
GARDA: a Diagnostic ATPG for Large Synchronous Sequential Circuits

 F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy

Abstract*

The paper deals with automated generation of
diagnostic test sequences for synchronous sequential
circuits. An algorithm is proposed, named GARDA,
which is suitable to produce good results with
acceptable CPU time and memory requirements even
for the largest benchmark circuits. The algorithm is
based on Genetic Algorithms, and experimental results
are provided which demonstrate the effectiveness of the
approach.

1. Introduction

Diagnosis is the process of locating the fault
responsible for a given faulty behavior: a popular
method for the diagnosis of digital circuits lies in
applying a Test Set to the faulty circuit, observing the
output response, and then comparing them with the
ones stored in the fault dictionary [ABFr90]. The
success of such an approach mainly depends on the
diagnostic capabilities of the Test Set, and some work
has been done to devise viable techniques for the
automatic generation of suitable Test Sets.

Given a sequential circuit, a Test Sequence T and
two faults f1 and f2, T distinguishes f1 and f2 iff at least
one input vector in T produces different output values
in the faulty circuits for f1 and f2. All the faults which
have not been distinguished by T belong to a same
Indistinguishability Class [RFPa92].

Diagnostic Test Pattern Generation aims at
producing a Test Set such that any couple of non-
equivalent faults is distinguished by at least one Test
Sequence belonging to the Test Set. The
Indistinguishability Classes produced by such a Test
Set coincide with the Fault Equivalence Classes
[ABFr90] for the same circuit.

* This work has been partially supported by ESPRIT BRA 6575
ATSEC, and by the MURST 40% project Affidabilità e Diagnostica in
Elettronica. Contact address: Paolo Prinetto, Politecnico di Torino,
Dipartimento di Automatica e Informatica, Corso Duca degli Abruzzi
24, I-10129 Torino (Italy), e-mail Paolo.Prinetto@polito.it

Diagnostic Test Pattern Generation is even heavier
than detection-oriented Test Pattern Generation, and
Diagnostic ATPGs [CMPS90] [GMKo91] [CCCP92]
produce Test Sets which partition the Fault List into
Indistinguishability Classes. Each such class may
include more Fault Equivalence Classes: in fact, faults
in a same class have not yet been distinguished one
from the other by any Test Sequence belonging to the
Set, but a distinguishing Test Sequence may exist.

In this paper we propose GARDA (Genetic
Algorithm for Diagnostic ATPG), a new algorithm for
Diagnostic Test Pattern Generation. The algorithm is
based on Genetic Algorithms (GAs) [Holl75], which
have already been recognized to be effective for the
generation of detection-oriented test sets [RHSP94]
[RPGN94] [PRSR94]. Their main characteristics are:

• they have reduced memory requirements
• they allow the user to easily trade-off CPU time

requirements and results accuracy
• they can exploit heuristics already developed for

other approaches.
With respect to [PRSR94], several important

changes have been introduced to take into account the
different goal (diagnosys instead of detection): the
main ones are the use of an ad hoc developed fault
simulator, and the adoption of new evaluation and
fitness functions.

Section 2 describes the diagnostic algorithm;
Section 3 reports some experimental results and
Section 4 draws some conclusions.

2. The Diagnostic ATPG Algorithm

The goal of GARDA is to produce a Test Set which
partitions the Fault List into the highest number of
Indistinguishability Classes. At the beginning, all the
faults are grouped in a single class. Each time the
algorithm generates a Test Sequence which
distinguishes at least one couple of faults belonging to
the same class, the Test Sequence is added to the Test
Set, and the corresponding class is split.

The algorithm consists of three phases:
• phase 1: selection of a target class from the

current Indistinguishability Classes;
• phase 2: generation of a sequence, if any, able to

split the target class into two or more classes;
• phase 3: diagnostic fault simulation of the

sequence and search for additional classes to be
split.

The three phases are repeated until a pre-defined
maximum number of iterations MAX_CYCLES has
been reached. They will be analyzed in details in the
next paragraphs.

2.1. The Genetic Algorithm for ATPG

Generation of a diagnostic sequence able to split a
Indistinguishability Class is a search in the space of all
the possible sequences applicable to the Primary Inputs
(PIs) of the circuit. Applying GAs requires that both a
suitable encoding for the generic solution, and an
effective evaluation function be found.

As far as encoding is considered, GARDA assumes
that an individual correspond to a sequence composed
of a variable number of input vectors applied from the
reset state. A population is a set of individuals.

Finding an effective evaluation function is a much
more complex task. GARDA uses two heuristic
parameters:

• the weighted number of gates with different
values in the faulty circuits corresponding to the
faults of a given class. The weight measures the
observability of the gate it is associated with;

• the weighted number of Flip-Flops (whose inputs
will hereinafter be referred to as Pseudo Primary
Outputs or PPOs) with different values in the
faulty circuits corresponding to the faults of a
given class. The weight measures the
observability of the Flip-Flop it is associated
with.

The following function has been defined to rank
sequences according to their distance from being
diagnostic sequences with respect to a class; the
function h(v j

k,s j) estimates how close the class ci is
to being split by the k-th input vector vj

k of the
sequence sj :

() () ()h v ,c k w 'd 'v ,c k w ' 'd ' ' v ,ck
j

i 1 p p k
j

i
p 1

n

2 m m k
j

i
m 1

ngate FF

= +
= =
∑ ∑

where:
• ngate and nFF are the number of gates and Flip-

Flops, respectively

• w' p and w'' m are the weights of the p-th gate
and m-th Flip-Flop, respectively, and will be
defined in the following

• the function d’ p(v
j

k,c i) returns 1 (0) iff, as a
consequence of the application of vj

k, two faults
belonging to the class ci exist, such that the
value of the p-th gate is different (equal) in the
two faulty circuits

• the function d’’ m(v
j

k,c i) returns 1 (0) iff, as
a consequence of the application of v j

k, two
faults belonging to the class ci exist, such that
the value of the m-th Flip-Flop is different
(equal) in the two faulty circuits.

The values for k1 and k2 are experimentally found;
in general, k2>k 1, as differences on Flip-Flops are
normally more desirable than those on gates.

An evaluation function H(s j ,c i) is associated with
each sequence sj and class ci ; H corresponds to the
maximum value of the function h defined above:

 H(s j ,c i)=max k(h(v j
k,c i)) vj

k ∈sj

Once the individual encoding and the evaluation
function have been defined, the whole process can be
organized in two steps: first, several random sequences
are generated until the evaluation function of a
particular class becomes greater than a given threshold
THRESH. Second, this class is chosen as the target one,
and a diagnostic sequence for splitting it is generated.
These two steps constitute phase 1 and phase 2, and
require more detailed investigation.

2.1.1. Phase 1: choosing the target class

Sequences are randomly generated in groups of
NUM_SEQ, and are all composed of L vectors. The
diagnostic fault simulation of each sequence with
respect to all the Indistinguishability Classes is
performed and the evaluation function is computed. If
no class produces a H greater than THRESH, a new set
of NUM_SEQ random sequences is generated, whose
length L is increased. Otherwise, the class with the
maximum value of the evaluation function is selected
as target class. The whole diagnostic ATPG process is
stopped when a maximum number MAX_ITER of
iterations is reached. Some classes can be split during
this phase, and the corresponding sequences are
inserted in the final set of test sequences.

It must be noted that phase 1 is purely random and
does not exploit GAs, because neither the cross-over,
nor the mutation operators are applied.

L is assigned an initial value Lin whose value is
based on the topological characteristics of the circuit. L

is then increased in phase 1 as explained above, and is
updated before any activation of phase 1 by using the
length of the diagnostic sequence generated by the last
phase 2.

2.1.2. Phase 2: Generating a Diagnostic Sequence
for the Target Class

Phase 2 is based on a GA. Each sequence is an
individual and NUM_SEQ sequences constitute a
population. The initial population is composed of the
last NUM_SEQ sequences generated in phase 1. The
target class ct , only, is considered in this phase.

The fitness function F(s j) is obtained from the
evaluation function H(s j ,c t) via linearization: the
individuals are sorted in decreasing order with respect
to H, and the fitness value NUM_SEQ is assigned to the
first individual, the value NUM_SEQ-1 to the second,
and so on.

A new population is generated from the previous
one through evolution: NEW_IND newly created
individuals replace the worst individuals in the
previous generation. The survival of the best
NUM_SEQ-NEW_IND individuals from one generation
to the next is thus ensured.

Evolution proceeds through two operators:
• the cross-over operator selects two parent

individuals from the current population,
randomly generates two numbers x1 and x2, and
builds a new individual composed of the first x1

vectors of the first parent and the last x2 vectors
of the second;

• the mutation operator acts on the newly
generated test sequences with probability pm and
changes a single vector within it.

Candidates for the cross-over operator are selected
on a probabilistic basis: the likelihood that an
individual will be selected is proportional to its fitness,
so that better sequences are more likely to provide
vectors for the new individuals.

Once a new population has been generated, the
fitness function is evaluated for the target class and for
each sequence. The process is repeated until one of the
following conditions is met:

• the target class is split: the corresponding
sequence is then inserted in the final set of test
sequences;

• a given maximum number of generations
MAX_GEN is generated without splitting the
class: such a class is then marked as aborted and

its threshold THRESH is increased by a constant
HANDICAP.

2.2. Diagnostic Fault Simulation

The computation of the evaluation function in phase
1 and 2, as well as the diagnostic fault simulation of
the generated Test Sequence in phase 3, require an
efficient diagnostic fault simulator. We developed an ad
hoc tool which is based on the HOPE algorithm
[LeHa92]. The following changes have been introduced
to cope with the diagnostic purposes:

• all the PO values are computed for every
simulated fault and every input vector

• a fault is dropped only when it has been
distinguished from any other fault

• at the end of the simulation of each input vector,
the PO values of faults belonging to the same
class are compared, in order to check wheter the
class can be split

• an additional data structure, which is
dynamically updated during the ATPG process,
is used to record fault partitioning in classes.

3. Experimental Results

GARDA has been implemented in ANSI-C and counts-
up to about 4,000 lines of code. The large circuits in
the ISCAS’89 standard set [BBKo89] have been
considered.

Tab. 1 shows the results obtained running the tool
on a SUN SPARCstation 2 with a 32 Mbyte memory.
Only the largest ISCAS’89 circuits were considered. To
the best of our knowledge, no previously proposed
method is able to produce any diagnostic sequence for
such circuits.

To evaluate how good the results are, we can
proceed in two directions:

• for the smallest circuits [CCCP92] provides the
exact number NFEC of Fault Equivalence Classes;
in this cases one can compare the number of
classes we obtained with NFEC. Tab. 2 shows that
GARDA produces results not far from the exact
ones.

• when NFEC is not available, a comparison could
be made with [RFPa92] for the Test Sets
generated by two detection-oriented ATPGs, i.e.,
STG3 and HITEC. Unfortunately, [RFPa92]
adopts a notion of distinguished faults based on a
3-valued logic, while GARDA uses the 0 and 1
values, only. However, the evaluation procedure
are quite similar: we first group faults according

to the size of the Indistinguishability Class they
belong to (Tab. 3). Column 2 contains the
number of Fully Distinguished Faults (i.e., faults
which have been distinguished from any other
fault); column 7 the number of faults belonging
to classes whose size is greater than 5. We then
define the k-Diagnostic Capability (DCk) of a
Test Set as the percent of faults which belong to
classes smaller than a given size k . The last
column reports DC6 , i.e., the percent number of
faults belonging to classes smaller than 6. DC6

corresponds to the percent number of faults for
which a reasonable resolution capability is
guaranteed. Today’s technology prevents the
exact computation of DC6: no tool is in fact
capable of partitioning the whole set of faults
into exact Fault Equivalence Classes. However,
the exact value of DC6 for the largest circuits is
expected to be generally low due to:
− the high (but unknown) number of untestable

faults, which belong to a same
Indistinguishability Class

− the large average size of classes.

Moreover, some circuits (like S9234 and
S15850) are known to be critical for GA-based
detection oriented ATPGs, too [PRSR94].

Memory occupation requirement is small, as it is
substantially confined to storage of the sequences and
to the space needed for the diagnostic fault simulation.

Effectiveness of the evolutionary approach is often
evaluated by comparing its performance with that of a
purely random one. In GARDA, phase 1 is random: the
GA further increases the number of Indistinguishability
Classes in phases 2 and 3. The percent ratio between
the number of classes for which the last split occurred
in phase 2 or 3, with respect to the total number of
classes, varies from one circuit to another, but is
greater than 60% for the largest circuits.

4. Conclusions

Generation of a Test Set with acceptable diagnostic
capabilities is a challenging task when the largest
circuits are considered, as the Test Set should
distinguish any non-equivalent couple of faults. The
task is thus much heavier than the one of generating
detection-oriented test patterns. In this paper GARDA,
a diagnostic ATPG for large synchronous sequential
circuits, has been described. Our approach is based on
Genetic Algorithms, and is able to produce good results
with acceptable CPU time and memory results. A

prototypical implementation has been developed, and
for the first time, a Test Set with significant diagnostic
capabilities has been generated for the largest
benchmark circuits.

5. Acknowledgments

The authors wish to thank Giovanni Squillero for
implementing GARDA.

6. References
[ABFr90] M. Abramovici, M. A. Breuer, A. D. Friedman,

“Digital systems testing and testable design,”
Computer Science Press, New York, USA, 1990

[BBKo89] F. Brglez, D. Bryant, K. Kozminski,
“Combinational profiles of sequential benchmark
circuits,” Proc. Int. Symp. on Circuits And
Systems, 1989, pp. 1929-1934

[CCCP92] G. Cabodi, P. Camurati, F. Corno, P. Prinetto,
M. Sonza Reorda, “Sequential circuit diagnosis
based on formal verification techniques,” Proc.
International Test Conf., 1992, pp. 187-196

 [CMPS90] P. Camurati, D. Medina. P. Prinetto, M. Sonza
Reorda, “A diagnostic test pattern generation
algorithm,” Proc. Int. Test Conf., 1992, pp. 52-
58

[GMKo91] T. Grüning, U. Mahlstedt, H. Koopmeiners,
“DIATEST: a fast diagnostic test pattern
generator for combinational circuits,” Proc. Int.
Conf. on Comp. Aided Design, 1991, pp. 194-
197

 [Holl75] J.H. Holland, “Adaption in Natural and Artificial
Systems,” University of Michigan Press, Ann
Arbor (USA), 1975

 [LeHa92] H.K. Lee, D.S. Ha, “HOPE: An Efficient Parallel
Fault Simulator for Synchronous Sequential
Circuits,” Proc. 29th Design Automation Conf.,
1992, pp. 336-340

 [PRSR94] P. Prinetto, M. Rebaudengo, M. Sonza Reorda,
“An Automatic Test Pattern Generator for Large
Sequential Circuits based on Genetic
Algorithms,”, Proc. Int. Test Conf., 1994

[RFPa92] E.M. Rudnick, W.K. Fuchs, J.H. Patel,
“Diagnostic Fault Simulation of Sequential
Circuits,” Proc. Int. Test Conf., 1992, pp. 178-
186

 [RHSP94] E.M. Rudnick, J.G. Holm, D.G. Saab, J.H. Patel,
“Application of Simple Genetic Algorithms to
Sequential Circuit Test Generation,” Proc.
European Design & Test Conf., 1994, pp. 40-45

[RPGN94] E.M. Rudnick, J.H. Patel, G.S. Greenstein, T.M.
Niermann, “Sequential Circuit Test Generation
in a Genetic Algorithm Framework,” Proc.
Design Automation Conf., 1994, pp. 698-704

Circuit # Indist. Classes CPU time # Sequences # Vectors
S1196 1157 1.5h 228 7012
S1238 1172 1h 198 6319
S1423 489 3h 141 8101
S1488 973 1.5h 88 5645
S1494 938 1.5h 66 3764
S5378 2424 8h 158 4076
S9234 75 4h 9 50
S13207 749 10h 48 1360
S15850 296 10h 27 309
S35932 7347 14h 35 362
S38417 2251 16h 88 820
S38584 5250 18h 90 765

Tab. 1: Experimental results.

Circuit # Indist. Classes
GARDA [CCCP92]

S1196 1160 1200
S1238 1172 1223
S1488 973 1390
S1494 938 1396

Tab. 2: Comparison with the exact results.

Circuit Number of Faults by Class Size Tot. DC 6

1 2 3 4 5 >5 [#] %
S1196 1107 96 6 4 5 24 1242 98.07
S1238 1098 132 6 20 0 99 1355 92.69
S1423 340 142 57 72 85 819 1515 45.94
S1488 846 190 63 28 10 349 1486 76.51
S1494 809 190 75 16 10 406 1506 73.04
S5378 1970 418 471 64 25 1655 4603 64.05
S9234 30 28 45 12 5 6807 6927 1.73
S13207 456 312 141 96 100 8710 9815 11.26
S15850 170 128 90 64 25 11242 11719 4.07
S35932 4350 3240 801 1452 75 29176 39094 25.37
S38417 1239 954 336 496 410 27745 31180 11.02
S38584 3603 1920 816 644 330 28993 36306 20.14

Tab. 3: Faults by Class size.

	ED&TC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

