A formal Approach for the Optimization of Heterogeneous Multiprocessors for Complex Image Processing Schemes

M. Schwiegershausen P. Pirsch

University of Hannover
Laboratorium für Informationstechnologie
Schneiderberg 32, 30167 Hannover, Germany

Abstract
This paper presents a formal approach using MILP and its implementation as CAD tool for the optimization of heterogeneous multiprocessor systems. These heterogeneous systems, consisting of application-specific as well as of programmable processors, are highly suitable for performing complex schemes of image processing algorithms under real time constraints. By means of a formal optimization approach, it becomes possible to derive efficient, real time hardware, being optimal in terms of area expense and throughput rate.

1 Introduction
Image processing and coding schemes like high definition TV (HDTV), 3D-image analysis, image compression and coding (JPEG, MPEG) or scene interpretation are often used for performing complex schemes of image processing algorithms under real time constraints. This requires extremely high computational and throughput rates, which can only be achieved by massive application of parallel processing and pipelining as provided by multiprocessor systems. These image processing schemes can be split into several subtasks with different requirements leading to different architectures appropriate for the individual tasks.

This results in a heterogeneous multiprocessor system for the implementation of the composite scheme, see Fig. 1. These heterogeneous systems may be composed of different, application-specific processing units like array processors for implementing low and medium level tasks with high computational demands and programmable processing elements on the other hand to provide the flexibility required by medium and high level tasks. Nevertheless, the large multitude of suitable processors for each single algorithm makes it impossible for the human designer to choose manually the best combination of application-specific and programmable processors for a given image processing scheme. Consequently, a formal approach for the optimization of these heterogeneous systems is mandatory.

This paper is organized as follows: Section 2 reviews related research and previous work. Section 3 introduces our formal approach for the optimization as part of a whole design trajectory for heterogeneous systems. Section 4 illustrates the optimization approach using a video coding scheme as application example. Section 5 gives some hints on the implementation as CAD tool. Finally, concluding remarks are provided in Section 6.

2 Related Research
There has been extensive research on mapping algorithms onto multiprocessor systems. Mainly, in the field of high-level synthesis, methodologies for mapping one single algorithm onto a dedicated datapath [1] or onto an array of processing elements like systolic array processors [2] were tackled. On the other hand, synthesis scripts like CATHEDRAL II, II and [3]–[4] were developed in order to derive VLIW architectures consisting of synchronous DSP units with dedicated datapaths connected via a bus, addressing medium throughput applications. However, image processing applications demand for architectures providing extremely high computational and throughput rates. In [5] an approach for domain-specific multiprocessor systems is presented but in opposite to our work it aims at calculating feasible schedules for a given application-specific architecture without considering the area expense as well as the throughput rate.

Therefore, these approaches have to be extended concerning the derivation of heterogeneous systems, being optimal in terms of area expense and throughput rate for the execution of composite schemes of image processing algorithms. So, we present a new methodology for the optimization of these heterogeneous systems. It is part of a whole design trajectory for systems with application-specific and programmable processors.

3 Design Trajectory
The derivation of an optimal, heterogeneous multiprocessor system for a composite scheme of image processing algorithms can be divided into three steps, the
decomposition of the whole scheme into single tasks or algorithms, the assignment of all possible processors for each single task, and finally the optimization of the overall system, see Fig. 2.

![Fig. 2: Design Trajectory](image)

Here, the optimization comprises selecting the best combination of application-specific and programmable processors (allocation, binding) as well as deriving the most suitable order of execution (scheduling). From a formal point of view, the decomposition and the assignment can be regarded as preprocessing steps, necessary to explore the permissible design space for the optimization. In the proceeding, the three steps of our design trajectory are explained in more detail:

3.1 Decomposition

First of all, the composite image processing scheme has to be decomposed into single tasks or image processing algorithms. The dependencies between the different tasks can be modelled by means of a directed, acyclic task graph $G_T = (V, E)$, whereas each vertex $v_i \in V$ represents exactly one task m_i, as shown in the leftmost box of Fig. 2.

3.2 Assignment

During this design step it is determined for each task m_i which assignments of the single task’s algorithm $ALGO(m_i)$ to suitable architectures p_i of a given processor library is feasible with respect to the necessary throughput rate of the whole algorithm, especially in case a real-time condition has to be met. Therefore, the assignment requires a profound knowledge of the algorithms as well as of the architectures.

![Fig. 3: Hierarchical Tree of Algorithms](image)

Concerning the algorithms, it is necessary to distinguish between filter algorithms (FIR, MEDIAN, etc.), transform algorithms (DCT, DFT, etc.), and non regular, data dependent algorithms (Quantization, Coding) on the other side. Furthermore, a distinction between separable and non separable as well as between 1-dimensional and 2-dimensional transform / filter algorithms is necessary. Fig. 3 shows the representation of the image processing algorithms as hierarchical tree, whereas each leaf of the tree corresponds to a single image processing algorithm. Each class of algorithms $ALGO(m_i)$ has an associated set of parameters θ_i like block-size (M_B, N_B) for transform algorithms, an additional kernel-size (M_K, N_K) for filter algorithms, or search/reference block-size (M_S, N_S) for block-matching algorithms, etc. Based on these algorithm-specific parameters θ_i, our aim is to explore the permissible design space, by deriving a set of parametrizable datapaths $DP_j(\theta_i)$ for each single image processing algorithm.

In order to restrict the design space to a finite set of parametrizable, architectural alternatives, a processor library with only five different types for each image processing algorithm is currently supported. This processor library comprises a single processor with dedicated data path (SINGLE) performing all operations sequentially, several such dedicated processors in parallel (PAR) or connected in pipeline mode (PIPE), and an array of dedicated processors (ARRAY) providing both, pipelining and parallel operation mode. Thereby, the datapaths of the application-specific processors depend on the kind of operations which are required for the execution of a given task m_i. Additionally, a flexible and programmable processor (PROG) preferably suitable for performing the medium level tasks is provided. These five processor types are only templates, whereas the datapath of each of the types is adapted to the operations that have to be performed for each task’s algorithm $ALGO(m_i)$. For example, a PIPE processor’s datapath performing a filter task like FIR differs from a PIPE processor’s datapath performing a motion estimation task like BMA, see Fig. 4:

![Fig. 4: Initial Assignment and Resource Sharing](image)

From a formal point of view, the assignment can be regarded as a mapping f from a task’s algorithm $ALGO(m_i)$ to a parametrizable datapath DP_j as follows:

$f_{assign} : ALGO(m_i) \rightarrow DP_j(\theta_i, type)$

Each datapath can be described by a set of specific attributes, like execution time τ_j, area expense A_j, number and types of processing elements (PE) or building blocks (BB), etc. This leads to the definition of a parametrizable datapath DP_j:

$DP_j \overset{\text{def}}{=} \{\text{type}, \tau_j, A_j, (BB_1, \ldots, BB_L), \ldots\}$

These attributes can be calculated in advance, depending on the parameter θ_i of the algorithm class.
and on the processor type. The attributes as well as their meanings are sketched below:

<table>
<thead>
<tr>
<th>type</th>
<th>processor type, i.e. one of SINGLE, PAR, PIPE, ARRAY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_{i,j})</td>
<td>execution time for (\text{ALGO}(m_k)) on the processor (p_i) with datapath (\mathcal{DP}_j).</td>
</tr>
<tr>
<td>(A_j)</td>
<td>area expense of datapath (\mathcal{DP}_j).</td>
</tr>
<tr>
<td>(\mathcal{BB}_i)</td>
<td>required building blocks for datapath (\mathcal{DP}_j), e.g. MUL, ADD, etc.</td>
</tr>
</tbody>
</table>

Tab. 1 shows these attributes for a filtering algorithm (FIR), with \(\theta_{\text{FIR}} = \{8,8,3,3\} \).

<table>
<thead>
<tr>
<th>TYPE</th>
<th>(r) [cycles]</th>
<th>(A) [cycles]</th>
<th>ADD</th>
<th>SUB</th>
<th>MUL</th>
<th>ABS</th>
<th>MIN</th>
<th>BB</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE</td>
<td>577</td>
<td>2432</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PAR</td>
<td>194</td>
<td>1654</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PIPE</td>
<td>316</td>
<td>2856</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>ARRAY</td>
<td>49</td>
<td>160</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Tab. 1: Attributes for FIR datapaths

Tab. 2 the corresponding attributes for a motion estimation algorithm (BMA), with \(\theta_{\text{BMA}} = \{(8,8),(3,3)\} \), for each processor type.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>(r) [cycles]</th>
<th>(A) [cycles]</th>
<th>ADD</th>
<th>SUB</th>
<th>MUL</th>
<th>ABS</th>
<th>MIN</th>
<th>BB</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE</td>
<td>308</td>
<td>2102</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PAR</td>
<td>194</td>
<td>1654</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PIPE</td>
<td>112</td>
<td>5222</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ARRAY</td>
<td>46</td>
<td>1630</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 2: Attributes for BMA datapaths

The corresponding datapaths \(\mathcal{DP}_{\text{FIR}}, \mathcal{DP}_{\text{BMA}} \), assuming a processor of type PIPE, are sketched in Fig. 4. As a matter of fact, these processors are dedicated to exactly one algorithm. But, due to the fact, that many image processing algorithms often consist of similar operations, there is a large intersection of building blocks of the processor’s datapaths. Thus, it is reasonable to merge the processor’s datapaths to a combined datapath suitable for several algorithms, in order to derive additional processors with higher utilization. For example, the two datapaths \(\mathcal{DP}_{\text{FIR}}, \mathcal{DP}_{\text{BMA}} \) of Fig. 4 can be favourably merged to a third datapath \(\mathcal{DP}_{\text{FIR/BMA}} \) with several \textit{shared} adders. Consequently, the whole assignment is performed in two consecutive steps by

1. Determining for each single algorithm or task all possible processors according to the processor library, leading to an initial assignment and
2. Applying a resource sharing algorithm by merging the processor’s datapaths on a PE- or BB-level.

However, if it is really advantageous to select the combined processor of type PIPE or the two single processors, also of type PIPE, with respect to the efficiency of the overall system can not be answered on the fly. On the contrary, this leads to a combinatorial optimization problem, as described next in the third step of the design trajectory:

3.3 Optimization

Finally, it is necessary to select from the large amount of feasible assignments derived so far, the one which leads to an overall multiprocessor system with high computational and throughput rate, meeting the real-time constraint, as well as an area expense as low as possible. So, we are concerned with the problem to determine for each task the processor type, the temporal order of the task execution and of the data transfers, taking into consideration the precedence between the tasks, the availability of input/output data and the non-overlapping usage of processors and buses in order to derive a valid multiprocessor scheduling and binding. This problem can be formulated as an optimization problem and efficiently solved by means of mixed integer linear programming, as follows:

3.3.1 MILP-Formulation

A general MILP consists of a cost function \(z \), a set of variables \(x_j \in \bar{x} \), and a system of linear constraints

\[
\sum a_{i,j} \cdot x_j = b_i
\]

called restrictions. It can be written in standard form as:

\[
\min \quad \bar{z} = \bar{x} \cdot \bar{c} \\
\text{subject to} \\
A \cdot \bar{x} = \bar{b}
\]

Although the idea to tackle scheduling, allocation, and binding by (mixed integer) linear programming, MILP, is not essentially new, the presented approach is extended in comparison to previous works [6] by two main aspects. First, a multitude of different application-specific processors can be included by introduction of architecture dependent parameters which result from the assignment step. Second, periodic applications are treated taking into consideration requirements of real-time image processing. Here, the MILP models the problem of selecting the best combination of application-specific and programmable processors for a given image processing scheme. Thus, in the proceeding, the used variables, the restrictions as well as the cost function are presented, which are necessary to describe this special scheduling-, binding-, and allocation-problem by means of a MILP. Concerning the variables \(\bar{x} \), it is reasonable to distinguish between

- binary-valued decision variables
 \(\bar{x}_B = [\ldots, x_{i,j}, \ldots] \)
- integer-valued variables
 \(\bar{x}_I = [\ldots, Y, B, \ldots] \)
- real-valued timing/area variables
 \(\bar{x}_R = [\ldots, s_i, e_i, \ldots] \)

For example, if task \(m_k \) is executed by processor \(p_i \) then the corresponding binary decision variable \(x_{i,j} = 1 \) and zero otherwise. The number of required buses or processors is given by the integer-valued variables \(B, Y \). Equivalently, the time at which the execution of task \(m_k \) starts/ends, is denoted by the real-valued variable \(s_i, e_i \) respectively. This leads to the definition of \(\bar{x} = [\bar{x}_B, \bar{x}_I, \bar{x}_R] \) as the concatenation of the binary-, integer-, and real-valued variables. Concerning the restrictions \(A \cdot \bar{x} = \bar{b} \), a distinction between three main groups is reasonably, namely:
\begin{itemize}
 \item task-processor restrictions
 \begin{itemize}
 \item exclusive task-processor assignment
 \[\sum_j x_{i,j} = 1 \]
 \item task execution start
 \[s_k = c e_{i,k} - \sum_j \beta_{i,j} \cdot x_{i,j} \]
 \item task execution end
 \[e_k = s_k + \sum_j r_{i,j} \cdot x_{i,j} \]
 \item etc.
 \end{itemize}
 \end{itemize}

\begin{itemize}
 \item transfer-bus restrictions
 \begin{itemize}
 \item exclusive transfer-bus assignment
 \[\sum_i \eta_{i,k} = \gamma_{i,k} \]
 \item transfer execution start
 \[c e_{i,k} \geq s_i + \sum_j \beta_{i,j} \cdot x_{i,j} \]
 \item transfer execution end
 \[e_{i,k} = c e_{i,k} + \eta_{i,k} \cdot \frac{D_{i,k}}{B_i} + \gamma_{i,k} \cdot \frac{D_{i,k}}{B_k} \]
 \item etc.
 \end{itemize}
 \end{itemize}

\begin{itemize}
 \item general restrictions
 \begin{itemize}
 \item number of processors
 \[Y = \sum_j \xi_j \]
 \item number of buses
 \[B = \sum_i \eta_i \]
 \item area expense
 \[A = \sum_j A_j \cdot \xi_j \]
 \item etc.
 \end{itemize}
 \end{itemize}

For example, the exclusive task-processor assignment guarantees, that exactly one processor \(p_j \) is selected for each task \(m_k \). Furthermore, the transfer execution end time can be expressed as a linear constraint by means of the number of data items \(D_{i,k} \) to be transmitted from task \(m_j \) to task \(m_k \), the transfer rate \(B_B \) of the bus, and whether it is a remote \((\gamma_{i,k} R = 1) \) or a local \((\gamma_{i,k} L = 1) \) transfer. The area expense \(A \), taken from the group of general restrictions can be expressed by the sum of areas \(A_j \) for all selected processors \((\xi_j = 1) \), etc.

Finally, after the derivation of the variables \(\bar{x} \) and the linear constraints \(\sum_j a_{i,j} \cdot x_j = b_i \), we are concerned with the problem to choose an appropriate cost function \(z \) for the MILP. Since we aim at an optimal, fully static and overlapped multiprocessor scheduling with low area expense and high throughput rate, the computation time (latency) \(T \), the computation period \(P \) in case of a continuous, periodic execution of the whole scheme of algorithms as well as number \(Y \) and area \(A \) of processors, as well as number \(B \) of buses is taken into consideration. This leads to:

\[z = c_T \cdot T + c_P \cdot P + c_A \cdot A + c_V \cdot Y + c_B \cdot B \]

The individual weights \(c_T, c_P, \ldots, c_B \) provide the opportunity to consider different goals of the designer. This leads to a priority-based optimization technique. For example, if the main goal is to derive an overall multiprocessor system with minimum area expense \(A \) and additionally an execution time \(T \) as small as possible the priority order is \(A \gg T \gg \ldots \gg B \). The corresponding, individual weights according to the designer’s intention have to be \(c_A \gg c_T \gg \ldots \gg c_B \).

For two adjacent weights \(c_i, c_{i+1} \), the ratio \(r = \frac{c_i}{c_{i+1}} \) has to be large enough \((r \gg 1) \), in order to achieve the optimum according to the priority order. Furthermore, it is necessary to transform all the parameters \(V \in \{ A, T, P, Y, B \} \) of the objective function according to

\[v' = \frac{V - V_{m,\text{min}}}{V_{m,\text{max}} - V_{m,\text{min}}} \quad \quad \quad 0 \leq v' \leq 1 \]

to an identical and normalized range, i.e. \([0,1]\). These normalized parameters \(v' \) can be derived by calculating the minimum as well as the maximum possible values.

4 Experimental Results

In order to validate the formal optimization approach, using mixed integer linear programming, a typical complex image processing application was chosen: Low bit rate coding according to the hybrid videocodec scheme based on CCITT recommendation H.261 [7]. It is used for data reduction necessary to transmit video data on a line with \(p \times 64 \) kbit/s (\(1 \leq p \leq 30 \)), e.g. video telephone, video conferencing or even multimedia.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{video_encoder_diagram.png}
\caption{Video encoder algorithm according to H.261}
\end{figure}

The application consists of several computational extensive regular, low level tasks like motion estimation by block matching algorithm (BMA), discrete cosine transform and its inverse (DCT, IDCT), and FIR filtering (LF) as well as data dependent, irregular medium level tasks like quantization and its inverse (Q, IQ) and variable / runlength coding (VLC, RLC) combined to coding (COD), see Fig. 5.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{task_graph_diagram.png}
\caption{Fig. 6: Task Graph and Possible Assignments}
\end{figure}

Fig. 6a shows the corresponding task graph derived from the video coding algorithm H.261. In addition to
the tasks mentioned above, there are two tasks not yet
described, namely prediction (PRE) and reconstruc-
tion (REC). They denote the subtraction/addition of
the reference–block of the current video frame and of
the best matching block with respect to a search area
of the previous video frame. Fig. 6b shows the pos-
sible assignments of the $M = 12$ tasks to $N = 20$
processors, assuming four different processor types
(SEQ, PAR, PIPE, ARRAY) for the low-level tasks and
two programmable processors (PRG) for the low-
and medium-level tasks. By application of resource shar-
ing, 12 out of 18 application specific processors con-
sist of a multifunctional and merged datapath. Each
of these merged datapaths can be used to calculate
up to three different low-level tasks. The numbers in
parentheses at the processor types in Fig. 6b indicate,
how many different processors of each type could be
derived, whereas a number at an assignment edge in-
dicates how many different processors of same type
each task can be mapped to. In order to take the data
transfer of video data between the tasks and the video
memory also into consideration, two other tasks are
supplied, namely DM, denoting the buffer of the cur-
rent video frame and BUF the buffer of the previous
video frame. The corresponding MILP model under
these assumptions leads to 117 variables and 208 re-
strictions which could be solved by branch-and-bound
within a few cpu-minutes. For this purpose, the LP-
Solver of the NAG ¹ Fortran–Library was adapted to
these needs. According to the designers goal or priori-
ty order different solutions for an efficient heteroge-
neous multiprocessor system can be derived. The per-
formance and area expense of four solutions derived
by solving the MILP under different assumptions con-
cerning the designer’s priority are shown in Table 3.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>605820</td>
<td>184190</td>
<td>172902</td>
<td>72630</td>
</tr>
<tr>
<td>2</td>
<td>4994</td>
<td>5365</td>
<td>4994</td>
<td>5365</td>
</tr>
<tr>
<td>3</td>
<td>4292</td>
<td>5365</td>
<td>4292</td>
<td>5365</td>
</tr>
</tbody>
</table>

Table 3: Performance and area expense

The value of the most important parameter concern-
ing the priority order is sketched grey in each col-
umn. As can be seen, the minimum value with re-
spect to the designer’s main goal could always be
achieved. If for example the designer’s main goal is
to derive an overall system with minimum computa-
tion period P, and additionally small area expense A
and small latency T, i.e. $P > A > T > Y$, the re-
sult is shown in the second column of Table 3. For
this goal the optimal assignment derived by solving
the MILP is shown in Fig. 7a. The corresponding
architecture consists of $Y = 8$ processors, one of type
SINGLE and PIPE, and each two of type PRG, PAR, and
ARRAY, leading to an overall system with an area ex-
 pense of $A = 605820$ transistors. The values of V of all
system parameters like computation period P, com-
putation time T, area expense A, as well as the num-
ber Y of different processors are sketched in normal-
ized form in Fig. 7b. In this case the priority order

was $P > A > T > Y$. Therefore, the normalized
computation period $P’ = \frac{P - P_{min}}{P_{max} - P_{min}}$ is near to zero
($P = P_{min}$) according to the highest priority of the
cost function.

Fig. 7:
Optimal Assignment, Normalized System Parameters

The overlapped and periodic schedule for the mul-
tiprocessor system is shown in Fig. 8. The computa-
tions of the different macro blocks (16*16 pixels) are
sketched in different colors. It can be seen, that the
computations of three macro blocks overlap. In case
a processor is idle, white areas are shown.

Fig. 8: Periodic and overlapped schedule

As can be seen from Fig. 8 the achievable through-
put rate or computation period P is fixed by the num-
er of clock cycles necessary to compute the task BMA
on the processor of type ARRAY. Since there are no idle
times between the execution of two consecutive macro
blocks on this processor, the achievable computation
period is given by the execution time $T_{BMA} = 1073$
cycles of the blockmatching algorithm. In contrast
to this, the latency or computation time T necessary
to perform the hybrid coding once on a whole macro
block including all tasks takes $T = 4994$ cycles!

The four solutions with different priorities like min-
imum area expense or minimum computation period
according to the columns of Table 3 are sketched in the
area- and time-plane, see Fig. 9. The possible design
spaces according to the supported processor li-
brary and the real-time constraints of the (video) ap-
lication are marked by the dashed rectangles, show-
ing the possible solutions concerning area expense A
and number of processors Y, Fig. 9a, as well as con-

¹The Numerical Algorithms Group Limited
concerning computation period P and latency T, Fig. 9b.

For example, the upper edge of the P,T plane reflects the real-time constraint ($P \leq 10\,101$). Clearly, any feasible solution must reside inside the dashed design regions. Thus, depending on the designer’s main goal either area or time optimal solutions can be derived.

5 Implementation

The presented design trajectory including the optimization approach using MILP is part of a system-level synthesis aid for the derivation of heterogeneous multiprocessors. It is currently under development as a prototype CAD implementation in COMMON LISP/CLOS ² on Sparc Stations.

Fig. 9: Design spaces concerning A,Y and P,T

An overview of the CAD system is given in Fig. 10 with a specialized task graph as central database, whereas the database is connected to the algorithm library as well as to the processor library. Based on the processor library, all feasible assignments are derived and transfered to the taskgraph. Finally, the transformation to a MILP formulation is performed, and the (M)ILP solver is invoked. The results of the optimization can be visualized using a graphical user interface (GUI), based on CLUE/CLX ³, see Fig. 11. The GUI provides diagrams showing the expense with respect to the normalized system parameters, gantt charts showing the multiprocessor scheduling, and graphs showing the design space as well as the optimal assignment.

Fig. 10: Overview of the CAD tool

Fig. 11: Graphical User Interface

6 Conclusion

In this paper, a design trajectory including a formal approach for the optimization of heterogeneous multiprocessor systems is presented. By the use of mixed integer linear programming as mathematical framework of the optimization, it becomes possible to derive the best combination of application-specific and programmable processors for heterogeneous systems, being optimal in terms of a designer’s priority or main goal like minimum area expense or maximum throughput.

Acknowledgements

This work is supported by the Deutsche Forschungsgemeinschaft, contract number Pi-169/5.

References

²CLOS Specification, ANSI, X3J13
³Common Lisp User Interface Environment /X