
Balancing Structural Hazards and Hardware Cost of Pipelined Processors

Albert E. Casavant
C&C Research Laboratories, NEC USA, Inc.

Princeton, NJ

Abstract
In this paper, a tool to aid pipelined processor instruc-

tion set implementation is described. The purpose of the
tool is to choose from among design alternatives a design
that minimizes overall processor cost. In the proposed cost
model, processor cost has two components, the cost of
hardware necessary to realize the processor and the cost
of degraded performance due to pipeline hazards as com-
pared to an ideal pipelined processor. A previous paper
detailed the optimization algorithm. This paper extends
these results to handle enclosed pairs of instructions hav-
ing structural hazards. The extended algorithm can pro-
duce an optimal result. This algorithm and several
examples are presented.

1.0 Introduction

A major hurdle in pipeline design of programmable
processors is pipeline hazards [1]. Often a designer is
faced with a decision to accept the performance degrada-
tion that a pipeline hazard produces or incur additional
hardware cost to prevent the hazard. This paper presents a
tool to aid designers to make these decisions. Structural
hazards are caused by contention for resources by two or
more instructions executing simultaneously in the pipe-
line. If resources are increased appropriately, contention
can be eliminated.

Integer instructions in RISC processors have very few
structural hazards, due in large part to equal length imple-
mentations of those instructions. The same cannot always
be said of floating-point instructions. In moderate perfor-
mance single chip microprocessors, inexpensive general
purpose coprocessor designs, and special purpose designs
these instructions have different lengths and generally
there are hazards present, as in the R4000 design [2].
CISC designs tend to have more structural hazards than
RISC designs.

Very high performance state-of-the-art microprocessors
may have enough silicon area to avoid the need to share
any hardware in the floating-point unit. Very low perfor-
mance microprocessors, such as those used in games have
low performance floating-point units which may not over-
lap execution of instructions. Both of these categories of
designs have no contention for resources in the pipeline
and are not candidates for application of the tool. The tool
currently handles in-order issue and in-order completion
or out-of-order completion. It is not applicable to proces-
sors using dynamic scheduling. It is possible, however, to
extend the tool to handle superscalar architectures.

This paper describes a tool called MIST [3] (Micropro-
cessorInstruction Set Tool) to aid pipelined processor
instruction set implementation. The tool should properly

be viewed as a design aid because it does not synthesize
the hardware, rather it selects from alternate designs that
the tool user has provided. Alternatives can be generated
automatically using shell scripts from a relatively small
number of design templates. Instruction implementation
possibilities are totally under the control of the designer
and can contain any number of pipeline stages. Enumera-
tion of combinations is practical only for small numbers of
instructions having few implementation possibilities. The
purpose of the tool is to choose from among user-provided
design alternatives a design that minimizes overall proces-
sor cost. A design in this case is defined to be the choice of
exactly one implementation for all instructions.

Cost has two components: the cost of hardware neces-
sary to realize the processor and any hazard prevention
hardware, and the cost of degraded performance due to
uncorrected hazards as compared to an ideal pipelined
processor. In addition to alternate designs, the tool user
provides a trade-off factor representing the relative impor-
tance of hardware cost versus degraded performance cost,
and the frequency of occurrence of pairs of instructions
which can be simultaneously resident in the pipeline for
typical programs to be run on the processor. The latter
input is generated by compiling benchmark programs and
automatically analyzing the resulting assembler code.

Previous work in this general area has concentrated on
synthesis rather than analysis. In the Piper system [4] first
a scheduling into a fixed number of pipeline stages is per-
formed. Then instructions in the benchmark are possibly
reordered and/or additional hardware is added to resolve
hazards. No unresolved hazards are allowed to remain.

In the “snapshot method” [5], snapshots of instructions
from a benchmark are ordered by frequency of occurrence
and hardware in a pipelined processor is incrementally
added to satisfy the hardware needs of each snapshot. Dif-
ficult to schedule and/or unimportant snapshots are
allowed to generate stalls in the pipeline. Limitations of
the snapshot method include equal length instructions only
and long run times.

Both tools described above require that a floating point
add and floating point divide take the same number of
pipeline stages to execute. Both tools synthesize the
microprocessor data paths. Each new generation of micro-
processors has architectural innovations in the data path
and stringent timing requirements. These requirements
cannot be compromised in a high volume, high perfor-
mance part such as a microprocessor. Both requirements
are incompatible with the approaches advocated in these
tools; in fact, such considerations have prevented logic
synthesis from making inroads in the critical path of
microprocessor data paths. Using the approach described
in this paper, the designer has complete control over data-
base design options; the tool helps him/her by efficiently

searching the design space (independent of design meth-
odology) for good combinations of implementations
which minimize overall cost of the processor.

2.0 Basic operation of MIST

A discussion of the processor model, tool inputs, stall
strategy, basic integer programming formulation and con-
straint generation can be found in [3]. Some of these
aspects of the tool will be illustrated instead (due to lack of
space) by a small example shown in Fig. 1.

Four types of input data must be supplied by the
designer. The first is a description of functional unit (FU)
use in each execution stage of each candidate implementa-
tion of the instructions in Fig. 1. Shown are 3 instructions
with 2 implementations each. Stage boundaries are shown
as horizontal lines. MIST uses functional unit residency
information to automatically generate all possible struc-
tural hazards.

FUs fall into two categories,sharable and non-shar-
able. Only sharable FUs can be involved in structural haz-
ards, and these are shown as FU0 and FU1. Non-sharable
FUs are assumed to have only one instantiation and thus
no hardware contention is possible. The stages shown
blank in Fig. 1 are populated with non-sharable FUs.

The second input is the cost of functional units. MIST

adds up the cost of non-sharable FUs on a per implementa-
tion basis, and this cost is added to all hazard nodes associ-
ated with that implementation. This cost is shown at the
bottom of each box in Fig. 1. The sharable FUs are repre-
sented by nodes and end up being variables in the linear
programming formulation of the problem.

The third input is a benchmark composed of a machine
instruction stream for typical programs which the micro-
processor may be required to compute. MIST automati-
cally analyzes this benchmark to determine frequencies of
execution of instruction pairs at all feasible execution
spacings in the pipeline, e.g. for the instruction pair FADD
and FMULT, execution frequency is compiled for execu-
tion spacings of 1, 2, etc. up to the maximum possible exe-
cution spacing. Execution spacing is the number of clock
ticks between instruction initiations in the pipeline.

INST 0
IMPL 0

INST 1 INST 2
IMPL 0 IMPL 1 IMPL 0 IMPL 1IMPL 1

50 100 50 50 5050

FU0
FU0

FU1

FU1

BENCHMARK FU COST TRADE-OFF FACTOR

OR
INST 0
INST 1

INST 1
INST 2

FU 0 = 30 units
FU 1 = 30 units

25% inc = 1 NOP and
costs 20 units

25% inc = 1 NOP and
costs 40 units

Figure 1. Small Example.

INST 0
IMPL 5

INST 1

IMPL 6

INST 1

IMPL 3

INST 2

IMPL 8

Figure 2. Hazard Edge.

The fourth input is the trade-off factor. For the sake of
simplicity in this small example, it is defined to be the cost
in hardware units that the designer is willing to pay to pre-
vent the addition of one nop to the benchmark. The trade-
off factor puts the costs of pipeline hazards and machine
resources on the same scale. In general (as in the results
given later), the trade-off factor is defined to be the cost in
hardware units required to prevent a one percent increase
in benchmark execution time. A high trade-off factor
yields relatively high hardware cost and relatively low nop
cost, whereas a low trade-off factor yields low hardware
cost and high nop cost. If the trade-off factor is set high
enough a no stall configuration, i.e. having no structural
hazards, can be found if one exists.

The pipelined cost minimization problem can be for-

mulated as a node packing problem [6]: ,

 for all edges, for all nodes,

where is the weight (cost) of a node. This formulation

is called theedge formulation of the node packing prob-
lem. Nodes (variables in linear programming) represent
the presence (value 1) or absence (value 0) of a particular
hazard in the solution, or they represent the absence (1) or
presence (0) of a particular functional unit.

The active (colored) HAZ node in Fig. 2 represents a
hazard between IMPL 5 of INST 0 and IMPL 6 of INST 1,
i.e. if implementation 5 of instruction 0 AND implementa-
tion 6 of instruction 1 were chosen, there would be a struc-
tural hazard. When a node isactive, its associated variable
is a 1 and its cost is charged.

Edges (forming constraints in linear programming) are
used for two purposes. Firstly, edges guarantee consis-
tency of implementation choices. The edge in Fig. 2 guar-
antees that INST 1 may have only one of implementations
3 and 6 in the final solution.

Shown in Fig. 3 is an active (non-colored) FU node,
FU0. When an FU node is active its associated variable is
a 0 and its cost is charged. Note the contrast between defi-
nitions of active for HAZ and FU nodes.

The second use for edges is to guarantee correct cost
charging for functional units. If a functional unit is used by
any of the implementations represented by a HAZ node,
an edge is placed between that node and the FU node. If
any of the HAZ nodes using a particular FU are active, the
FU node is active i.e. non-colored and its associated vari-
able is 0. In Fig. 3, FU0 is used by at least one of the
instruction implementations, say IMPL5 of INST1, and
since that HAZ node is active, so is the FU node connected
to it.

In the edge formulation, the optimization problem is to
find a maximum weighted combination of 1 nodes. For the
application presented here, the objective function is alge-
braically manipulated to form a minimization problem,
because cost minimization is desired.

MAX wvxv
vεV
∑

xu xv+ 1≤ x ε 0 1,{ }
wv

INST 2
IMPL 3

INST 1
IMPL 5

INST 4
IMPL 3

INST 2
IMPL 8,
IMPL 9

FU 0

Figure 3. FU edge.

The hazard cost component of a HAZ node is:

, where freq is

the frequency of occurrence of an implementation pair in
the benchmark and#stalls is the severity of the hazard, i.e.
how many clocks that the pipeline must be stalled due to
the hazard. When appropriate, the non-sharable FU cost
for an implementation is added to HAZ nodes, as
explained below. The cost of an FU node is the hardware
cost of the unit.

Theclique formulation is equivalent to the edge formu-

lation previously shown: , for

all cliques C, and for all nodes. It has been

shown to generate fewer fractional answers and is the for-
mulation used by MIST.

Returning to the example, Fig. 1 indicates two possible
structural hazards, HAZ1: INST 1 followed by INST 0
involving FU 0, and HAZ2: INST 1 followed by INST 2
involving FU 1. In both cases, the second instruction must
be delayed causing a stall.

Fig. 4 shows the corresponding node packing graph for
the example in Fig. 1. HAZ nodes are arranged inbanks.
Banks represent all the hazards between pairs of instruc-
tions. In Fig. 4, banks are shown as 0 <-> 1 (i.e. hazards
between instructions 0 and 1) and 1 <-> 2. Implementa-
tions are shown to the right and left of HAZ nodes, their
position indicating which instruction of the instruction
pair they are associated with. A potential implementation
pair may appear in only one hazard node; however, one
node may represent several implementation pairs. The
node generation code of MIST is responsible for “con-
densing” multiple hazards into nodes [3]. Since only one
node can be active in a solution, a clique is formed for
each bank. These edges are shown as medium gray in Fig.
4.

HAZ edges are shown by light gray arcs and FU edges
by dark arcs. Costs for nodes are shown in close proximity
to the nodes, and in the case of hazard nodes are the sum
of hazard cost (shown boxed) and non-sharable hardware
cost. Since only one node per bank can be chosen, it is
convenient to put non-sharable costs for implementations
on these nodes. The best solution is shown by the coloring,

INSTS
0 <-> 1

INSTS
1 <-> 2

FU 0

FU 10

0

0

0

0

0

0

1

1

1 1

1

1 0,1

50

100

100

100

100

= 120

30

30

COSTS =

70
100
30

200

50 + 20 = 70

100 + 20

= 20

Figure 4. Node packing graph (cost 200).

TRADE-OFF
FACTOR

freq #stalls tradeoff_factor××
spacings
∑

MAX wvxv
vεC
∑ xv 1≤

vεC
∑

xvε 0 1,{ }

and the resulting cost of 200 is shown on the lower left.
When the trade-off factor is increased to 40 and HAZ node
costs are adjusted accordingly, the same coloring yields a
cost of 220. However, there is a better solution having cost
of 210 but requiring two FUs instead of one. This example
illustrates that sometimes it is better to use more func-
tional units to avoid costly hazards. More details on the
node packing formulation and constraint generation can be
found in [3].

In the basic MIST optimization, many maximal clique
constraints are systematically generated knowing the
structure of the node packing graph. Linear programming
is then employed to find the optimal solution. The solution
is not guaranteed to be integer, but computational experi-
ence has indicated that is true over 90% of the time.
Branch and bound could be used for solving non-integer
problems.

3.0 Enclosed Pairs

As pointed out in [3] the basic MIST algorithm has a
potentially serious drawback. It gives an optimal solution
based on the occurrence frequencies of instructions in the
benchmark. Unfortunately, if the optimal solution indi-
cates that there should be some nops inserted into the
benchmark, the original occurrence frequencies become
inaccurate and thus the solution becomes suspect. What
would be desirable is a way to modify the costs of hazard
nodes to account for the changes in occurrence frequen-
cies in such a way that the optimization yields an optimal
solution with all nops inserted. The solution is then truly
optimal. The remainder of the paper is devoted to a discus-
sion of methodologies to accomplish this goal and compu-
tational experience using the technique.

An instruction pair isenclosed by another instruction
pair if that pair appears in the instruction stream between
the first and second member of an enclosing pair. Refer-
ring to Fig. 5, instruction pair INST 2 - INST 3 initially
occurred in sequence with no intervening instructions.
MIST determined that there should be a nop inserted
between all occurrences of INST 2 followed by INST 3 at
a spacing of 1. When the nop is inserted, the spacing
between the enclosing pair, INST 1 followed by INST 4 at
spacing 3 changed to spacing 4. Now functional unit B is
in contention. This possibility was not considered in the
original occurrence frequencies and hence the optimiza-
tion may be in error.

4.0 MIST Extensions

One of the goals of constraint generation is to minimize
the number of nodes in the node packing graph, since each
node becomes a variable in linear programming. A set

INST 1

INST 2

INST 3

INST 4

NOP

B

Figure 5. Enclosed Pairs.

A

A

B

new hazard
caused by
enclosed pair

covering heuristic is used for this purpose. The algorithms
which will be presented below may require that the costs
of hazards be updated to account for changes in occur-
rence frequencies. Since constraint generation requires (in
many cases) more time than a linear programming optimi-
zation, hazards were combined into nodes using a method
resulting in scalability with respect to occurrence frequen-
cies. Hazards are combined into a single node if they:

1. have the same hazard cost within some designer
specified tolerance, and

2. have the same number of stalls at the same spacings.
Requirement 2 ensures that two or more hazards com-

bined into the same node will continue to have the same
cost regardless of how occurrence frequencies change.

The following heuristics all share a common philoso-
phy of perturbing a solution to look for better solutions.
Unfortunately this seems to be the most viable solution
method given that the costs of hazards between instruction
pairs vary erratically with the insertion of nops in enclosed
pairs. The insertion of a nop can result in either an increase
or decrease in the hazard cost of enclosing pairs.

5.0 PERTURB mode

All optimizations start out with a call to PERTURB
(Fig. 6). For nop_insert mode and iterative mode, PER-

DONE = FALSE
FOUND_BETTER = FALSE
ACTIVE_BANK = 0
JAM SOLUTION_NODE in ACTIVE_BANK = 0

WHILE NOT DONE DO
MIST OPTIMIZATION
IF SOLUTION_CHANGED

CALL PLUG_NOPS
IF FOUND_BETTER

REMOVE_DOMINATED_COLUMNS
IF ACTIVE_BANK != 0

REMOVE ZERO’d COLUMN
ACTIVE_BANK = 0

IF ACTIVE_BANK == LAST BANK
IF INITIALIZE_MODE

CALL NOP_INSERT || ITERATIVE
ELSE

IF PERTURB MODE
DONE = TRUE

ELSE /* EXTENDED_PERTURB MODE */
IF !FOUND_BETTER

DONE = TRUE
ELSE

CALL NOP_INSERT || ITERATIVE
ELSE

ACTIVE_BANK++
SOLUTION_NODE in ACTIVE_BANK = 0

Figure 6. Perturb mode.

DONE = FALSE
FOUND_BETTER = TRUE
ACTIVE_BANK = 0
JAM FIRST NODE in ACTIVE_BANK to 1

WHILE NOT DONE DO
MIST OPTIMIZATION
CALL PLUG_NOPS
IF BETTER_SOLUTION

FOUND_BETTER = TRUE
REMOVE_DOMINATED_COLUMNS

IF NODES in ACTIVE_BANK !EXHAUSTED
JAM NEXT NODE in ACTIVE_BANK to 1

ELSE
IF NOT LAST SUPERBANK

SET ACTIVE_BANK = NEXT SUPERBANK
JAM FIRST NODE in ACTIVE_BANK to 1

ELSE
IF FOUND_BETTER

CALL PERTURB in EXTENDED_PERTURB MODE
DONE = TRUE

Figure 7. Iterative mode.

TURB is called in initialize mode and before the
NOP_INSERT and ITERATIVE code is called. PER-
TURB works by jamming 1-valued solution nodes to 0,
attempting to find alternate solutions. If an alternate solu-
tion is found, PERTURB starts over again on the new
solution, otherwise it quits and performs mode-dependent
dispatching. Lists of nodes sorted by cost are kept and
when a new solution is found, nodes which cannot possi-
bly be in the solution are fathomed by
REMOVE_DOMINATED_COLUMNS.

PERTURB first performs a basic MIST optimization.
Then the solution obtained is checked against the previous
solution. If there has been a change, the nops associated
with the new solution are inserted into the benchmark and
a new exact cost is determined. Note that this may be dif-
ferent from the cost of the optimal solution found by the
basic MIST algorithm because the new cost calculated is
the actual true cost in terms of nops added to the bench-
mark rather than the possibly incorrect summation of node
costs.

6.0 ITERATIVE mode

Iterative mode (Fig. 7) works much like a complemen-
tary PERTURB mode. All nodes in selected banks are
jammed to a 1 attempting to perturb the solution. If a new
solution is found, PERTURB is called again. In Fig. 7,
superbank refers to all banks where the second instruction
is one greater than the first. See [3] for details.

7.0 NOP_INSERT mode

NOP_INSERT mode is more sophisticated than the
previous methods. NOP_ANALYSIS (Fig. 8) is a proce-
dure for grading the necessity of nops. After nops have
been inserted into the benchmark by PLUG_NOPS,
NOP_ANALYSIS removes each nop in turn and calcu-
lates how many instruction pairs are dependent on that nop
to prevent their associated hazard. In doing so
NOP_ANALYSIS considers all combinations of imple-
mentations for instruction pairs. Nops may do multiple
duty by preventing more than one hazard by their presence
in the benchmark. Each nop in the benchmark is graded
and they are sorted by their ability to do multiple duty. A
designer determined percentage of nops are permanently
added to the benchmark on each iteration. Then new
occurrence frequencies are calculated based only on per-
manent nops, and node costs are updated. In this method,
the perturbation is to the benchmark rather than the solu-

DONE = FALSE

WHILE NOT DONE DO
MIST OPTIMIZATION
IF SOLUTION_CHANGED

CALL PLUG_NOPS
IF SOLUTION_BETTER

REMOVE_DOMINATED_COLUMNS
REINSTATE ORIGINAL NODE COSTS

for NON-DOMINATED NODES
CALL PERTURB in EXTENDED_PERTURB MODE;
DONE = TRUE

ELSE
CALL NOP_ANALYSIS
SORT NOPS BY NOP STRENGTH
INSERT STRONGEST NOPS IN BENCHMARK
CALCULATE OCCURRENCE FREQUENCIES
UPDATE NODE COSTS

Figure 8. Nop_insert mode.

tion nodes as in the previous methods. The benchmark
incrementally evolves into the final benchmark.

8.0 Computational Experience

Table 1 shows problem information for 20 randomly
generated problems. A random problem generator is given
the following information: 1) the number of instructions
involved in hazard generation, 2) the range of numbers of
implementations, 3) the number of functional units, 4) the
density of hazards, and 5) the trade-off factor. The prob-
lem generator randomly chooses a number of implementa-
tions in the range given for each of the instructions and
then randomly chooses a number of stages in the range
given for each implementation. It then randomly populates
the implementations with functional units. The density of
hazards limits the random generator in its attempts to ran-
domly populate pipeline stages with functional units. A
higher density yields stages populated with more FUs

The optimization times shown in Table 1 are given for
perturb mode, nop_insert mode and iterative mode respec-
tively. and are in seconds on a SPARC2. The starred times
indicate non-optimal answers. The errors shown are the
best achievable among all three methods. Most problems
could be solved using only the perturbed mode method,
but for problems 6 and 10, only iterative mode or
nop_insert mode could produce the optimal solution. One
problem generated only fractional solutions. The
nop_insert mode was always superior or equal to the itera-
tive mode in terms of accuracy and running times. Clearly,
on these small problems it is better to exhaustively enu-
merate.

Table 2 shows results from realistic examples. The
codes for the example names are as follows: “md” and
“lg” are medium and large respectively. “Ld” and “hd”
refer to a stall strategy which produces low and high den-
sity of hazards respectively. Examples md_hd and md_ld
are based on a 4 instruction floating point (fp) unit. The fp
add-sub instruction exhibits 4 different add algorithms.
This instruction has both inter and intra-instruction shar-
ing of the exponent add and mantissa add hardware and

PROB #VARS
CON-

STRAINTS
#MATRIX
ENTRIES

GEN
TIME

OPTIM TIME
P / N / I

ERROR

P1 76 583 11,772 1 5 / 6 / 37 0
P2 83 1259 25,036 3 8 / 9 / 15 0
P3 86 1380 29,148 4 15 / 18 / 102 0
P4 210 4837 248,830 33 64 / 82 / 1594 0
P5 210 4608 239,474 33 43 / 50 / 205 0
P6 216 5797 286,144 37 *95 / 186 / 2471 0
P7 83 1259 25,036 3 10 / 33 / 35 0
P8 74 474 9264 2 3 / 5 / 21 0
P9 120 3130 86,078 11 15 / 15 / 21 0
P10 79 539 12,202 3 *3 / 6 / 22 0
P11 262 1206 40,907 44 *18 / *18 / *224 < 1
P12 262 1206 40,907 44 24 / 24 / 251 0
P13 320 13967 377,800 123 6022 / 7322 / 57674 0
P14 309 2970 83,648 92 149 / 324 / 1646 0
P15 309 2767 84,362 91 *28 / *29 / *1574 FRAC
P16 308 2894 80,306 85 *52 / *53 / *96 < 9
P17 305 7727 203,954 92 381 / 428 / 1648 0
P18 312 5885 159,262 92 97 / 98 / 157 0
P19 309 2891 75,938 86 *44 / *62 / *119 < 5
P20 310 4916 139,594 93 430 / 1005 / 6482 0

Table 1: Small Problem Optimization Results

different stage residencies, giving a total of 36 implemen-
tations. The fp mult uses 5 basic algorithms in both radix 4
and radix 8. The amount of sharing of carry-save adders is
varied yielding different numbers of iterations through the
carry-save stage of multiplication. There is also inter and
intra-instruction sharing of the exponent add and final
carry propagate add of the partial products, and different
stage residencies, giving a total of 300 implementations.
Radix 2 and radix 4 implementations of SRT division,
with intra-instruction sharing of hardware in the basic loop
give variation from 3 passes for one of the radix 8 imple-
mentations to 24 passes for one of the radix 2 implementa-
tions. The final carry propagate add is possibly shared with
fp add-sub and/or fp mult. The number of implementations
for both fp-div and fp-sqrt is 80.

Example lg_ld has 8 instructions and is a contrived
example consisting of a concatenation of two md_ld
examples with fewer implementations for each instruction.
This gives a large realistic example where the optimal
answer is known without requiring enumeration. All of the
problems were solved in perturb mode.

9.0 Conclusion

MIST provides an effective and efficient solution to the
structural hazard problem in pipeline design. To make the
tool more comprehensive and attractive to designers it
should be expanded to include other architectural features
of processor pipelines such as superscalar architectures,
branch prediction, and cache considerations. The cost
function would consequently need to be expanded to
include performance factors other than pipeline hazards.

Data hazards should be considered, and extension of
the tool to handle them appears feasible. The cost of con-
trol is considered only in the choice of stall strategy - other
more direct approaches could be added. The categories of
constraints generated should be expanded to make the tool
give integer answers more reliably.

10.0 References
[1] J.L. Hennessy and D. A. Patterson.Computer Architecture: A Quanti-

tative Approach. Morgan Kaufmann Publishers, Inc. 1990.
[2] G. Kane and J. Heinrich.MIPS RISC Architecture, Prentice Hall,

Englewood Cliffs, NJ. 1992.
[3] A. E. Casavant, “MIST - A Design Aid for Programmable Pipelined

Processors,” in 31st Design Automation Conference, pp. 532-536,
1994.

[4] I. J. Huang and A. M. Despain, “Hardware/Software Resolution of
Pipeline Hazards in Pipeline Synthesis of Instruction Set Processors,”
International Conference on Computer Aided Design, pp. 594-599,
1993.

[5] R.J. Cloutier and D. E. Thomas, “Synthesis of Pipelined Instruction
Set Processors,” in30th Design Automation Conference, pp. 583-
588, 1993.

[6] G. L. Nemhauser and L. A. Wolsey,Integer and Combinatorial Opti-
mization. Wiley Interscience, 1988.

PROB VAR CNST
MATRIX
ENTRIES

COM-
BINATIONS

ENUM
TIME

GEN/OPT
TIME

ERR

md_hd 4058 5411 9,796,944 69,120,000 586,627 5768/4193 0
md_ld 1510 27,682 7,129,198 69,120,000 N.A. 12,665/3939 N.A.
lg_ld 759 41566 1,883,446 > 1E14 N.A. 728/15,077 0

Table 2: Large Problem Optimization Results

	ED&TC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

	IEEE Computer Society

