set to a particular value. Therefore, detection of
this essential fault requires three scan-in cycles and it is a bottleneck
for further reducing the scan-in requirement of the vector. The
second test vector in Table 6 has several unspecified inputs and FFs.
This flexibility can be used to extend the vector to eliminate the
bottlenecks of the first vector. The second vector can be extended to
detect the fault G12 s-a-1. The extended vector is identical to vector



2 in the test set shown in Table 7. Now, the fault G12 s-a-1 is no
more an essential fault for vector 1. Therefore, this vector can be
trimmed by un-specifying FFs G5 and G6. The trimmed vector is
identical to the first vector in the test set of Table 7.

Lemma 3: Consider a test set, obtained using set-covering and
trimming, that requires the least number of test application cycles.
A test vector belongs to this test set if and only if the vector satisfies
conditions TCB1 and TCB2.

For partial scan circuits, a test sequence may consist of a series
of vectors. The scan-in cycles required by the test sequence is the
sum of scan-in cycles required by each vector in the sequence. If the
sequence satisfies the following conditions, then the scan-in cycles
required by the sequence cannot be reduced by trimming:

STCB1. The sequence detects one or more essential faults.

STCB2. Trimming any vector in the sequence will cause an essential
fault to be undetectable by the sequence.

5. COMPACTION Vs. CYCLE REDUCTION

For partial or full scan designs, the smallest test set may not
always require the least number of test cycles. As an example,
consider the following two faults in circuit s27: G10 s-a-1 and G17
s-a-0. If we assume that all FFs are scanned, then a possible test
vector that detects both faults is shown in Table 8. This test vector
requires three scan-in cycles, one cycle to apply the primary inputs
and two scan-out cycles. However, Table 9 gives an alternative test
set that has more vectors but this test set requires fewer test cycles.
Test vector 1 detects the fault G10 s-a-1. This vector requires no
scan-in cycles, one cycle to apply the primary input values and two
scan-out cycles to observe the response at signal G10. The second
vector detects the fault G17 s-a-0. This vector also requires no scan-
in cycles, one cycle to apply the primary input values and no scan-out
cycles since G17 is a primary output. Therefore, the alternative test
set requires only four test application cycles.

Table 8: Test vector for detecting faults G10 s-a-1 and G17 s-a-0.

Vector G0 G1 G2 G3 G5 G6 G7
1 0 x x x x 0 x

Table 9: Test set for detecting faults G10 s-a-1 and G17 s-a-0.

Vector G0 G1 G2 G3 G5 G6 G7
1 0 x x x x x x
2 1 x x x x x x

6. BOTTLENECK ELIMINATION FRAMEWORK

A dynamic optimization framework that attempts to eliminate
test sequence bottlenecks is embodied in the procedure BOTTLE-
NECK FRAMEWORK. The framework can be used to either optimize
test set size or the test application cycles required by a test set. The
algorithm begins by selecting an undetected fault. A test generator
is used to generate the test sequence. No restrictions are placed on
the test generation algorithm or the heuristics employed by the test
generator. Typically, not all primary inputs and scan FFs have to
be assigned values 0 or 1 to detect the target fault. We assume that
the test generator does not randomly assign values to signals that
were left unspecified in the test sequence. Ideally, the test generator
should assign values to as few primary input signals and scan FFs as
possible to detect the target fault.

Procedure BOTTLENECK FRAMEWORK(circuit, faultlist)
f

while (undetected faults exist)f
Pick next undetected fault.
Generate test sequenceTcurrent .
EXTEND SEQUENCE(Tcurrent)
ELIMINATE BOTTLENECKS(Tcurrent)
Fault simulate test sequenceTcurrent .
while (a prior test sequenceTprior has no bottlenecks)f

Drop or trim test sequenceTprior .
RECOMPUTE BOTTLENECKS()

g
COMPUTE SEQUENCE BOTTLENECKS(Tcurent)

g

The test sequence is fault simulated to identify other fortuitously
detected faults. A fault is dropped during fault simulation only after
it has been detected twice. This is unlike the more conventional
fault simulation where a fault is dropped after it has been detected
once. The list of essential faults for the prior test sequences can
be incrementally updated during the fault simulation of the current
test sequence. The fault simulator records the first and second test
sequence, if any, that detect a fault. Therefore, given a fault, it is
easy to identify if it is an essential fault. Also, the information about
the test sequence that detects the fault is readily available.

The unspecified signals in a test sequence can be suitably spec-
ified to detect remaining undetected target faults. We will refer
to this sequence as the primary sequence. The procedure EX-
TEND SEQUENCE uses a test generator to suitably specify the un-
specified signals in the primary sequence. The sequence obtained
after specifying unspecified signals in the primary sequence is called
the secondary sequence. During this phase, the test generator may or
may not increase the number of vectors in the sequence. In full scan
design circuits, the primary sequence for any stuck-at fault has only
one vector. Also, detection of any target stuck-at fault will require
at most one vector. Therefore, the primary and secondary sequences
have only one vector. For partial or non scan circuits, the sec-
ondary sequence can have more vectors than the primary sequence.
However, the primary sequence is a subsequence of the secondary
sequence. Note that the primary sequence detects at least one fault
that is not detected by any of the prior sequences. Therefore, the
secondary sequence cannot be dropped because of the bottleneck
CB1 or SCB1.

The procedure ELIMINATE BOTTLENECKS attempts to further ex-
tend the secondary sequence. However, the goal this time is to
eliminate essential faults that are bottlenecks of prior test sequences.
A possible order for considering the prior test sequences is to sort
them based on increasing number of essential faults. A test sequence
with the fewest essential faults can be selected and the test generator
attempts to extend the secondary sequence to detect these essen-
tial faults. During this phase, we record the test sequences whose
bottlenecks have been eliminated. These sequencesare possible can-
didates that can be dropped or trimmed. Note that it is not possible
to simultaneously drop or trim all these sequences. For example, as-
sume that sequencesT1 and T2 have been short listed to be dropped.
Consider a fault f that is only detected by sequencesT1 andT2. This
fault is not an essential fault since it is detected by two sequences.
Therefore, this fault is not a bottleneck for eitherT1 or T2. However,
simultaneous dropping of both sequenceswill result in a loss of fault
coverage since the fault f is not detectable by any prior test sequence.
If simultaneous dropping of test sequences is desired, then some of
the detected faults will now become undetected. These newly unde-
tected faults are either fortuitously detected during fault simulation
of future test sequences or they will have to be explicitly targeted by
a test generator. Trimming a sequence has similar ramifications.



Whenever a test sequence is dropped or trimmed, this changes
the compaction bottlenecks and test cycle bottlenecks of already
generated test sequences. Consider the dropping of test sequence
Ti . Only non-essential faults that are detected for the first or second
time by the test sequence Ti (double detected faults) could possibly
become essential faults. Whether these faults are essential or not can
be determined quickly, as follows. Since fault simulation records the
first and second test sequence, if any, that detect every fault, we can
easily compute the earliest test sequenceTj that detects any of these
non-essential faults. Bottleneck statistics of sequenceTj and earlier
sequences remain unchanged. We fault simulate only test sequences
generated after test sequence Tj with the non-essential faults of Ti
as the target fault list. We now have accurate information about the
essential faults and we update the bottleneck statistics of these test
sequences.

If every prior test sequence has bottlenecks that could not be
eliminated by the current test sequence, then the procedure COM-
PUTE SEQUENCE BOTTLENECKS determines the bottlenecks for the
current test sequence. The essential fault list for this vector is readily
available from fault simulation. If test cycle reduction is desired,
then scan bottlenecks are also computed for the current sequence.

7. MINIMALITY OF TEST SET

Static compaction techniques typically select a subset of se-
quences from a given test set that detects all target faults. The
optimal subset of sequences has the least number of vectors among
various subsets of sequences that detect all target faults. The subset
selection problem belongs to the class of NP-complete problems.
One heuristic that has been proposed to perform static compaction is
reverse fault simulation [1]. Note that such methods do not modify
any vector in the test set. In particular, they do not attempt to specify
values to unspecified signals in the test sequences in order to merge
test sequences. The test set obtained using the bottleneck elimination
approach is a minimal test set.

Theorem 1: A test set derived using procedure BOTTLE-
NECK FRAMEWORK cannot be further compacted using a set-
covering approach.

The scan-in and scan-out cycles required for any vec-
tor (sequence) in a test set produced by procedure BOTTLE-
NECK FRAMEWORK cannot be further reduced. However, test ap-
plication cycles of the test set also depend on the order in which
test vectors (sequences) are applied [10]. Several methods have
been proposed that modify the test set during static vector com-
paction. A popular technique is to randomly or judiciously specify
unspecifiedsignals so that two sequencescan be merged into a single
sequence. This technique has been used for vector compaction in
combinational [2] and sequential [11] circuits. These techniques are
examples of extended set-covering approaches.

Theorem 2: A test set T1 . . . Tn that is derived using procedure
BOTTLENECK FRAMEWORK cannot be further compacted using an
extended set-covering approach if the following conditions are sat-
isfied during the generation of sequenceTi , 1 � i � n:

1. ProcedureEXTEND SEQUENCE considersall faults not detected
by sequences T1 . . .Ti�1 while extending the primary test se-
quence.

2. Procedure BOTTLENECK FRAMEWORK considers all essential
faults of sequencesT1 . . . Ti�1.

Recently, a static compaction method for combinational circuits
has been proposed that replaces existing test vectors in a test set

with entirely new test vectors that are obtained by using a test gen-
erator [3]. For sequential circuits, static compaction techniques that
significantly modify the test sequences in a test set have also been
proposed [11]. In the present work, a prior test sequence may satisfy
both conditions SCB1 and SCB2, but it may be possible to eliminate
one or more more vectors in the sequence without compromising
the detection of any essential fault. However, this implies that the
prior test sequence is modified after it has been generated. These
techniques do not fall into the category of set-covering or extended
set-covering approaches. Such static compaction approaches can be
applied to further reduce the size of test sets derived by procedure
BOTTLENECK FRAMEWORK.

8. IMPLEMENTATION AND RESULTS

The bottleneck elimination framework was implemented in
the C programming language. The program BECCS (Bottleneck
Elimination for Compaction and Cycle reduction in Sequential cir-
cuits) performs dynamic vector and test cycle reduction for scan and
non scan circuits. For full scan designs, BECCS uses the test genera-
tor TRAN and a single-fault single-vector fault simulator. For partial
scan or non scan circuits, BECCS relies on a commercial sequential
test generator that has its own fault simulator. No modifications
were made to heuristics used by the test generators for selecting tar-
get undetected faults, or for generating a test for a given target fault.
Furthermore, no pre-processing like finding independent fault sets or
fault ordering [5] was attempted. All experiments were performed
on a Silicon Graphics Challenge L series machine.

BECCS executes the steps embodied in the procedure BOTTLE-
NECK FRAMEWORK. The specific implementation of procedure EX-
TEND SEQUENCE can either consider all faults in a target fault set
that are not detected by test sequences generated thus far or it can
consider a pre-specified number of undetected faults. The latter fea-
ture is especially useful for significantly reducing the run time of
BECCS without unduly increasing the test set. The implementation
of procedure ELIMINATE BOTTLENECKS considers all essential faults
of test sequences generated thus far. Although not attempted here,
information about independent faults [5] can be used to reduce the
number of faults considered by procedure EXTEND SEQUENCE or
procedure ELIMINATE BOTTLENECKS.

8.1 Full scan design circuits
Vector compaction results for full scan versions of the ISCAS-

89 benchmark circuits are shown in Table 10. Test set sizes are
reported for (1) the underlying test generator TRAN that does not
employ any test set reduction techniques, (2) for the best known
test sets published in the literature [5] using a dynamic compaction
technique, and (3) for the dynamic compactor BECCS. Column Test
set sizes shows the number of test vectors obtained by the three
methods. Column KP93 shows the test set sizes obtained using the
dynamic compaction method described in [5]. The size of the test set
obtained using BECCS is comparable to the best known test set sizes.
For circuits s344, s13207 and s15850, BECCS produces a smaller test
set. This is interesting since the current prototype of BECCS makes no
modifications to the heuristics used by the test generator. In contrast,
the dynamic compaction technique of [5] integrates several heuristics
like maximal compaction, rotating backtrace, fault ordering based
on independent fault sets and others into the test generation process.

The test sets generated by BECCS provide the maximum possible
fault coverage since the fault efficiency, as shown in column FE,
is 100% for all circuits. The computation time required by BECCS
is shown in column CPU sec. Times required for test generation
and fault simulation are shown separately, under columns ATG and
FS, respectively. We used a single-pattern single-fault simulator for
these experiments. Significant reduction in fault simulation time is
possible by using a parallel-fault or parallel-pattern fault simulator. A



Table 10: Test set statistics for full scan designs.

Ckt. Test set sizes FE BECCS CPU sec.
TRAN KP93 BECCS (%) ATG FS

s27 15 - 6 100 0.0 0.0
s208 47 27 29 100 0.3 0.2
s298 55 23 24 100 0.3 0.3
s344 36 15 14 100 0.2 0.2
s349 36 13 14 100 0.2 0.2
s382 54 25 27 100 0.3 0.3
s386 100 64 68 100 0.3 0.4
s400 52 24 27 100 0.2 0.3
s420 85 43 45 100 1.0 0.8
s444 49 24 26 100 0.3 0.6
s510 76 55 57 100 0.8 0.6
s526 116 51 53 100 0.6 0.7
s526n 116 51 53 100 0.8 1.0
s641 101 24 25 100 2.8 1.7
s713 102 24 29 100 2.3 1.1
s820 196 95 96 100 1.8 2.3
s832 197 96 97 100 1.7 2.7
s838 152 75 76 100 5.1 3.7
s953 132 79 83 100 2.0 4.2
s1196 240 117 124 100 9.9 9.6
s1238 255 129 131 100 9.3 8.4
s1423 130 34 36 100 13.5 8.8
s1488 214 102 109 100 3.2 6.9
s1494 213 101 104 100 2.4 7.3
s5378 432 104 116 100 69.4 80.3
s9234 666 116 168 100 409.0 362.4
s13207 744 239 238 100 334.2 484.5
s15850 722 113 104 100 2462.0 876.2
s35932 79 - 13 100 144.2 3109.4
s38417 1601 91 107 100 1036.0 5551.0
s38584 1240 - 128 100 1960.2 8288.4

reduction in test generation time is possible by limiting the numberof
undetectable faults considered in extending a primary test sequence.

Test cycles for full scan-in/scan-out model can be easily derived
from Table 10, using the formula given in Section 4. Table 11
shows the test cycles required for the test set obtained from BECCS
under the partial scan-in/scan-out model. We implemented a greedy
heuristic method for ordering the vectors in a test set to minimize test
application cycles. We found that for all the circuits, the heuristic
ordering resulted in test application cycles that were within 5% of the
lower bound described in Section 4. Under column Best known, we
report the best known number of test cycles required by a partial scan-
in and scan-out model [10]. They only report results for the smaller
ISCAS-89 circuits. A ’-’ in Table 11 indicates that no published data
is reported for the corresponding circuit. Note that unlike BECCS,
the method of [10] re-orders FFs in the scan chain to reduce test
cycles. They determine the best order of scan FFs based on the given
test set for the circuit. However, it is often desirable to determine
the order of FFs in the scan chain based on the layout rather than
the test set in order to minimize the routing overhead. BECCS can
produce test sets for any given order of FFs in the scan chain (for
the experiments, we assumed the order of FFs in the scan chain to be
the same as the order in which the FFs are instantiated in the netlist).
The column Red. shows the reduction in test cycles achieved by
using the partial scan-in and scan-out model as opposed to the full
scan-in and scan-out model.

The results of Table 11 show that BECCS test sets require fewer
test cycles than the best known figures to date for several circuits
(s344, s420, s820, s832, s838, s1494). For the larger circuits (s9234
and later), no previously reported results exist. The test cycles
required by test sets derived from BECCS can be further reduced
using static re-ordering of scan FFs [10].

Table 11: Test cycles for full scan designs.

Ckt. Partial scan-in/scan-out % Red.
Best known BECCS

s27 - 25 7.41
s208 224 230 14.50
s298 308 342 8.56
s344 241 229 4.18
s349 223 223 6.69
s382 361 563 8.45
s386 462 473 1.87
s400 - 565 8.13
s420 664 639 18.18
s444 346 470 20.74
s510 - 400 1.23
s526 789 1056 11.04
s526n - 1043 12.13
s641 377 412 20.62
s713 - 454 24.21
s820 602 575 1.03
s832 592 579 1.36
s838 2300 1891 25.55
s953 580 2258 10.36
s1196 664 1121 52.78
s1238 651 1150 54.13
s1423 1935 2658 4.18
s1488 757 763 0.78
s1494 751 728 0.82
s5378 16175 17670 16.09
s9234 - 34425 11.05
s13207 - 118175 26.20
s15850 - 49881 20.56
s35932 - 23659 2.26
s38417 - 170436 3.60
s38584 - 185508 1.03

8.1.1 Production VLSI circuits
We used BECCS to perform vector compaction for large produc-

tion VLSI circuits that consist of about 5;000 to 50;000 gates. The
number of inputs, outputs, and gates in these circuits are shown in
Table 12, under the columns Inputs, Outputs and Gates, respectively.
Unlike the ISCAS-89 benchmarks, these circuits also contain non-
Boolean primitives like tristate buffers, bidirectional buffers, and
bus configurations. Vector compaction results for these circuits are
shown in Table 13. The columns in Table 13 are similar to Table 10.
Table 13 shows that BECCS produces test sets that are up to 12:9
times smaller than the test sets produced by the base test generator
that does not attempt any compaction.

Table 12: Production VLSI circuit characteristics
Ckt. Inputs Outputs Gates
ckt1 336 340 7803
ckt2 551 654 4656
ckt3 134 32 6025
ckt4 1133 1106 31416
ckt5 2131 2304 49623

Table 13: Compaction results for full scan production circuits.

Ckt. Test set sizes FE BECCS CPU sec.
TRAN BECCS (%) ATG FS

ckt1 899 263 100 1089.0 563.6
ckt2 636 126 100 151.0 247.0
ckt3 273 175 100 1420.9 651.2
ckt4 721 56 100 1353.4 6643.4
ckt5 5228 596 100 98773.4 23443.5

8.2 Partial or non scan design circuits
BECCS uses a commercial sequential test generator to perform



test generation for target faults in partial or non scan design circuits.
Since the source code of the test generator is unavailable, it was in-
tegrated into BECCS using 350 lines of Bourne Shell scripts. Clearly,
no modification of heuristics used by the test generator is possible.
Information was exchanged between BECCS and the test generator
by reading and writing files. BECCS maintains and updates the list of
target faults, undetected faults and essential faults by making several
calls to the fault simulator. Every time the fault simulator is called, it
reads the circuit and fault list, sets up several internal data structures
and performs fault simulation. BECCS always calls the test generator
with a single target fault. The test generator reads in the circuit, sets
up several data structures and performs test generation for only the
target fault supplied by BECCS. This significant overhead that is in-
curred for every fault, that can be easily eliminated if the source code
of the sequential test generator and fault simulator were available.

The test generator has a feature that is useful in extending a pri-
mary test sequence. It accepts constraints on the values that primary
input signals can assume in different clock cycles. These constraints
are honored during test generation, i.e., all generated tests satisfy
these constraints. BECCS uses this feature of the test generator to
extend a primary sequence. The known signal values in the primary
test sequence are translated into a set of constraints on the primary
input signals. These constraints are specified in a separate file that
is passed on to the test generator for every fault processed by the
test generator. Since BECCS interfaces with the sequential circuit

Table 14: Test sets for non scan designs.

Ckt. TG Static comp. BECCS
Vec. FE Vec. FC Vec. FE Red.

(%) (%) (%) (%)
s208 211 100 187 68.8 129 100 39
s386 374 100 270 87.4 229 100 39
s420 211 100 206 46.6 134 100 37
s713 221 100 192 81.9 132 100 40

test generator and fault simulator at a very high level, measuring
CPU seconds for this experiment is not meaningful. However, this
integration serves an important purpose. It can be used to examine
the quality (size) of test sets that can be obtained using the bottle-
neck elimination framework for sequential circuits. Table 14 reports
compaction results for non scan circuits. Results for three methods
are included. Under column TG, we report the number of vectors
generated by the underlying test generator and the fault efficiency
achieved by the test generator. Since no dynamic vector compaction
technique for sequential circuits has been published in the literature,
we compare our technique to a static compaction techniquedescribed
in [11]. They describe several static compaction techniques that re-
sult in test sets with different fault coverages. We only consider
the test set with the highest fault coverage. This is a fair compari-
son because BECCS achieves the maximum possible fault coverage
(100% fault efficiency) for all the example circuits. Column Static
comp. shows the number of vectors (in column Vectors) and the fault
coverage (in column Fault Cov.) achieved by the test compaction
technique described in [11]. They do not report the fault efficiency
of their test set. Column BECCS shows the number of vectors in
the test set obtained by using the program BECCS. The percentage
reduction in test set that is obtained by using BECCS instead of the
underlying test generator is shown in column Red.

The test sets derived using BECCS are significantly smaller than
the test sets derived using the underlying test generator or static com-
paction techniques. These results are significant for several reasons:
(1) test set reduction of as much as 40% is possible using BECCS
as compared to the underlying test generator, (2) BECCS uniformly
produces significantly smaller test sets than the static compaction
method for all the example circuits, and (3) some of the static com-

paction techniques described in [11] can be used to further reduce
the test set derived using BECCS. Also, more vectors may have to be
added to the test sets of the static compaction approach to achieve
100% fault efficiency. These results show that the bottleneck elim-
ination framework is effective in reducing the test set sizes for non
scan circuits.

9. CONCLUSION

A new, dynamic vector compaction and test cycle reduction al-
gorithm for combinational and sequential circuits was proposed. The
algorithm identifies bottlenecks that prevent compaction and cycle
reduction and generates future test sequences to eliminate the bot-
tlenecks of earlier generated sequences. An important advantage of
our algorithm is its applicability to both combinational and sequen-
tial circuits. The bottleneck removal algorithm can also be used to
derive small test sets for other fault models like delay faults. Exper-
imental results reveal that our framework produces test sets that are
close to or better than the best reported previously. Although not at-
tempted here, careful instrumentation of the test generator heuristics
for vector compaction [5], use of independent faults, fault ordering,
and static compaction techniques [3], can be incorporated into the
framework for further reducing the size of test sets. We are cur-
rently implementing the proposed bottleneck elimination framework
as part of the sequential test generator system SEST [15], to obtain
compact test sets for large sequential circuits.

REFERENCES

[1] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: A Highly Efficient
Automatic Test Pattern Generation System,” IEEE Trans. Computer-Aided Design,
vol. 7, pp. 126–136, Jan. 1988.

[1] L. N. Reddy, I. Pomeranz, and S. M. Reddy, “ROTCO: A Reverse Order Test
Compaction Technique,” in Proc. EURO-ASIC Conf., pp. 189–194, Sept. 1992.

[3] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “On Compacting Test
Sets by Addition and Removal of Test Vectors,” in VLSI Test Symp., pp. 202–207,
Apr. 1994.

[4] P. Goel and B. C. Rosales, “PODEM-X: An Automatic Test Generation System
for VLSI Logic Structures,” in Proc. 18th ACM/IEEE Design Automation Conf.,
pp. 260–268, June 1981.

[5] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “Cost-Effective Genera-
tion of Minimal Test Sets for Stuck-at Faults in Combinational Logic Circuits,” in
Proc. 30th ACM/IEEE Design Automation Conf., pp. 102–106, June 1993.

[6] S. Narayanan, R. Gupta, and M. Breuer, “Configuring Multiple Scan Chains for
Minimum Test Time,” in Proc. Int. Conf. Computer-Aided Design, pp. 4–8, Nov.
1992.

[7] B. Vinnakota and N. K. Jha, “Synthesis of Sequential Circuits for Parallel Scan,” in
Proc. European Design Automation Conf., pp. 366–370, Mar. 1992.

[8] D. K. Pradhan and J. Saxena, “A Design for Testability Scheme to Reduce Test
Application Time in Full Scan,” in Proc. VLSI Test Symp., pp. 55–60, Apr. 1992.

[9] E. M. Rudnick and J. H. Patel, “A Genetic Approach to Test Application Time
Reduction for Full Scan and Partial Scan Circuits,” in Proc. 8th Int. Conf. VLSI
Design, Jan. 1995.

[10]Y. Higami, S. Kajihara, and K. Kinoshita, “A Reduced Scan Shift Method for
Sequential Circuit Testing,” in Proc. Int. Test Conf., pp. 624–630, Oct. 1994.

[11]T. M. Niermann, R. K. Roy, J. H. Patel, and J. A. Abraham, “Test Compaction for
Sequential Circuits,” IEEE Trans. Computer-Aided Design, vol. 11, pp. 260–267,
Feb. 1992.

[12]S. Y. Lee and K. K. Saluja, “Sequential Test Generation with Reduced Test Clocks
for Partial Scan Designs,” in Proc. VLSI Test Symp., pp. 220–225, April 1994.

[13] I. Pomeranz and S. M. Reddy, “On Generating Compact Test Sequences for Syn-
chronous Sequential Circuits,” in Proc. European Design Automation Conf., Sept.
1995.

[14]S. T. Chakradhar, V. D. Agrawal, and S. Rothweiler, “A Transitive Closure Al-
gorithm for Test Generation,” IEEE Trans. Computer-Aided Design, vol. 12,
pp. 1015–1028, July 1993.

[15]X. Chen and M. L. Bushnell, “Dynamic State and Objective Learning for Sequential
Circuit Test Generation Using Decomposition Equivalence,” in Proc. of the 24th
Int. Symp. Fault Tolerant Comput., pp. 446–455, June 1994.


	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index


