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ABSTRACT

A new technique for mapping combinational cir-
cuits to Fine-Grain Cellular-Architecture FPGAs is pre-
sented. The proposed tree restructuring algorithm pre-
serves local connectivity and allows direct mapping of
the tree to the cellular array, thus eliminating the tradi-
tional routing phase. The developed bus assignment
algorithm efficiently utilizes medium and long distance
routing resources (buses). The method is general and
can be used for any Fine-Grain Cellular-Architecture
type FPGA. To demonstrate our techniques, the
ATMEL 6000 series FPGA was used as a target archi-
tecture. The results are very encouraging.

1. INTRODUCTION
Field Programmable Gate Arrays (FPGAs) have

become a popular design technology for designers seek-
ing fast and cost effective implementation of their cir-
cuits. In recent years a lot of effort was spent on the
development of the technology mapping and layout
synthesis methods for two categories of these devices,
namely Look-Up-Table based (LUT-based) and row-
based FPGAs. A number of the architecture-specific
technology mapping approaches were developed [6,7],
but most of the placement and routing techniques were
adopted from the semi-custom design styles like stan-
dard cells and gate arrays, with some modifications.
The other types of the programmable architectures, Cel-
lular-Architecture (CA) type FPGAs and the Complex
Programmable Logic Devices (CPLD) have not drawn
much attention of the CAD research community. In this
paper, we focus on layout synthesis for one of these
programmable architectures, namely CA-type FPGAs
[2]. The main features of these devices, which distin-
guish them from the other types of FPGAs is the local
connectivity between logic blocks placed as a symmet-
rical array. Logic blocks are usually of small granularity
and of the standard-cell type with a limited number of
inputs and outputs. Local or global buses are used for
distance connections.

The "macro block" approach which is currently
used in the industry to solve the layout problem for
these devices is based on macro-generators. A technol-
ogy independent representation of a circuit design is
covered with a minimum number of relatively small
standard subfunctions (macros) which usually have
non-uniform shapes. Placement of macros is usually
performed using a simulated annealing algorithm,
which places the macros far from each other to assure
that in the routing phase all connections between mar-

cos are completed. This technique leaves a lot of
unused cells around the placed macros for possible use
as routing blocks. Consequently, the number of cells
which needs to be used for routing between macros is
very large. In ATMEL 6000 series, on average, about
50% of the area occupied by a design is used for wiring
connections or left unused [2]. This problem is mainly
caused by not creating locally connected netlist during
the synthesis steps. As the routing resources are very
limited, efficient usage of these resources can signifi-
cantly reduce the area occupied by the design, and
thereby increase the capacity of the chip and improve
circuit performance.

Recently, sev eral logic synthesis approaches
applicable to CA-type FPGAs have been presented
[1,10]. In order to generate the circuit layout some of
these methods require an additional layout synthesis
step and some others do not. For example, if logic
functions are represented as a two-dimensional array,
they can be directly mapped onto a given CA-type
architecture. The spectral methods based on orthogonal
expansions [10] , and restricted factorization method [8]
belong to the latter type. The approaches [1,5,10] based
on trees and decision diagrams [9] which preserve local
connectivity but still require the placement and routing
steps, have also been reported. In most cases, however,
when the tree is finally mapped to a rectangular area,
the triangular structure of the tree may waste a large
amount of area. Therefore, new comprehensive solu-
tions to the optimized mapping of such trees to the reg-
ular, locally-connected arrays are of interest.

In this paper, we propose a new approach to the
mapping of the binary trees onto the FPGAs with local-
ized connections, like the CA-type FPGAs. It is based
on the restructuring of the binary tree before final map-
ping is performed. A Squashed Binary Tree (SBT) [3]
and a new Modified Squashed Binary Tree (MSBT)
approaches are used to restructure a binary tree, before
the mapping is performed. The mapping of the restruc-
tured tree is a simple process and routing step is elimi-
nated. The method developed here is applicable to any
binary tree. Our general approach is presented using
ATMEL 6000 Series FPGAs as the target architecture,
and it can be adopted easily to other CA-type FPGAs,
such as Motorola, Algotronix or Pilkington.

The paper is organized as follows. In Section 2
we present a generic model of the CA-type FPGA and
discuss a method of representing a Boolean function as
a Permuted Reed-Muller (PRM) tree. The formal
description of the problem is given in Section 3. In sec-
tion 4, the various phases of the Tree Restructuring
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Method (TRM) are discussed. Results and conclusions
are given in sections 5 and 6, respectively.

2. CA-Type FPGA and PRMT
In general, the CA-Type FPGA is a regular array

of locally connected programmable logic blocks. Each
logic block is directly connected to a limited number of
neighbors, usually four or eight, and to a small number
of local and global (express) buses, usually four or
eight, which are used for medium and long distance
connections to link the logic array with the I/O blocks.
Local and global buses run horizontally and vertically.
Logic blocks, in addition, to logic and storage functions
can also be used as wires. A generic CA-type FPGA is
shown in Fig. 1.

The set of logic functions which can be imple-
mented in one logic block is defined by the block archi-
tecture. All primitive logic functions like OR, NOR,
NAND, AND, EXOR, 2-input mux, and a few combi-
nations of the above gates can be realized by a logic
block. All gates are two-input gates and the maximum
number of outputs from a logic block is two.

A tree structure is very useful for mapping cir-
cuits to the CA-Type FPGAs as the connections
between logic blocks, represented as the vertices of the
tree, are local and each node in the tree has only con-
nections to its parent and child nodes. In a binary tree,
the maximum node degree is three, and therefore this
configuration can be realized by using only adjacent
logic blocks and local connections in the cellular array.
The exponential growth of the number of nodes as a
function of the tree level can, however, result in a very
inefficient mapping. For most of the real functions, the
shape of the tree is not getting as much wider at the bot-
tom as could be expected. The tree is expanding from
the root for a few lev els, then the width of the tree tends
to stay constant, and decreases towards the leaves of the
tree. Therefore, by developing a good restructuring
method that shape can be easily mapped to the cellular
architecture without wasting many logic blocks for
routing.

In general, any binary decision diagram or binary
tree can be used as an input to our rrestructuring algo-
rithm. However, to get better results a tree which can
provide the best matching between a structure of the
tree and functionality of logic blocks in a given FPGA
should be selected. Any combination of Shannon,
Davio I and Davio II expansions can be used to pro-
duce decision diagrams [1,9] which are binary trees
with a decomposition variable associated with each
node. By using only Davio I expansion, a completely
specified Boolean function can be decomposed to pro-
duce a binary AND/EXOR tree structure called Reed-
Muller Tree [1] with only positive decomposition vari-
able associated with each node of the binary tree. This
tree is called Reed-Muller tree because once it is flat-
tened, it represents a Reed-Muller canonical form. If
the order of variables used for decomposition is the
same in all branches of the tree then it is called Non-
Permuted Reed-Muller-Tree (RMT). However, if the
order of the variables is not the same in all the branches
the tree is usually smaller. Such, tree called Permuted-
Reed-Muller-Tree (PRMT), is generated by the pro-
gram REMIT [1], and is used as the input to our algo-
rithm. PRM Tree structure is very well suited for
ATMEL FPGAs as it matches the AND-EXOR configu-
ration of the ATMEL logic block. Fig. 2 shows the
PRMT of the function given below.

f = a bcdefg + a efg + aef
The root of the tree represents the output of the func-
tion. The logic gates are represented with generic logic

gate symbols and the primary (expansion) variables (a,
b, c ...), which are associated with each node, are also
shown.

3. MAPPING PROBLEM FORMULATION
PRMT which represents a given Boolean func-

tion is modeled as a binary treeT = (V, E) which con-
sists of the ordered set of nodesV , and the set of
directed edgesE defined as follows:
* V = { vj |vj represents a PRM Tree node which can be
realized in one logic block of a given architecture}
* E = { ej |ej is an edge fromvj to vj+1, and represents
a functional relation between these two nodes}. Direc-
tion of the edge represents the direction of signal flow
in the actual design. The nodes of the treeT are
labeled with the primary signals (expansion variables)
entering the logic blocks represented by the nodes. The
fan-out ofvj is equal to 1 and the fan-in of eachvj is
not greater than 2.

The physical resources of the CA-type FPGA are
represented as the undirected graphGp(Vp,Ep) with
the ordered set of vertices,Vp, and a set of edgesEp
defined as follows:
*Vp ={ vp | vp represents a logic cell of the CA-type
FPGA}
* Ep ={eP | ep represents the programmable connec-
tions between the adjacent cells}
The vertices are numbered according to their positions
in the column-row matrix of the CA-type chip.

Mapping Problem Formulation:Given the undi-
rected physical graphGp (Vp,Ep) and the network
treeT(V, E) representing a design, find a mapping of
the treeT to the physical graphGp that satisfies the
routing constraints of the given architecture and that
minimizes the size of the rectangular area covered by
the design and the number of logic blocks used for rout-
ing.

4. Tree Restructuring Method (TRM)
The input to the logic optimization phase is in

pla format. The output of the logic optimization phase
is a binary tree. In this paper the logic optimization pro-
gram REMIT is used to produces the PRMT representa-
tion of the given function. Next, an optional technology
mapping step is introduced to perform technology spe-
cific optimization. The tree is then restructured using
MSBT technique, and then mapped to the target archi-
ture. Finally, the primary inputs are assigned to the
local buses in the bus assignment phase.

4.1. Technology Mapping
This phase is specific to the architeture of the tar-

get FPGA. For example in ATMEL 6000 [2], the com-
bination of AND/EXOR gates can be realized in one
logic block [4]. The size of PRMT can be reduced by
grouping nodes corresponding to such gates. The
grouping algorithm described in [4] is used and the
grouped PRMT corresponding to the function in Fig. 2
is shown in Fig 3.

4.2. Squashed and Modified-Squashed Binary Tree
The Squashed Binary Tree [3] approach was cho-

sen as it gives us a possibility to shape the tree into a
rectangular form which closely resembles the CA-type
architecture. The rectangular shape can be directly
mapped to the array satisfying the design restrictions.
Mapping a SBT to the CA-type architecture is just a
straight-forward process as we place each node of the
SBT in one column of the target array and then make
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the neccessary connections. The details are explained
in Sec 4.3.

The squashed binary tree is formed by projecting
the binary tree onto its leaves. Starting from the root,
nodes are projected onto their left-most descendants.
Next, the tree is traversed in the bottom-up direction
[5], and if a node has two children, the process is
repeated starting with the child node which was not
projected earlier. Figures 4(b) and 4(c) represent the
Squashed Binary Tree (SBT) and the Modified
Squashed Binary Tree (MSBT) of the binary tree shown
in Fig. 4(a). Fig. 5 shows the squashed binary tree rep-
resentation of the PRM tree from Fig. 3.

To obtain a more compact shape of the mapped
design the original SBT algorithm was modified and the
Modified SBT (MSBT) algorithm was implemented in
our package. The modified squashed binary tree is
formed by projecting nodes of the binary tree onto its
leaves in the depth-first manner. The node can be pro-
jected into its left or right descendent depending on the
situtation (i.e left most descendant constraint is
relaxed). As a result, a tree with a smaller number of
nodes is generated.

The modified squashed binary TreeTb(Vb,Eb)
consists of the set of verticesVb and the set of directed
edgesEb.
*Vb = { vb | vb represents the set of nodes of the Tree
T(V,E), projected into the same vertex ofTb(Vb,Eb)}
* EB = {eb| eb represents the directed edge fromvbi to
vbj if any of the nodes of the TreeT(V, E) which
were collapsed to nodesvbi was connected to any of
the nodes of the TreeT(V, E) which were collapsed to
vertexvbj}.

The vertices of the MSBT are labelled as
vb1,vb2.....,vbn, where n is the number of leaf nodes in
the original PRMT tree. Each vertexvbi is a set of
nodes (v1,v2,.....vm) of the PRMT tree, which were
collapsed to that vertex. An edge exists between
vbi ,vbj if there exists an edgeekl betweenvk and vl ,
wherevk is a node which was collapsed to vertexvbi ,
andvl is a node which was collapsed to vertexvbj .

The MSBT of the PRMT from Fig. 4 is shown in
Fig. 6.

4.3. MSBT Mapping
Each vertex of the MSBT is be implemented in

one column of the CA-type array. The number of ver-
tices of MSBT is equal to the number of columns of the
CA-type array used for design implementation, and the
maximum number of nodes of the grouped PRM tree
which are projected into one vertex of the MSBT deter-
mines the number of rows required.

MAPPING PROCEDURE
For all verticesvbi of the MSBT, place all nodes

belonging tovbi in the same column of the target cellu-
lar array. Vertexvbi will occupy as many rows as there
are nodes belonging to that vertex. First, place all
nodesvi belonging tovb1 in columnone. Then place
nodes belonging tovb2 in column two staring with
Row(j) defined by the edge betweenvb1 and vb2. If
node, vk ∈ vb1 is conected to nodevl ∈ vb2, then
nodevl is placed in the same row(j) as nodevk. This
mapping is continued until all vertices are placed. Add
additional routing cells if required.

Thevb1,vb2..vb6 are the vertices of the MSBT in
Fig. 6. We mapvb1 to column 1 of the array;vb2 to
column 2 and so on. Since there is a directed edgee4,9
from vb1 to vb2, therefore we connect cell 9 placed in

column 2 with cell 4 in column 1. Similarly, there is a
directed edgee0,2 betweenvb1 andvb3, and we con-
nect them by using the "routing cells" in Row 1
between cell ’0’ and cell ’2’. The "routing cells" are
indicated by ’R’. Fig. 7 shows the mapping of SBT
from Fig. 5, and Fig. 8 shows the mapping of the
MSBT from Fig. 6 onto the CA-type array.

Comparison of Fig. 7 and Fig. 8 reveals that the
MSBT approach results in smaller number of columns
and routing cells needed for the layout implementation
than SBT. A significant advantage of MSBT approach,
which can be observed from Fig. 6, is that we can easily
predict the area of the rectangle enclosing the design. It
can be assumed that in FPGAs all cells have approxi-
mately the same delay. Therefore, in MSBT approach
the signal delays can be calculated before the actual
mapping is performed. The predictability of the signal
delays is a very important advantage of this approach.
The area and delays can be optimized by properly
choosing the order of the projected nodes.

4.4. Bus Assignment
Once MSBT is created it can be directly mapped

to the CA-type array, and only the necessary logic
blocks required for routing need to be added. The exact
number and the exact locations of these additional rout-
ing blocks is defined by the MSBT and hence is known
a priori. Then, to complete all the connections, the bus
assignment has to be performed. The primary (decom-
position) variables from the original PRMT have to be
assigned to the local buses. We hav e developed effi-
cient heuristic which assigns the variables to the local
buses such that the number of local buses used by the
same variable and the number of cells needed to dis-
tribute the same signal to different buses are minimized.

The steps of the bus assignment algorithms are as
follows:

Step a: For each decomposition variabledi ; calculate
Mi , the total number of nodes in PRMT to which the
variabledi is assigned. Form a list ’L’ of variables for
which bus assignment has to be done. Initially this list
contains all the primary variables.

Step b: For all di calculateRij , the total number of
nodes of the PRMT named with variabledi and placed
in row r j of the cellular array. IfMi = Rij ; then assign
variabledi to the upper local busURj of the rowRj .
If another variable is already assigned toURj then
assigndi to the bottom local busBRj of the rowRj .
Removedi from the list ’L’. If BRj is occupied then
pick the next variable in the list. If the list is empty,
EXIT. Repeat the same procedure for columns.

Step c: For all variablesdi in the list, calculateNi ,
where Ni = Mi /2 (if Mi ev en);Ni = (Mi /2) + 1 (if
Mi odd). SubstituteMi = Ni .

Step d: If Mi ≥ Rij for di , then assigndi to URj . If
URj is already assigned then assign the variable to
BRj . DecrementMi by Rij . If Mi = 0; Removedi
from the list. If BRj is occupied then pick the next
variable in the list. If the list is empty then, EXIT.
Repeat the same procedure for columns.

Step e: If the list is not empty, repeatStep cand Step
d until all assignments are completed.

The completed mapping of the MSBT of our
leading example to the ATMEL 6000 series FPGA is
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shown in Fig. 9.

5. RESULTS
The, TRM was tested on a set of MCNC bench-

marks. Since at present TRM can handle only single
output functions, we modified MCNC benchmarks by
extracting single output functions. We compared the
area and the number of local buses used by Squashed
Binary Tree (SBT) method versus Modified Squashed
Binary Tree (MSBT) approach, and MSBT approach
versus commercially available ATMEL (IDS) tools. We
assumed ATMEL 6000 as the target architecture. The
results are presented in Table I and Table II.
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Table I
Table I shows the results of the SBT and MSBT

approaches for the modified set of MCNC benchmarks.
The second column, "PRMT", shows the number of
gates required to implement the function in PRMT form
(tree generated by REMIT). In the GROUPING section
of the Table I, column "L" shows the number of logic
blocks used to implement the logic and column "C"
shows the number of connecting cells added due to A-B
restrictions of the ATMEL architecture [2]. Column
"GT" shows the total number of cells. SBT and MSBT
column sections present the results of SBT and MSBT
approaches, respectively. R is the number of routing
logic blocks added when constructing SBT or MSBT.
T is the total number of logic blocks required to realize
the function. RT represents the size (in terms a of num-
ber of cells) of the smallest rectangle enclosing the
mapped circuit. The results clearly show that MSBT
approach has significantly reduced the total number of
logic blocks required to implement a given function and
the size of the enclosing rectangle is also smaller.

The layouts of the leading example are shown to
illustrate the differences between our final layout and
the layout generated by ATMEL tools The ATMEL
generated layout is shown in Fig. 10, and the layout
generated by our TRM package in Fig. 11. It can be
easily noticed that our layout is more compact and gives
the better utilization of the chip resources, and therefore
better perfromance. In Table II the comparison between
our method Tree Restructuring Mapping (TRM) and the
ATMEL commercial tools package (IDS) is presented
using the MCNC benchmarks. B is the number of
buses and L is the number of logic blocks used for
implementing the logic, C is the number of cells used
for routing, and A represents the rectangular area occu-
pied by the core of the design (without I/O pins). We
compared only core area of the mapped design because
the ATMEL tools perform bus assignment in an ineffi-
cient way. The resulting area is very large and contains
a lot of unused logic cells. As it can be seen from the
Table II our methods give much more compact layouts
than the ATMEL tools. The number of local buses and
logic blocks used for routing is much smaller for all run
examples. The L/R ratio, logic blocks to routing blocks,
is high for our method, which it gives more "logic
power" to the implementation of the designs and
improves performance.
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Table II
To compare the perfromance improvement we

have done timing analysis using ATMEL (IDS) pack-
age. The design, generated by our TRM package is
entered using interactive editor of the ATMEL (IDS)
tools, and then we run the timing analysis from the
ATMEL (IDS) package on both implementaions. The
longest path delays obtained are shown in Table III.
The average improvement achieved with our approach
is around 50%.
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Table III

6. CONCLUSIONS
We proposed a new tree restructuring method for

mapping combinatorial circuits onto CA-Type FPGAs.
By preserving the local connectivity among the logic
blocks the routing phase was completely eliminated.
Mapping process is straight forward, and therefore
enables predictability of the signal delays, which is very
important advantage of this method.

Our TRM program is independent of the logic
optimization steps as long as the function is represented
as a binary tree. Our method is a general method and
can be applied for a general class of CA-type FPGAs.
The results on some MCNC benchmarks shows that our
method is better both in area and delay when compared
to commerically available tools. Currently, we are
working towards extending the TRM for multi-output
functions.
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Fig. 7 Mapping SBT to CA-type Array.
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Fig. 8 Mapping MSBT to CA-type Array.
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Fig. 10 Layout of the Eaxample with ATMEL Tools
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Fig. 11 Layout of the Example with our Program TRM
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