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Abstract

This paper describes a method to optimize the per-
formance of data paths. It is based on bit-level arith-
metic transformations, and is especially suited to optimize
large adder structures inside these data paths. The multi-
operand adders are identified at the bit level and the ad-
dition parts are merged even across operator boundaries.
Area and delay optimizations use CSD coding and timing-
driven transformations, including bit-slice adder trees and
logarithmic addition. The method forms a link between
data path optimizations at the word level and logic synthe-
sis techniques at the bit level. Experiments show that start-
ing from a very simple description of an N�N multiplier
an O(logN ) delay is obtained with very low run times.

1 Introduction

In digital signal processing (DSP) systems, the through-
put is a major design objective. One therefore designs data
paths with functionality that is tuned towards a specific ap-
plication. To improve the throughput of these data paths,
pipelining is commonly used [4]. However if delay is op-
timized prior to pipelining, the need for pipeline registers
and the latency of the data paths can be reduced. Special
techniques that improve delay at a reasonable cost in area
are thus very useful. General methods based on logic syn-
thesis can be used [6], but for data paths specific methods
are more efficient.

In [7], a technique is presented that combines delay op-
timization and pipelining. The delay optimization is done
by optimal selection between a number of predefined im-
plementations for each operator with different performance
characteristics. This technique is specially suited when a
regular layout style is used. We however use a standard cell
design method, which allows for more possibilities to opti-
mize the net list. As the presented optimization techniques
take care of area and delay efficiencies, we need only one
implementation for each operator. Because Place&Route
tools can handle critical nets, we assume that the detailed
routing has no negative effect on the results.
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The analysis of a number of DSP applications shows
that the largest delays in the data paths are caused by rip-
ple paths going through several bit slices. The direction of
information flow through these ripple paths can be from the
least to the most significant bit (e.g. adder) or vice-versa
(e.g. integer-length operator).

In cases where many ripple paths present approximately
the same delay, they can not be optimized efficiently with
logic synthesis techniques. This is due to their optimiza-
tion strategy [6]. When there is only one longest delay path,
it is clear where optimizations have to be performed. The
best place to optimize the delay is where this can be done at
minimum hardware cost. The transformations are very lo-
cal and are based on locally collapsing the circuit and resyn-
thesizing it to obtain a better delay. This is repeated as long
as a suitable optimizationplace can be found or until the op-
timization objective is reached. However, when many crit-
ical paths must be treated at the same time, a more global
strategy is necessary.

For specific structures containing many critical paths, it
is possible to apply specific methods to optimize them. In
this paper we specificly consider adder structures. In the
context of multipliers the addition of the partial products
has been studied extensively [1, 2, 3, 9, 10], but the influ-
ence of connected operators has not been considered. With
a simple method of describing the operators and the data
paths, it is possible to recognize larger adder structures and
in other contexts also. This extra knowledge of the multi-
operand adders in the circuit allows arithmetic transforma-
tions to optimize both area and delay. Associativity and
commutativity are applied to timing-driven optimize the
operations inside bit slices. Across the bit slices the rip-
ple paths are transformed into carry-look-ahead structures,
yielding high performance at reasonable cost.

This paper is divided in 7 sections as follows. In sec-
tion 2, the characteristics of the adder structures are de-
scribed. These characteristics are used in section 3 to iden-
tify the adder structures inside a data path. The specific op-
timization techniques for area are given in section 4 while
section 5 presents the delay optimization. Finally in sec-
tion 6, experiments and results are presented.



2 Adder structures

In many DSP applications critical paths are created in-
side adder structures of the data paths. That is why we
demonstrate the method in this paper on the multi-operand
addition. Similar techniques can be applied on any opera-
tion satisfying the properties of associativity and commu-
tativity. Adder structures are present inside operators such
as adder/subtracter, multiplier and comparator. Even larger
adder structures can be formed across operation boundaries
as shown in the following examples.

Example 1

A first example is the multiply/accumulate unit of Fig-
ure 1 which performs : A � B + C . The multiplier con-
sists of two parts : the generation of partial products and
correction terms; and an array of adders to add up the par-
tial products shifted over precalculated numbers of bits.
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Figure 1: Adder structure of multiply/accumulate unit

The accumulator and the add-array of the multiplier
form one large adder structure. The inputs to the adder
structure are the partial products, the correction terms and
the accumulator input C. By extending all these inputs to
the word length of the accumulator output, the adder struc-
ture is simply a multi-operand adder of that word length.

Example 2

Another example is a FIR filter (see Figure 2). Also
here the add-arrays of the multipliers and the multi-operand
adder to generate the filter output are merged in one large
adder structure.
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Figure 2: Adder structure of FIR filter

In case the coefficients of the filter are constant, each
partial product of the multipliers is either zero or a shifted
copy of the data input bits. Because of our optimization
method, it does not matter if these constant coefficients are
2’s-complement or Booth-encoded [1].

Characteristics

As can be seen from the two previous examples we
search for structures that contain only additions. These
structures should be as large as possible so that they can
be optimized simultaneously. The adder structures con-
tain several input words and one output word. More out-
put words give rise to separated adder structures. Interme-
diate results of additions must thus be used exactly once.
This rule holds both at the word level and at the bit level.
At the bit level, this e.g. means that sign extensions have to
be external to the adder structure. This can be easily done
at the data path level, and although this may appear as a bad
implementation, the area optimizations of the method will
remove any overhead.

The functionality of the multi-operand adder structure is
independent of the details of its implementation. The dif-
ferent addition schemes (like Dadda [3], Wallace [2], ...)
are all covered by the same functionality. Therefore a sim-
ple addition scheme can be used to describe the addition
parts of the operators. Different versions to obtain differ-
ent performances need not to be made (and maintained), be-
cause the method will optimize area and delay.

3 Locating Adder structures

As can be seen from the examples in the previous sec-
tion, adder structures do not coincide with operators. A
special technique is thus required to recognize the multi-
operand adder structures inside a data path.

This identification can be done at the operator level or at
the bit level. The operator-level method requires for each
operator the description of its adder part. It is then possi-
ble to take neighboring occurences of these adder parts to-
gether to identify the largest possible adder structures.

Another method is to identify the adder structures at the
bit level. It is then required that operator descriptions use
basic adder cells. Inside a data path, the occurences of the
basic cells are then grouped together into adder structures.

We use the bit-level method, which will give us all in-
formation needed to perform the area and delay optimiza-
tions. The method is based on the recognition of bit slices
and adder trees as we will describe them further on.



Bit slices

The problem to define ripple path or bit slice is that these
terms are concepts the designer uses. When the circuit is
mapped to regular layout modules these terms have a sim-
ple layout equivalent. When a standard cell implementa-
tion is used, a net list can not be simply divided into bit
slices. Here we use the term bit slice in relation to the adder
structures and it does not necessarily correspond to a bit
slice of the designer.

A simple method is used to define bit slice by translating
the designers concept to interconnections of specific ports
of the basic cells : a full-adder cell has 3 inputs (A, B, CI)
and 2 outputs (SUM, CARRY-OUT). The 3 data inputs are
functionally equivalent. The SUM output and CARRY-OUT

output are different in that the SUM remains in the bit slice
of the inputs, while the CARRY-OUT output goes to the next
bit slice (see Figure 3).
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Figure 3: CARRY-OUT of basic adder cells define bit slices.

We observe thus the following : cells driven by a
CARRY-OUT port of a adder cell can never belong to the
same bit slice as that adder cell. This is the criterion to lo-
cate the bit slices in the circuit. Considering only the com-
binatorial part of a circuit, the method to divide the circuit
into slices is then as follows :

1 Disconnect all CARRY-OUT connections and assign
external inputs to the first slice.

2 Assign to current slice all cell instances whose inputs
are driven by external inputs, or by outputs of cell in-
stances that are already assigned to a slice.

3 Reconnect the CARRY-OUT connections of the cells
belonging to the current slice.

4 Repeat from step 2 with a new slice until all cells are
assigned to a slice.

Adder trees

After dividing the circuit into bit slices with this method
it is determined if a connection is horizontal or vertical.
Horizontal connections remain in the same bit slice, while
vertical connections span more than one bit-slice. Inside a
bit slice the connections between basic adder cells identify
adder trees with multiple 1-bit inputs. It is required that the
SUM output of an adder cell goes to exactly one data in-
put of a next adder cell in the same bit slice. If this is not
satisfied, the adder cells belong to different adder trees.

From the arithmetic properties of addition (commutative
and associative) it follows that the multi-operand addition
is independent of the order of the data inputs. This holds as
well at the word level as at the bit level. Inside an adder tree,
that is a part of a multi-operand adder, we can thus freely
interchange the data inputsand transform the adder tree into
an equivalent adder tree (see example of Figure 6).

When the data-inputs are interchanged, the CARRY-OUT

signals of the different adder cells do not have the same
functionalityanymore. The multi-operand adder as a whole
will however retain its functionality. It is even possible that
less CARRY-OUT bits are needed as is illustrated in Fig-
ure 4 : when the 3 half-adders are replaced by 2 full-adders,
there is one CARRY-OUT less. By contrast to logic synthe-
sis, the use of arithmetic properties makes this kind of op-
timization possible in our method.
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Figure 4: Arithmetic transformation can change number of
carries. At the left the original adder tree with three car-
ries and at the right a functionallyequivalent adder tree with
two carries.

Multi-operand adder

In order to keep the functionality of the circuit, the bit-
slice adder-tree transformation above may only be applied
when the adder trees form slices of a multi-operand adder.
This is satisfied if CARRY-OUT bits of an adder tree are ei-
ther all unconnected or are each connected to one of the data
inputs of one adder tree in another slice. After locating the
multi-operand adders in this way, each multi-operand adder
contains slices of adder trees as shown in Figure 5.
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Figure 5: Multi-operand adder consists of adder trees in bit
slices.



4 Area optimization

The identified multi-operand adder structures can now
be optimized using arithmetic properties of addition. The
first transformation is a minimization of the number of in-
puts into the slices of the adder. When, for instance, two
equivalent signals are inputs to the same slice, they can
be replaced by one input into the next slice of the multi-
operand adder.

Equivalent signals

To be able to reduce the number of inputs, it is neces-
sary to identify how input signals are related to each other.
We search especially for those signals that represent logi-
cal known values (0 or 1), and for signals that are logically
equivalent or inversely equivalent.

To find these relations between signals, their logical
functions have to be computed and compared. Compar-
isons of logical functions are very easy when they are com-
puted with Binary Decision Diagrams (BDD) [5]. The con-
struction of BDDs can take much effort or even become im-
possible when the circuit is large. This is e.g. the case when
the circuits contain large multipliers and these are exactly
the type of circuits that we want to handle. In fact we only
need the BDDs for the inputs of the adder structures. As
in a data path several adder structures can be present af-
ter each other, this however means that inputs of following
adder structures should be determined based on the outputs
of previous adder structures.

To overcome the problem of calculating large BDDs,
we can observe that calculating functions locally will de-
tect most of the equivalent signals. When not all equiva-
lent signals are identified, the result will still be valid al-
though less optimal. So the BDDs are constructed with a
limited depth of logical gates before the inputs of the adder
structures. This depth does not have to be very large. E.g.
for a Booth-multiplier [1], it is enough that the BDD cov-
ers a possible sign extension before the Booth-encoder, the
Booth-encoder itself and the Booth-selector. When con-
stant or equivalent signals are present at the inputs of the
Booth-multiplier, they will also be present at the inputs of
the adder structure of the multiplier.

CSD coding

The BDD construction identifies equivalent or constant
inputs. These can then be used to perform the following
arithmetic optimizations :

For each set of logically equivalent signals (and their in-
verse) the weights associated to their slices are added up
and encoded with Canonical Signed Digits (CSD). This will
yield the minimal number of inputs for that logical signal

into the multi-operand adder. For an inverted signal the nu-
merical value is negative and requires a correction term.
E.g. an inverted input a in slice i gives :

2i � a = �2i � a+ �2i

The CSD coding gives for each logical signal at maxi-
mum one input at maximum n=2 slices. When an input is
negated, it is applied as an inverted input with a correction
term, following the same rule.

After repeating the CSD coding for all logical equivalent
signals, all correction terms together with constant signals
are added. The result is one correction term which becomes
a 2’s-complement word input to the multi-operand adder.

When a slice has an input that is constant 1, the constant
can be removed by inverting another input of the current
slice, and adding the same signal to the next slice :

a+ 1 = 2a� a+ 1 = 2a+ a

When the slice has an even number of inputs, this can
reduce the number of additions in the adder structure.

An example : signed multiplication

As an example a 4�4 signed multiplier is treated. As
the output has 8 bits, sign extensions are done on the inputs
outside the multiplier, so that they also contain 8 bits. When
such sign extension is done outside the multiplier, there is
no difference between the signed and the unsigned multi-
plier. The partial product terms are pij = ai�bj and give
rise to the following add-array :

a4 a4 a4 a4 a4 a3 a2 a1
p41 p41 p41 p41 p41 p31 p21 p11 b1
p42 p42 p42 p42 p32 p22 p12 0 b2
p43 p43 p43 p33 p23 p13 0 0 b3
p44 p44 p34 p24 p14 0 0 0 b4
p44 p34 p24 p14 0 0 0 0 b4
p34 p24 p14 0 0 0 0 0 b4
p24 p14 0 0 0 0 0 0 b4
p14 0 0 0 0 0 0 0 b4

Now for each equivalent signal, CSD coding is done.
This gives e.g. for the partial product term p41 :

p41 � (27 + 26 + 25 + 24 + 23) =
p41 � (28 � 23) =
p41 � 28 + p41 � 23 � 23

The term p41 � 28 is removed because we only re-
tain 8 columns. The term p41 � 23 gives an inverted
signal at the 4th column. The term �23 is a correction
term. This procedure is repeated for all signals. All correc-
tion terms and constant signals are added and converted to
2’s-complement. We then obtain the following add-array :



a4 a4 a4 a4 a4 a3 a2 a1
p41 p31 p21 p11 b1

p42 p32 p22 p12 b2
p43 p33 p23 p13 b3

p44 p34 p24 p14 b4
1 1

The number of input signals into a slice is the sum of
the inputs of the adder array and the carries of the previ-
ous slice. In the 8th column an even number of inputs are
present, among which a constant 1. This makes possible to
remove the constant by inverting the other input (which is a
carry from the previous slice) and repeating the input in the
next slice. This next slice is however not needed, and the
adder-cell in the last column is thus replaced by an inverter.
The constant 1 in the 5th column does not give any possibil-
ity for optimization in the same way as the slice contains an
odd number of inputs. With redundancy removal one of the
adder cells can be reduced afterwards due to this constant.

For the N �N signed multiplier a total of N �N + 2
terms are added with N � (N � 1) adder cells. As can be
seen from this example the sign-extensions at the inputs of
the multiplier cause no overhead, because they are handled
by the CSD coding of equivalent signals.

5 Delay optimization

Once the adder structures are located and the minimal
number of input signals is determined, the actual adder is
constructed. We use two simple but powerful techniques,
namely bit-slice adder tree and linear-to-logarithmic trans-
formation. Both are timing driven and yield area and delay
efficient results.

Bit-slice tree

Inside a bit slice, the add operations are transformed
using the commutativity and associativity of the addition.
These transformations are timing driven and construct a
tree of adder cells in such a way that the signals that arrive
early are used first and those that are late are used last (see
Figure 6) : if a bit has a large delay with respect to the other
bits in same slice, it is for delay optimizationbest to add this
bit as the last one to the multi-operand adder.

The transformations do not cause any area overhead.
The result contains the least number of full-adders possi-
ble. The bit-slice tree gives a logarithmic delay in the num-
ber of input bits to the slice. The consequence of using this
method is that there is no need to construct a good order of
words into a multi-operand adder. The optimizations at the
word level should therefore merge additions in few large
adder structures without having to optimize the adder struc-
tures internally.
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Figure 6: Timingdriven optimizationof adder trees reduces
the total delay from 5 to 3, assuming unit delay for the adder
cells.

Logarithmic addition

Taking the last adder cells of the adder trees in the bit
slices of an adder structure together, a vector adder is ob-
tained. This vector adder consists of adder cells that are
connected through the CARRY-OUT pins and form thus a
carry-ripple adder with two input words. When the delay
of this ripple path is delay critical in the circuit, it can be
speeded up by a linear to logarithmic transformation. This
means that the delay of the vector adder is transformed from
a linear dependency in the number of slices towards a log-
arithmic one.

A method similar to [8] is used to transform the ripple
path into a look-ahead structure or anything in between. In
contrast to [8] the arrival times of the inputs are used as they
are not necessarily equal. The final look-ahead structure
does not necessarily form a full binary carry-look-ahead
adder and in most cases the logarithmic structure does not
start at the first bits.
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Figure 7: Timingdriven look-ahead transformation for vec-
tor adder of multiplier



In the case of a multiplier, the arrival times before the
vector adder are shown in Figure 7. We assume for this fig-
ure that all inputs of the multiplier arrive at the same time.
After optimization with the timing driven look-ahead trans-
formation, the first part of the final adder will remain a rip-
ple adder, the second part becomes logarithmic, and the last
part is also logarithmic but the delay of its output signal is
constant, because the look-ahead circuitry fits after the ar-
rival times of the inputs of the vector adder.

6 Experimental results

To compare the performance of the method presented
in this paper with a commercially available logic synthesis
tool (for which we used SYNOPSYS), unsigned multipliers
have been used. This is done to avoid the impact of differ-
ent correction term calculations on the results. From Fig-
ure 8 we see that the theoretically expected logarithmic de-
lay is obtained by the presented method even for large mul-
tipliers. For small ones the result of both methods are al-
most the same. This result follows from the different meth-
ods that are used. We use a linear-to-logarithmic transfor-
mation making use of knowledge of the adder structures in
the circuit. The logarithmic delay is obtained by the loga-
rithmic depth of the adder trees combined with the logarith-
mic depth of the look-ahead transformation applied to the
vector adder. Logic synthesis techniques use local transfor-
mations which can not efficiently handle many parallel rip-
ple paths : the initial delay which is linear in the number of
inputs and slices, can not be improved to obtain a logarith-
mic delay.

Concerning area efficiency, both methods are compara-
ble for small multipliers, while for the large multipliers our
method saves up to 15%. This is due to the larger area con-
sumption of the logic synthesis tool when trying to speed up
the large multipliers. Another advantage of the presented
method is that it is very fast : it uses only information that is
easy to collect and the transformations do not need any iter-
ation. The results are produced within a few minutes, even
for large adder structures, while the logic synthesis tool run
for several hours to speed up the large multipliers. In the
case of many parallel critical ripple paths, our method gives
thus better results for both area and delay than what can be
obtained with state-of-the-art logic synthesis.

7 Conclusion

A method was presented to optimize special structures in
data paths of DSP applications. Although we only treated
the case of adder structures, similar techniques can also
be used for optimizing other kind of structures. The bit-
slice tree optimization can be used for all operators that sat-
isfy the associativity and commutativity requirement. The
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Figure 8: Delay comparison of presented method and logic
synthesis for N�N multipliers

look-ahead optimization can be used for all types of ripple
paths (e.g. most-significant-bit detector, equality compara-
tor). The presented method for the adder structures requires
that the operators are described with basic adder cells. Be-
cause of the provided optimizations this simplifies the de-
scriptions of both the operators and the data paths. The re-
sults show the efficiency of the method both in terms of
area, delay and CPU usage. The method guarantees a log-
arithmic delay regardless of the number of operands and of
the word length.
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