

European Design Automation Conference, Euro-DAC’95, Brighton, Great Britain, 1995

Page 3

Abstract

In order to extract a suitable common core information
model, design representations on both system and archi-
tecture levels are analyzed. Following the specification
trajectory, three design phases with different description
methodologies are found to be widely used. The represen-
tations can be affiliated in an easily upgradable way using
a compound graph representation.

An information model of the control-dataflow domain is
further explained as an example of the information
modeling style.

1. Introduction

Computer Aided Design (CAD) research and devel-
opment in the past two decades have resulted in fairly
mature design tools and automation of several steps in the
logic and layout design of electronic circuits.

Arriving at the point of more complex programs and
frameworks for Electronic Design Automation (EDA), tool
interoperability becomes increasingly important. A partial
aspect of tool interoperability is the definition of proce-
dural access interfaces transferring design status and actual
data between tool sites. To guarantee distinct access and to
save translation efforts, the design data types have to be
partitioned as far as possible, while connected parts have to
be transmitted as linked to each other.

Working on such a model, common for system and archi-

tectural levels of EDA, we rely on an EXPRESS-G

1

similar entity-relationship presentation [1]. In this work we

use the technique of information modeling to analyze the
semantics of common grounds and differences concerning
system and architecture level design. Information modeling
is a kind of conceptual meta-modeling of data structures. In
opposite to the data modeling, which concerns computer
language primitives, information modeling is used for
more applied modeling aspects. Using EXPRESS-G, we
use structural object-oriented description methods by
adding the specific concept of type inheritance to other
relationships. Using such an information model, procedural
interfaces, exchange formats, or database schemes can be
derived from the same meta-modeling source.

In the past, information modeling was invented for
defining data base schemas for EDA design repositories
[2,3]. In a second step it was used to support cooperative
work and standardization efforts [4,5]. Application topics
for information model applications in CAD environments
affect

• all tasks, helping the designer to organize his
information space, version handling mechanisms,
preparation for reuse, documentation etc.,

• all domains, in which designers have to manip-
ulate different design descriptions simulta-
neously, and

• all design phases and abstraction levels, in which
different abstraction levels are to be managed.

User access to such a system could be supplied by a
number of access modes that supporting specific needs on
different views (black box information, floorplan infor-

1.

the graphical product data specification language of ISO 10303-11

Information Model of a
Compound Graph Representation

for System and Architecture Level Design

Peter Conradi
Center for Microelectronics
University of Kaiserslautern

Federal Republic of Germany
Email: conradi@rhrk.uni-kl.de

European Design Automation Conference, Euro-DAC’95, Brighton, Great Britain, 1995

Page 4

mation, technological conditions, register transfer-
behavior, -structure, etc.).

At present, the technique of information modeling also
supports generic construction of databases and tool inter-
faces for EDA domains [6].

The paper is structured as follows: After presenting an
overview of related work and our objective (section 2), we
focus on the analysis of system level design graphs
(section 3). We then present a methodology for the repre-
sentation of system level objects combined with architec-
tural level objects. Section 4. describes the treatment of
additional finer grained information, which will be needed
for related implementation purposes, while section 5
includes reports on experimental studies.

2. Basic Motivation

To derive a core information model on system and archi-
tecture levels, design data could be important for two
reasons:

• In order to create long term strategies for top
down synthesis over the whole design and
analysis trajectory [7] it is essential to understand
all the links between specification and design
levels.

• Also, for design back annotation purposes as well
as documentation reasons it is always worth
striving for the conservation of links between
system level, architectural level, and any kind of
implementation. This should be realized as far as
possible.

 2.1 Related Work

On the system level, the communication of agents, their
configuration, performance, and dependability is the major
area of interest. A model of communicating agents,
memories, and variables, widely used for teaching
purposes in [8] has been taken into account, as it is suffi-
ciently general for very high level specification and well
suited for data refinement strategies. It was designed for
specification of both voluminous concurrent industrial
software and related documentation purposes [9].

Another analysis source is the ADEPT system, a specific
methodology of system level performance and depend-
ability analysis.

Additionally, we analyzed the interface formats of
SPECSYN [10,11]. Since SLIF [12] is the basic input-

output data format for SPECSYN, its information model
offers one set of the data types needed on the system level.

In contrast to the comparatively simple graph constructs
on the system level, the architectural design level
comprises control and data flow, finite state machines and
netlists [13]. In architectural level synthesis, there is a need
for agreement on a common procedural format for cooper-
ative work, and so both a C++ functional interface of the
Synthesis-Internal Representation (SIR) was defined in the

project SYDIS

2

 and an EXPRESS information model was
derived [14]. This information model represents another
source for this work.

Some particular concepts are also used in our approach,
but for brevity they were ignored in the paper explanations:

•

Versions and Alternatives:

 everything indis-
pensable for storing design data in different
stages of the design and with different selected
realization properties. For instance, in the VLSI
design system PLAYOUT concepts for
versioning and alternatives enable top down
design by both constructing versions of realiza-
tions from requirements and deriving versions of
requirements from realizations [3,7].

•

Connectivity:

 basic net and library construction.
Standardization committees like the Electronic
Design Interchange Format (EDIF) [4] and the
CAD Framework Initiative, Inc. (CFI) [5]
propose related information models for folded
and unfolded design.

• Constraint mechanisms:

 different constraint
types like timing, power, and wafer area.
Constrains are added as annotations or derived
attributes to different parts of the information
model. For brevity, this is not explained in detail.

2.2 Our objective

The aim of this paper is to present a new specification
refinement and type splitting method from the information
modeling point of view combined with dependencies
between related graph types, and to define a compound
graph semantics for discussion, prototype implementation,
and future standardization input.

2.

founded by German Ministry for Research and Technology

European Design Automation Conference, Euro-DAC’95, Brighton, Great Britain, 1995

Page 5

3. Compound System and Architecture
level Representation

In the early system specification phase, no underlying
realization model exists and no implementation details are
required. It may not be known whether the design is
realized by hardware or software implementation.

During design activities, the successive splitting of the
required design graph types provides decisions like
hardware-software implementation, technology selection,
and more and more semantic distribution of properties over
the design trajectory.

3.1 Single-Graph

 At the beginning of the design a typical user starts on the
upper system level specification with a single graph repre-
sentation, which we call the

module net

. In a single-graph
representation there is no syntactic difference between
control, data flow, access, or structural representation.

An example for single-graph representation on the
system level is given, e.g., by the ADEPT (Advanced
Design Environment Prototyping Tool) [15] in its uninter-
preted form. Single-graphs are specification methods,
comprising control and transformational, and structural
properties in a single representation. This is achieved by
using Petri Nets in different variations. Tables 1-3 give
some examples of each of the used types of representa-
tions.

3.2 Dual-Graph

Using a single graph as a starting point, the design
refinement can be accomplished by splitting and refining
the semantics of the module net elements. Typically, the
difference is worked into these elements, defining

functionality

 and

resources

; the latter executes defined
functional parts. Depending on the objective of a system
level design, very different instances for a dual graph
representation (shown in Table 2) can be detected. A

Table 1:

Different Single-Graph types

type I

 Modules
Reference

ADEPT modules Kumar et
al. [15]

Predicate-Transition Net Rammig
[16]

suitable example for a resource net (type-Ia), called Agent-
Memory Net [8], is a bipartite graph with directed edges,
consisting of information processing (agent) and storing
(memory, variable) nodes, as shown in Figure 1. Memory
symbols (cycles) are separated from agents (rectangles),
and the special semantics of the latter is to enable and
synchronize communication services between agents.

In hardware systems, agents are resources representing
abstract models of physical units, realized either by
processors or application specific components, and
memories are exchanged variables. In software

implemen-
tations, agents may be parallel tasks. In combination with a
Petri Net for control expressions (type-Ib), this method is a
dual-graph-construct.

 The type-Ia and type-Ib graphs are principally separated
from each other, however showing interrelations. Type-Ia
units execute resources in a calculative or transformational
manner, while Type-Ib units control them.

Since resources are not always understood as hardware
constructs, the application of the dual-graphs strongly
depends on the designer’s view.

Table 2:

Different Dual-Graph types

type-Ia

Resources

type-Ib

Functionality
Reference

Agent-Memory
Net

Petri Net Wendt [8]

Structural
Objects

Functional
Objects

Vahid, Gajski
[12]

VHDL-
Component

VHDL-
Process

Giumale,
Kahn [17]

variable

agent

Figure 1: A multiplier resource example

Legend

memory

Adder A B

Shifter

Control Unit and Counter P

Product

Multiplicand Multiplier

LSB(B)

Cout

Start signal

C

M

European Design Automation Conference, Euro-DAC’95, Brighton, Great Britain, 1995 Page 6

3.3 Triple-Graph

During the next design phase, the triple graph construct
can be derived by a further splitting of the type-Ia or type-
Ib objects into permanent and part-time required resources
(Table 3). As we see, the different approaches do not

clearly express a common way to split the phase-two-
descriptions into phase-3 graphs. Figure 2 shows graphi-
cally, how the splitting process is performed over the
trajectory. The unnamed attributes in Figure 2 are derived

relationships. Since the graph splitting depends on the
designer’s working style, we allow derivations of the
activity graph from either the resources or the functionality
graphs. Our aim is to construct the compound graph repre-
sentation by supporting support both resource-activity and
functionality-activity derivation.

 In the following text we present aspects of a core infor-
mation model, supporting the design trajectory on one
hand and the successive graph extension on the other.

Table 3: Different Triple-Graph types

type-Ia1
physical

component

type-Ia2
 or

type-Ib1
activity

type-Ib2
control

and state
Ref.

Annotated
Component
Graph

CDFG State-
Transition
Graph

Runden-
steiner,
Gajski [13]

(StateMate)
Module-
Chart

(StateMate)
Activity-
Chart

(StateMate)
State-
Chart

i-Logix

Figure 2: System level entity splitting

Phase1

Phase2

Phase3

use

schedulingbinding

resource functionality

module

physical_ activity control_
component and_state

3.4 Resources

Resources are defined as an abstraction of available
hardware representing physical devices, which can be
reused for a design. In the early beginning of a design
(phase 2), it may be unclear, how often the allocated
resources will be referred to. And it depends on their usage
demands, their frequency and timing constraints, whether
they are realized as data flow expressions or as physical
systems in the third phase of the design trajectory. To
realize resource nets, either folded or unfolded archivation
can be used. Both variants can be represented by structural
repository concepts as shown in [4,3,5].

3.5 Functionality

The functionality of a design can be expressed as a flow
of control, along with associated data transformations, as
already presented in [18]. In a general context, control
modeling can be performed synchronously or asynchro-
nously as shown in Figure 3 . Furthermore, control flow

itself can be serial (sequence), parallel (fork), or condi-
tional (select). The main entity for control is called
control_node, a meta-control unit, which can be inter-

fork

sequential_

select

1explicit_join

scheduling

modeled_by

Figure 3: Control-Activity interaction
(EXPRESS-G)

decision_basedfunctional

reference

control_node_
instance

1
following_

control_node

activity

control_and_state

data_flow_block

1

1

European Design Automation Conference, Euro-DAC’95, Brighton, Great Britain, 1995 Page 7

preted as a superset of different modes like, e.g., a selection
(select), or a parallel control flow (fork).

A control_node has the capability of scheduling either
the beginning of an activity or supervising the complete
execution path, eventually including the related join
construct. This can be justified individually by the attribute
control_kind (not shown here), which refers to an
enumerated type. If control_node supervises the complete
execution, the entity control_node can interrupt the
execution of the controlled activities and any contained
active control_nodes at any time if necessary. Using
control_kind, it can also be defined whether a control_node
is continually active. STATEMATE, for instance, provides
design modeling features like „history“, exceptions, or
compound transitions, which can easily be meta-modeled
by fine grained attributes of the control_node of the infor-
mation model in Figure 3.

The control_node is based on a decision, which could be
modeled by a decision_based data_flow_block.

Hence it is possible to model structured control-flow
graph (CFG) and fork-join graph (FJG) constructs. The
feature of a behavioral hierarchy represents one of the
fundamental properties to express the semantics of system
level specification programs, like SpecSyn [11]. A behav-
ioral hierarchy is realized by an activity, representing an
instance of another control_node. In this concept,
subprogram access and conditional statements are realized
in a common graph type fashion.

The atoms in the functionality view are activities which
are interpreted, for instance, as data flow constructs
containing connected operation nodes, where the edges are
understood as informations on data dependencies. The
events of processing, like activities, are scheduled to one
control command or transition.

4. Refinement on Implementation Level

As stated above, the implementation is defined as a
refinement of the system level definitions, depending on
the partitioning decisions.

In architectural level synthesis tasks it is important to
specify the agents’ structural properties in further steps of
granularity refinement: a component netlist, a floorplan,
and a physical layout. This results in a more precise timing
estimation (fine grained attribute of activity), area or power
consumption (fine grained attributes of
physical_component), thus refining specification.
Depending on the way of specification refinement through
the phases I and II, the original resource specification

version has to be conserved for later design verification,
substituting the early resource binding links by equivalent
links on the physical_component level of detail.

On the other hand, we assume that the given functionality
will not change during the design process, rather than
eventually be refined. This leads to the modeling of activ-
ities as constant design fixing objects during the design
trajectory; however, the module net is changed into a net of
interconnected physical components. It may be that the
synthesis process of the architectural level completely
reconfigures the resource net allocating and binding
physical components from a library.

To achieve this, the binding has to be derived from
activity-resource binding (dotted line) to an activity-
component binding as expressed in Figure 4. This method-

ology shows some similarities to the binding approach of
VHDL’93 [19], where a configuration can be specified by
primary binding indication and later, in the description, be
overwritten by incremental binding indication.

5. Experimental Schema Generation

Not all of the reference systems have been tested for
information model extraction purposes.

System-level experiments were performed using of
ADEPT [15] at the University of Virginia. Architecture-

level experiments included STATEMATE3 and different
architectural level synthesis environments, by designing
small exemplary objects like a data transmission rate
detector and several kinds of multipliers. Details on the
experimental work can be found in [20].

The related information model analysis shows the need
for a compromise between

• the possibility of interactive control of design
progress by navigating through the different
graph representations,

• and the required conservation of the reference to

3. trademark of i-Logix Inc., USA

component_binding

Figure 4: Activity-Component interaction

activity

physical_
component

resource_binding
resource

derived

European Design Automation Conference, Euro-DAC’95, Brighton, Great Britain, 1995 Page 8

the initial design specifications.

Furthermore, the object-oriented database system

VERSANT4 was used for implementing different inter-
acting schemas. The runtime measurements on the scheme
implementation indicate that the present available
technology of commercial object-oriented databases is
applicable for object-oriented design data representations,
as required for applications in system and architecture
level EDA.

6. Summary

Our aim was to integrate existing design representation
work into a common core model. It is an initial effort
towards the representation of a compound, integrated
graph based model of design representation. Doing so, we
found a harmonizing method to cope with the versioning
problem during the design trajectory. As a further benefit,
our compound graph representation methodology provides
restriction of the applicable graph types on the upper
design levels and their suitable extension during the
refinement process.

We believe this work complements the existing CFI,
EDIF, and VHDL information model. Future work will
investigate generic applicability [6] of this information
model to a wider domain of synthesis environments.

References

[1] N.N.:“Product Data Representation and Exchange - Part 11:
The EXPRESS Language Reference Manual”, ISO-
Standard TC184/SC4 N151, Int. Organization for Standard-
ization, Subcommittee 4, NIST-Secretary, 1992.

[2] Knapp, D. W., Parker, A. C.: “A unified Representation for
Design Information”, in Koomen, C.F., Moto-oka, T. (eds.)
“Computer Hardware Description Languages and their
Applications” , Elsevier, 1985.

[3] Siepmann, E., Zimmermann, G.: “An Object-Oriented
Datamodel for the VLSI Design System PLAYOUT”, Proc.
Design Automation Conference, 1993.

4. trademark of Versant Object Technology Corporation, USA

[4] Lau, R.Y.W.: “Proposal for an Information Model for EDIF”,
Technical Report UMCS-91-6-2, Dept. Computer Science,
University of Manchester, U.K., 1991.

[5] CFI: “Design Representation, Electrical Connectivity Infor-
mation Model and Programming Interface”, CAD
Framework Initiative Inc., Version 0.9.4-071092, 1992.

[6] Bredenfeld, A., Camposano, R.: “Tool Integration and
Construction using generated Graph-Based Design Repre-
sentations”, Proc. of Design Automation Conference, 1995.

[7] Schürmann, B., Altmeyer, J., Schütze, M.: “On Modeling
Top-Down VLSI Design”, Proc. IEEE International
Conference on Computer-Aided Design ICCAD-94, 1994.

[8] Wendt, S.: “Nichtphysikalische Grundlagen der Informa-
tionstechnik, Interpretierte Formalismen”, Springer, 1989.

[9] Wendt, S., et al.: “Producing and Managing Technical
Product Documentation for Users of the R/3 Basis System”,
SAP Info, No. 40, SAP publication, October, 1993.

[10] Gajski, D.D., Vahid, F., Narajan, S., Gong, J.: “Specification
and Design of Embedded Systems”, Addison Wesley, 1994.

[11] Narajan, S., Vahid, F., Gajski, D.D.: “System Specification
with the SpecCharts Language”, IEEE Design of
Computers, Dec. 1992.

[12] Vahid, F., Gajski, D.D.: “SLIF: A Specification-Level Inter-
mediate Format for System Design”, Proc. European Design
and Test Conference, 1995.

[13] Rundensteiner, E., A., Gajski, D.D.:“A Design Represen-
tation model for High-Level-Synthesis”, Technical Report,
University California at Irvine, 1990.

[14] Becker, J., Buijs, F.: “Das SIR-Datenschema”, Report 34/94,
Cadlab, University Paderborn, SNI, 1994.

[15] Kumar, S., Klenke, R. H., Aylor, J. H., Johnson, B. W. ,
Williams, R. D., Waxman, R.: “ADEPT: A Unified System
Level Modeling Design Environment”, Proceedings of the
1st Annual RASSP Conference, pp. 114 - 123, 1994.

[16] Rammig, F.: “System Level Design” in Mermet, J.P. (ed.):
“Fundamentals and Standards in Hardware Description
Languages”, Kluwer, 1993.

[17] Giumale, C.A., Kahn, H.J.: “A Core Information Model of
VHDL”, Proc. EuroDAC (same conference), 1995.

[18] Conradi. P., Dutt, N.: “A Compound Information Model for
High-level Synthesis”, 4th International Working
Conference on Electronic Design Automation Frameworks
(EDAF), Gramado, Brazil, Nov. 28 - 30, 1994.

[19] Bergé, J.-M., et al.: “VHDL’92”, Kluwer, 93.

[20] Conradi. P.: “Information Analysis in High-level Synthesis”,
Technical Report 94-39, Dept. Computer Science,
University California, Irvine, 1994.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

