Timing optimization by bit-level arithmetic transfor mations*

Luc Rijnders

Zohair Sahraoui

Paul Six Hugo De Man'

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

Abstract

This paper describes a method to optimize the per-
formance of data paths. It is based on bit-level arith-
metic transformations, and is especially suited to optimize
large adder structures inside these data paths. The multi-
operand adders are identified at the bit level and the ad-
dition parts are merged even across operator boundaries.
Area and delay optimizationsuse CSD coding and timing-
driven transformations, including bit-slice adder trees and
logarithmic addition. The method forms a link between
data path optimizationsat the word level and logic synthe-
sistechniquesat the bit level. Experiments show that start-
ing from a very simple description of an vV x N multiplier
an O(log N)) delay is obtained with very low run times.

1 Introduction

Indigital signal processing (DSP) systems, the through-
put isamajor design objective. Onetherefore designs data
paths with functionality that istuned towards a specific ap-
plication. To improve the throughput of these data paths,
pipelining is commonly used [4]. However if delay is op-
timized prior to pipelining, the need for pipeline registers
and the latency of the data paths can be reduced. Specid
techniques that improve delay at a reasonable cost in area
are thus very useful. General methods based on logic syn-
thesis can be used [6], but for data paths specific methods
are more efficient.

In[7], atechnique is presented that combines delay op-
timization and pipelining. The delay optimization is done
by optimal selection between a number of predefined im-
plementationsfor each operator with different performance
characteristics. This technique is specialy suited when a
regular layout styleisused. Wehowever useastandard cell
design method, which alowsfor more possibilitiesto opti-
mize the net list. Asthe presented optimization techniques
take care of area and delay efficiencies, we need only one
implementation for each operator. Because Place& Route
tools can handle critical nets, we assume that the detailed
routing has no negative effect on the results.

*This research was supported by project ESPRIT 2260 of the E.C.
t Professor at the Katholieke Universiteit Leuven.

The analysis of a number of DSP applications shows
that the largest delays in the data paths are caused by rip-
ple paths going through several bit dices. The direction of
information flow through these rippl e paths can befrom the
least to the most significant bit (e.g. adder) or vice-versa
(e.g. integer-length operator).

In cases where many ripplepaths present approximately
the same delay, they can not be optimized efficiently with
logic synthesis techniques. This is due to their optimiza-
tionstrategy [6]. When thereisonly onelongest delay path,
it is clear where optimizations have to be performed. The
best place to optimizethe delay iswhere thiscan be done at
minimum hardware cost. The transformations are very lo-
cal and arebased onlocally collapsing thecircuit and resyn-
thesizingit to obtain a better delay. Thisisrepeated aslong
asasuitable optimization place can befound or until theop-
timization objectiveisreached. However, when many crit-
ical paths must be treated at the same time, a more global
strategy is necessary.

For specific structures containing many critical paths, it
is possible to apply specific methods to optimize them. In
this paper we specificly consider adder structures. In the
context of multipliers the addition of the partial products
has been studied extensively [1, 2, 3, 9, 10], but the influ-
ence of connected operators has not been considered. With
a simple method of describing the operators and the data
paths, it is possibleto recognizelarger adder structuresand
in other contexts also. This extra knowledge of the multi-
operand addersin the circuit alows arithmetic transforma-
tions to optimize both area and delay. Associativity and
commutativity are applied to timing-driven optimize the
operations inside bit dices. Across the hit slices the rip-
ple paths are transformed into carry-look-ahead structures,
yielding high performance at reasonable cost.

This paper isdivided in 7 sections as follows. In sec-
tion 2, the characteristics of the adder structures are de-
scribed. These characteristics are used in section 3 to iden-
tify the adder structuresinside adata path. The specific op-
timization techniques for area are given in section 4 while
section 5 presents the delay optimization. Finally in sec-
tion 6, experiments and results are presented.

2 Adder structures

In many DSP applications critical paths are created in-
side adder structures of the data paths. That is why we
demonstrate the method in this paper on the multi-operand
addition. Similar techniques can be applied on any opera-
tion satisfying the properties of associativity and commu-
tativity. Adder structures are present inside operators such
as adder/subtracter, multiplier and comparator. Even larger
adder structures can beformed across operation boundaries
as shown in the following examples.

Example 1l

A first example is the multiply/accumulate unit of Fig-
ure 1 which performs: A x B 4+ C'. The multiplier con-
sists of two parts : the generation of partial products and
correction terms; and an array of addersto add up the par-
tial products shifted over precal culated numbers of bits.

Multiplier e -

T T [- i

A) i :
| Partial ! Add ' Accumulator | | Out

: Products P Array = > ‘

| Generation : | .

B—» \ : |—' ;

N L __ ” '

c - J

ST ~Adder Structure="—"

Figure 1: Adder structure of multiply/accumulate unit

The accumulator and the add-array of the multiplier
form one large adder structure. The inputs to the adder
structure are the partia products, the correction terms and
the accumulator input C'. By extending al these inputsto
theword length of the accumulator output, the adder struc-
tureis simply amulti-operand adder of that word length.

Example 2

Another example is a FIR filter (see Figure 2). Also
herethe add-arrays of themultipliersand themulti-operand
adder to generate the filter output are merged in one large
adder structure.

i Structure

Figure 2: Adder structure of FIR filter

In case the coefficients of the filter are constant, each
partial product of the multipliersis either zero or a shifted
copy of the data input bits. Because of our optimization
method, it does not matter if these constant coefficients are
2's-complement or Booth-encoded [1].

Characteristics

As can be seen from the two previous examples we
search for structures that contain only additions. These
structures should be as large as possible so that they can
be optimized simultaneoudly. The adder structures con-
tain severa input words and one output word. More out-
put words giverise to separated adder structures. Interme-
diate results of additions must thus be used exactly once.
This rule holds both at the word level and at the bit level.
Atthebitlevd, thise.g. meansthat sign extensionshave to
be external to the adder structure. This can be easily done
at thedatapath level, and although thismay appear as abad
implementation, the area optimizations of the method will
remove any overhead.

Thefunctionality of the multi-operand adder structureis
independent of the details of itsimplementation. The dif-
ferent addition schemes (like Dadda [3], Wallace [2], ...)
aredl covered by the same functionality. Thereforeasim-
ple addition scheme can be used to describe the addition
parts of the operators. Different versions to obtain differ-
ent performances need not to be made (and maintained), be-
cause the method will optimize area and delay.

3 Locating Adder structures

As can be seen from the examples in the previous sec-
tion, adder structures do not coincide with operators. A
special technique is thus required to recognize the multi-
operand adder structures inside a data path.

Thisidentification can be done at the operator level or at
the bit level. The operator-level method requires for each
operator the description of its adder part. It isthen possi-
ble to take neighboring occurences of these adder partsto-
gether to identify the largest possible adder structures.

Another method isto identify the adder structures at the
bit level. It isthen required that operator descriptions use
basic adder cdlls. Inside adata path, the occurences of the
basic cells are then grouped together into adder structures.

We use the bit-level method, which will give us all in-
formation needed to perform the area and delay optimiza
tions. The method is based on the recognition of bit dices
and adder trees as we will describe them further on.

Bit slices

Theproblemto defineripplepath or bit diceisthat these
terms are concepts the designer uses. When the circuit is
mapped to regular layout modul es these terms have asim-
ple layout equivalent. When a standard cell implementa
tion is used, a net list can not be simply divided into bit
dlices. Herewe usetheterm bit slicein relation to the adder
structures and it does not necessarily correspond to a bit
dice of the designer.

A simplemethod isused to definebit diceby trandating
the designers concept to interconnections of specific ports
of the basic cells : afull-adder cell has 3 inputs (A, B, CI)
and 2 outputs (SUM, CARRY-OUT). The 3 data inputs are
functionally equivalent. The suM output and CARRY-OUT
output are different in that the suM remainsin the bit dice
of theinputs, whilethe CARRY-OUT output goes to the next
bit dlice (see Figure 3).

Slicei+1
CARRY-OUT
A —0m 78 —» L
B . Slicei
SUM
cl

Figure3: CARRY-0UT of basic adder cellsdefine bit dices.

We observe thus the following : cdls driven by a
CARRY-OUT port of a adder cell can never belong to the
same bit slice as that adder cell. Thisisthecriterionto lo-
cate the bit dlicesin the circuit. Considering only the com-
binatoria part of acircuit, the method to divide the circuit
into dicesisthen asfollows:

1 Disconnect all CARRY-OUT connections and assign
externa inputsto thefirst dlice.

2 Assignto current dice al cell instances whose inputs
are driven by externa inputs, or by outputs of cell in-
stances that are already assigned to adlice.

3 Reconnect the CARRY-OUT connections of the cells
belonging to the current slice.

4 Repeat from step 2 with anew dlice until al cells are
assigned to adlice.

Adder trees

After dividingthecircuit into bit dlices with thismethod
it is determined if a connection is horizontal or vertical.
Horizontal connections remain in the same bit dice, while
vertical connections span more than one bit-dice. Insidea
bit dlice the connections between basic adder cdlsidentify
adder treeswith multiple 1-bitinputs. It isrequired that the
SUM output of an adder cell goes to exactly one data in-
put of a next adder cell in the same bit dice. If thisisnot
satisfied, the adder cells belong to different adder trees.

Fromthearithmetic propertiesof addition (commutative
and associative) it follows that the multi-operand addition
isindependent of the order of the datainputs. Thisholdsas
well at thewordlevel asat thebitlevel. Insidean adder tree,
that is a part of a multi-operand adder, we can thus freely
interchangethedatainputsand transformthe adder treeinto
an equivaent adder tree (see example of Figure 6).

When thedata-inputsare interchanged, the CARRY-OUT
signals of the different adder cells do not have the same
functionality anymore. Themulti-operand adder asawhole
will however retainitsfunctionality. Itiseven possiblethat
less CARRY-OUT bhits are needed as is illustrated in Fig-
ure4 : whenthe 3 half-addersare replaced by 2 full-adders,
thereisone CARRY-OUT less. By contrast to logic synthe-
sis, the use of arithmetic properties makes this kind of op-
timization possiblein our method.

2 carries

3carries

Figure4: Arithmetic transformation can change number of
carries. At the left the original adder tree with three car-
riesand at theright afunctionally equivalent adder treewith
two carries.

Multi-operand adder

In order to keep the functionality of the circuit, the bit-
dlice adder-tree transformation above may only be applied
when the adder trees form dlices of a multi-operand adder.
Thisissatisfied if CARRY-0OUT bits of an adder tree are -
ther all unconnected or are each connected to oneof thedata
inputsof one adder tree in another dice. After locating the
multi-operand addersin thisway, each multi-operand adder
contains slices of adder trees as shown in Figure 5.

EI adder-tree n-1 dicei+n
multiple
. - -sum output
Inputs — adder-tree 1

E adder-tree 0 dicei

Figure5: Multi-operand adder consists of adder treesin bit
dlices.

4 Areaoptimization

The identified multi-operand adder structures can now
be optimized using arithmetic properties of addition. The
first transformation is a minimization of the number of in-
puts into the slices of the adder. When, for instance, two
equivaent signals are inputs to the same dlice, they can
be replaced by one input into the next dice of the multi-
operand adder.

Equivalent signals

To be able to reduce the number of inputs, it is neces-
sary to identify how input signals are related to each other.
We search especidly for those signals that represent logi-
cal knownvalues (0 or 1), and for signalsthat arelogicaly
equivalent or inversdy equivalent.

To find these relations between signadls, their logical
functions have to be computed and compared. Compar-
isonsof logical functionsare very easy when they are com-
puted with Binary Decision Diagrams (BDD) [5]. Thecon-
struction of BDDs can take much effort or even becomeim-
possiblewhen thecircuitislarge. Thisise.g. the case when
the circuits contain large multipliers and these are exactly
the type of circuitsthat we want to handle. In fact we only
need the BDDs for the inputs of the adder structures. As
in a data path severa adder structures can be present af-
ter each other, thishowever means that inputs of following
adder structures should be determined based on the outputs
of previous adder structures.

To overcome the problem of calculating large BDDs,
we can observe that calculating functions locally will de-
tect most of the equivaent signals. When not dl equiva
lent signals are identified, the result will still be valid d-
though less optimal. So the BDDs are constructed with a
limited depth of logical gates beforetheinputsof the adder
structures. This depth does not have to be very large. E.g.
for aBooth-multiplier [1], it is enough that the BDD cov-
ers a possiblesign extension before the Booth-encoder, the
Booth-encoder itself and the Booth-selector. When con-
stant or equivalent signals are present at the inputs of the
Booth-multiplier, they will also be present at the inputs of
the adder structure of the multiplier.

CSD coding

The BDD construction identifies equivaent or constant
inputs. These can then be used to perform the following
arithmetic optimizations:

For each set of logically equivaent signals(and their in-
verse) the weights associated to their dlices are added up
and encoded with Canonical Signed Digits(CSD). Thiswill
yield the minimal number of inputs for that logical signa

into the multi-operand adder. For aninverted signal the nu-
merical value is negative and requires a correction term.
E.g. aninvertedinput @ inslice: gives:

2 xa=-2"xa+ -2
The CSD coding gives for each logica signal at maxi-
mum one input a maximum » /2 dices. When aninput is

negated, itisapplied as an inverted input with a correction
term, followingthe samerule.

After repeating the CSD codingfor al logical equiva ent
signals, dl correction terms together with constant signals
areadded. Theresultisone correction term which becomes
a 2's-complement word input to the multi-operand adder.

When adlice has an input that isconstant 1, the constant
can be removed by inverting another input of the current
dlice, and adding the same signd to the next dice:

a+l=2a—a+1=2a+7a

When the dlice has an even number of inputs, this can
reduce the number of additionsin the adder structure.

An example: signed multiplication

As an example a4 x 4 signed multiplier is treated. As
the output has 8 bits, sign extensions are done on the inputs
outsidethemultiplier, so that they also contain 8 bits. When
such sign extension is done outside the multiplier, thereis
no difference between the signed and the unsigned muilti-
plier. The partial product terms are p;; = a; x b; and give
riseto thefollowing add-array :

aq aq aq aq aq as a2 aq
P41 Pa1 Pal Pa1 Par P31 P21 Pl | ba
P42 P42 P42 P42 P32 P22 P12 0 by
pas P43 Pas P33 p2s piz O 0 | b3
Pa4 Pa4 P34 p2a pra O 0 0 | by
paa P34+ p2a p1a O 0 0 0 | by
P34 P24 pra 0 0 0 0 0 | by
P24 P14 0 0 0 0 0 0 b4
pia O 0 0 0 0 0 0 | by

Now for each equivalent signal, CSD coding is done.
Thisgiveseg. for the partial product term py; :

par x (27 + 26425424 2%) =
par x (2% = 2%) =
par X 2% + Par x 2% —2°

The term p4; x 22 is removed because we only re-
tain 8 columns. The term pa; x 23 gives an inverted
signd at the 4th column. The term —22 is a correction
term. Thisprocedureisrepeated for all signas. All correc-
tion terms and constant signals are added and converted to
2's-complement. We then obtain the following add-array :

aq G4 a4 a4 a4 as a2 aq
Pal P31 P21 P11 | b1

P4z P32 P22 P12 by
P43 P33 P23 P13 b3
P44 D34 D24 D14 by
1 1

The number of input signals into a slice is the sum of
the inputs of the adder array and the carries of the previ-
ous dice. In the 8th column an even number of inputsare
present, among which a constant 1. Thismakes possibleto
remove the constant by inverting the other input (whichisa
carry fromthe previousslice) and repeating theinput inthe
next dice. This next diceis however not needed, and the
adder-cell inthelast columnisthusreplaced by an inverter.
Theconstant 1 inthe 5th column doesnot give any possibil-
ity for optimizationin the same way asthedlicecontainsan
odd number of inputs. With redundancy removal one of the
adder cells can be reduced afterwards due to this constant.

For the N x N signed multiplier atotal of N x N + 2
terms are added with N x (N — 1) adder cells. Ascan be
seen from this example the sign-extensions at the inputs of
the multiplier cause no overhead, because they are handled
by the CSD coding of equivaent signals.

5 Delay optimization

Once the adder structures are located and the minimal
number of input signals is determined, the actual adder is
constructed. We use two simple but powerful techniques,
namely bit-slice adder tree and linear-to-logarithmic trans-
formation. Both aretiming driven and yield area and delay
efficient results.

Bit-slicetree

Inside a bit dlice, the add operations are transformed
using the commutativity and associativity of the addition.
These transformations are timing driven and construct a
tree of adder cellsin such away that the signasthat arrive
early are used first and those that are late are used last (see
Figure®) : if abit hasalargede ay with respect to the other
bitsinsamedlice, itisfor delay optimizationbest to add this
bit as the last one to the multi-operand adder.

The transformations do not cause any area overhead.
The result contains the least number of full-adders possi-
ble. Thehit-dicetreegivesalogarithmic delay inthe num-
ber of input bitsto the dlice. The consequence of using this
method isthat thereis no need to construct agood order of
wordsinto amulti-operand adder. The optimizationsat the
word level should therefore merge additions in few large
adder structureswithout having to opti mizethe adder struc-
turesinternally.

t=3

t=0 —
t=4 —
t=1 + + + |55
] | B
=0 t=1 =1
t=0 =2 B
=0 — | + + =3
=1 +
‘ t=2
t=1 t=1 t=2

Figure6: Timingdriven optimizationof adder treesreduces
thetotal delay from 5to 3, assuming unit delay for theadder
cells.

Logarithmic addition

Taking the last adder cells of the adder trees in the hit
dlices of an adder structure together, a vector adder is ob-
tained. This vector adder consists of adder cells that are
connected through the CARRY-OUT pins and form thus a
carry-ripple adder with two input words. When the delay
of thisripple path is delay critical in the circuit, it can be
speeded up by alinear to logarithmic transformation. This
meansthat thedel ay of thevector adder istransformedfrom
alinear dependency in the number of dicestowardsalog-
arithmic one.

A method similar to [8] is used to transform the ripple
path into alook-ahead structure or anythingin between. In
contrast to[8] thearrival times of theinputsare used as they
are not necessarily equal. The fina look-ahead structure
does not necessarily form a full binary carry-look-ahead
adder and in most cases the logarithmic structure does not
start at thefirst bits.

#hits A Output Times

Look-Ahead

Circuitry Constant

Bit-Slice
Adder Trees
Logarithmic

Time

Figure7: Timingdrivenlook-ahead transformationfor vec-
tor adder of multiplier

In the case of amultiplier, the arrival times before the
vector adder are shownin Figure 7. We assume for thisfig-
ure that al inputs of the multiplier arrive at the same time.
After optimizationwith thetiming drivenlook-ahead trans-
formation, thefirst part of the final adder will remain arip-
pleadder, the second part becomes logarithmic, and the last
part is aso logarithmic but the delay of its output signdl is
constant, because the look-ahead circuitry fits after the ar-
rival times of the inputs of the vector adder.

6 Experimental results

To compare the performance of the method presented
in this paper witha commercially available logic synthesis
tool (for which we used SYNOPSY S), unsigned multipliers
have been used. Thisisdoneto avoid theimpact of differ-
ent correction term calculations on the results. From Fig-
ure 8 we see that the theoretically expected logarithmic de-
lay is obtained by the presented method even for large mul-
tipliers. For small ones the result of both methods are al-
most the same. Thisresult followsfrom the different meth-
ods that are used. We use a linear-to-logarithmic transfor-
mation making use of knowledge of the adder structuresin
the circuit. The logarithmic delay is obtained by the loga
rithmic depth of the adder trees combined with thelogarith-
mic depth of the look-ahead transformation applied to the
vector adder. Logic synthesistechniquesuseloca transfor-
mationswhich can not efficiently handle many parall€l rip-
ple paths: theinitial delay whichislinear in the number of
inputsand slices, can not be improved to obtain alogarith-
mic delay.

Concerning area efficiency, both methods are compara
blefor small multipliers, whilefor thelarge multipliersour
method saves up to 15%. Thisisdueto thelarger areacon-
sumption of thelogic synthesistool when tryingto speed up
the large multipliers. Another advantage of the presented
methodisthatitisvery fast ; itusesonly informationthatis
easy to collect and the transformationsdo not need any iter-
ation. Theresults are produced within afew minutes, even
for large adder structures, whilethelogic synthesistool run
for several hours to speed up the large multipliers. In the
case of many parallél critical ripplepaths, our method gives
thus better results for both area and delay than what can be
obtained with state-of-the-art logic synthesis.

7 Conclusion

A method was presented to optimizespecia structuresin
data paths of DSP applications. Although we only treated
the case of adder structures, similar techniques can also
be used for optimizing other kind of structures. The hit-
dlicetree optimization can be used for al operatorsthat sat-
isfy the associativity and commutativity requirement. The

| delay

N +
70T . |)
Logic synthesis . #
L
- R *
," /,*/>’ -
1 w Our method
ot
e

10+
o K } t ; , # # |
’) s 12 16 20 24 #bits

Figure8: Delay comparison of presented method and logic
synthesisfor N x N multipliers

look-ahead optimization can be used for all types of ripple
paths (e.g. most-significant-bit detector, equality compara-
tor). The presented method for theadder structuresrequires
that the operators are described with basic adder cells. Be-
cause of the provided optimizations this simplifies the de-
scriptions of both the operators and the data paths. The re-
sults show the efficiency of the method both in terms of
area, delay and CPU usage. The method guarantees alog-
arithmic delay regardless of the number of operands and of
theword length.

References

[1] A.D.Booth: “A Signed Binary Multiplication Algo-
rithm”, Quarterly Journal of Mechanics and Applied
Mathematics, pp. 236-240, 1951.

[2] C.S. Wadlace: “A suggestion for a fast multiplier”,
|EEE Trans. Electron. Comput., pp. 14-17, Feb. 1964.

[3] L. Dadda: “Some schemes for parallel multipliers’,
Alta Frequenza, pp, 349-356, 1965.

[4] C.Leserson,J. Saxe: “Optimizing SynchronousCir-
cuitry by Retiming”, Third Caltech Conference on
VLS, Computer Science Press, 1983.

[5] R.E. Bryant : “Graph-based algorithms for boolean
function manipulation”, | EEE Transactions on Com+
puters, pp. 667-691, Aug. 1986.

[6] K.J. Singh, et dl.: “Timing optimization of combina
tional logic”, |EEE Int. Conf. on Computer-Aided De-
sign, pp. 282-285, 1988.

[7] S. Note, et d. : “Combined Hardware Selection and
Pipelining in High-Performance Data-Path Design”,
|EEE Int. Conf. on Comp. Design, pp. 328-331, 1990.

[8] JP Fishburn : “A Depth-Decreasing Heuristic for
Combinational Logic”, 27th ACM/IEEE Design Au-
tomation Conference, pp. 361-364, Jun. 1990.

[9] H.R. Srinivas, K.K. Parhi : “A Fast VLS| Adder Ar-
chitecture”, IEEE Journal of Solid-Sate Circuits, pp.
761-767, May 1992.

[10] Z.-J.Mou, F. Jutand: “Overturned-StairsAdder Trees
and Multiplier Design,” |EEE Transactions on Com-
puters, Vol 41, pp. 940-948, Aug. 1992

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

