
A Unified Model for Co-simulation and Co-synthesis
of Mixed Hardware/Software Systems

C. A. Valderrama 1 A. Changuel P.V. Raghavan M. Abid2 T. Ben Ismail A. A. Jerraya

TIMA / INPG, System-Level Synthesis Group
46 avenue Félix Viallet 38031 Grenoble CEDEX, FRANCE

Abstract

This paper presents a methodology for a unified co-
simulation and co-synthesis of hardware-software systems.
This approach addresses the modeling of communication
between the hardware and software modules at different
abstraction levels and for different design tools. The main
contribution is the use of a multi-view library concept in
order to hide specific hardware/software implementation
details and communication schemes. A system is viewed as
a set of communicating hardware(VHDL) and software(C)
sub-systems. The same C, VHDL descriptions can be used
for both co-simulation and hardware-software co-synthesis.
This approach is ilustrated by an example.

1. Introduction

The goal of this work is to develop a methodology for
the design of highly modular and flexible electronic
systems including both software and hardware. In this
paper, a system stands for the composition of a set of
distributed modules communicating through a network.
The general model is composed of three kinds of modules:
(1) Software (SW) modules, (2) Hardware (HW) modules,
and (3) Communication components.

This paper deal with the co-simulation and co-synthesis
of such heterogeneous system starting from a mixed
C,VHDL description. During this stage of the Co-Design
process, we assume that hardware software partitioning is
already made. The remaining steps include co-simulation
(joint simulation of the hardware and the software) and co-
synthesis (mapping of the model onto an architecture
including hardware blocks and software blocks).

The definition of a joint environment co-synthesis and
co-simulation poses the following challenges:

• communication between the HW and SW modules,
• coherence between the results of co-simulation and co-
synthesis and

• support for multiple platforms aimed at co-simulation
and co-synthesis.

The first issue is essentially caused due to three reasons:
Mismatch in the HW/SW execution speeds,

communication influenced by data dependencies and
support for different protocols [2].

The second issue is coming from the fact that different
environments are used for simulation and synthesis. In
order to evaluate the HW, the co-simulation environment
generally uses a co-simulation library that provides means
for communication between the HW and the SW. On the
other hand, the co-synthesis produces code and/or HW that
will execute on a real architecture. If enough care is not
taken, this could result in two different descriptions for co-
simulation and co-synthesis.

The third issue is imposed by the target architecture. In
general, the co-design is mapping a system specification
onto a HW-SW platform that includes a processor to
execute the SW and a set of ASICs to realize the HW. In
such a platform (Example: a standard PC with an extended
FPGA card), the communication model is generally fixed.
Of course, the goal is to be able to support as many
different platforms as possible.

This paper presents a flexible modeling strategy
allowing to deal with the three above mentioned problems.
The general model allows to separate the behaviour of the
modules (hardware and software) and the communication
units. Inter-modules interaction is abstracted using
communication primitives that hide the implementation
details of the communication units.

In the following section, we give a brief overview of the
existing co-design solutions. In section 3, we describe the
models used for co-synthesis and co-simulation, followed
by a real example (section 4). Finally, in section 5, we
conclude with perspectives and directions for the future
work.

2. Previous work

Several researchers have described frameworks and
methodologies for HW/SW Codesign [1]6][7][9][12].
Moreover, different methodologies have been appplied to
the co-simulation of heterogeneous HW/SW systems
[2][3][4][8][9][10][11].

Most of the previous works have been targetted towards
1: On leave from the Federal University of Rio deJaneiro, under grant
suported by CAPES/COFECUB, BRAZIL.
2 : On leave from University of Monastir, Tunisia.

either co-simulation or co-synthesis. Very few of them
tried to combine both [8][9][10]. However, they do not
address all the 3 problems mentioned in the previous
section, especially that of supporting multiple platforms.
Generally, they use a fixed communication scheme
provided by the chosen platform (Example: a PC-FPGA
platform) in which case, the first two problems addressed
are easily handled [5][7][8][12].

The goal of this work is to combine the co-simulation
and co-synthesis into a unified environment. The modeling
approach hides specific HW/SW implementation details
and communication schemes, thus, allowing the co-
synthesis and co-simulation to start from the same
description.

COSIMULATION

HW/SW ALGORITHMS HW/SW
Algorithms C

(SW)
VHDL
(HW)

SW Bus

HW/SW Bus

SW
Processor
ROM - I/O

HW/SW
Communication

Control

 HW
ASICs
FPGAs

COSYNTHESISC Compiler HW Synthesis

C
Library

VHDL
Library

Figure 1: Modeling methodology

Figure 1 shows a global view of the proposed
methodology. It starts from a modular description
composed of three parts: a set of HW components described
in VHDL, a set of SW components as C programs, and a
set of communication component(s) to connect the above
two parts. The latter, namely the communication
components, corresponds to a library of components,
which helps to hide the possibly complex behavior of an
existing platform.The first step is to validate the above
description using a HW/SW co-simulation. In this paper,
we assume a VHDL-based co-simulation environment.

To be precise, a VHDL entity is used to connect a HW
module with that of SW. The same description will be
used for co-synthesis as well. Each module can be
synthesized using the corresponding tool. Hardware(VHDL)
components are treated by high-level synthesis tools, while
software(C) components are handled by available software
compilers. The communication units are placed into a

HOST

COMMUNICATION
CONTROLLER

SERVER

PUT GET

Figure 2: The Communication Unit concept

library of components and are not synthesized. System-
level interaction is abstracted using communication
primitives that hide the underlying communication
protocol. Therefore, each sub-system can be treated
independently of the communication scheme. This
methodology enables the user to profit from a wide range
of communication schemes. This will be introduced in the
following section.

3. Communication Modeling

Communication between sub-systems is performed
using communication units [14]. A communication unit is
an entity able to execute a communication scheme invoked
through a procedure call mechanism. Access to the
communication unit is achieved by a fixed set of
procedures, known as methods or services. In order to
communicate, a system needs to access at least one
procedure by means of procedure call(s). The
communication unit can include a controller which guards
its current state as well as conflict-resolution functions.
The complexity of the controller may range from a simple
handshake protocol to as complex as a layered protocol.
The procedures interact with the controller which in turn
modifies the unit’s global state and synchronizes the
communication. By using this mechanism, it is possible
to model most system-level communication properties
such as message passing, shared resources and other more
complex protocols.

Figure 2 shows an abstract view of a communication
unit linking two processes (Host-Server) and offering two
services (procedures get and put). Each process can be
designed independently of one another.

In this conceptual view, the communication unit is an
object that can execute one or several procedures (get and
put) that may share some common resource(s)
(communication controller). A communication unit may
correspond to either an existing communication platform,
or a design produced by external tools, or to a subsystem
resulting from an early design session. This concept is
similar to the concept of system function library in pro-
gramming languages.

The use of procedures allows to hide the details related
to the communication unit. All access to the interface of
the communication unit is made through these procedures.
The procedures fix the protocol of exchanging parameters
between the sub-systems and the communication unit.
Communication abstraction in this manner, enables
modular specification [16]. This kind of model is very
common in the field of telecommunication.

In order to allow the use of a communication unit by
different modules, that may be either HW or SW, we need
to describe its communication procedures into different
views. The number and type of these views for each
procedure depend on the co-simulation and co-synthesis
environments.

Figure 3 gives three different views for the procedure
put, of which two are software views and one hardware
view. The two SW views are needed for co-simulation and
co-synthesis respectively. The SW simulation view hides
the simulation environment. The SW synthesis view hides
the VHDL, which is common to both co-simulation and
co-compilation environment.The HW view is given in
synthesis. In the case where we use different synthesis
systems supporting different abstraction levels (e.g. a
behavioral synthesis and an RTL synthesis), we may need
different views for the communication procedures.

The software synthesis view will depend upon the
choice of a target architecture. That is the reason why we
observe a stack of multiple SW Synthesis views in Figure

a) SW synthesis views

/*IBM/PC software synthesis view*/
typedef enum { INIT, . . ., IDLE } STATETABLE;
STATETABLE NEXTSTATE = INIT;
int PUT(REQUEST) INTEGER REQUEST;
{ switch(NEXTSTATE)
 { case INIT:
 { if(ToBIT(inport(map(B_FULL))) == BIT_1)
 { NEXTSTATE := WAIT_B_FULL; break; }
 outport(map(DATAIN),FromINTEGER(REQUEST));
 NEXTSTATE := DATA_RDY; break; }
 case WAIT_B_FULL :
 { if(ToBIT(inport(map(B_FULL))) == BIT_0)
 { NEXTSTATE := INIT; break; }}
 /*other "case" clauses*/
 default :{ NEXTSTATE = INIT; break; } }
 if (NEXTSTATE == IDLE) DONE = 0;
 else {NEXTSTATE == INIT; DONE = 1; }
return DONE; }

b) SW simulation view
typedef enum { INIT, . . ., IDLE } STATETABLE;
STATETABLE NEXTSTATE = INIT;
int PUT(REQUEST) INTEGER REQUEST;
{ switch(NEXTSTATE)
 { case INIT:
 { if(ToBIT(cliGetPortValue(map(B_FULL))) == BIT_1)
 { NEXTSTATE = WAIT_B_FULL; break; }
 cliOutput(map(DATAIN),FromINTEGER(REQUEST));
 NEXTSTATE = DATA_RDY; break; }
 case WAIT_B_FULL :
 { if(ToBIT(cliGetPortValue(map(B_FULL))) == BIT_0)
 { NEXTSTATE = INIT; break; }}
 /*other "case" clauses*/
 default: { NEXTSTATE = INIT; break; } }
 if (NEXTSTATE == IDLE) DONE = 0;
 else {NEXTSTATE = INIT; DONE = 1; }
return DONE; }

c) HW view
procedure PUT(REQUEST: in INTEGER) is
begin
 case NEXT_STATE is
 when INIT =>
 if B_FULL = '1' then NEXT_STATE := WAIT_B_FULL;
 end if;
 DATAIN <= REQUEST; NEXT_STATE := DATA_RDY;
 when WAIT_B_FULL =>
 if B_FULL = '0' then NEXT_STATE := INIT; end if;
 --other "when" clauses
 when OTHERS => NEXTSTATE := INIT;
 end case;
 if NEXTSTATE = IDLE then DONE := '0';
 else NEXTSTATE = INIT; DONE := '1'; end if;
end procedure;

Figure 3 : Different views of a communication procedure

3. If the communication is entirely a software executing on
a given operating system, communication procedure calls
are expanded into system calls, making use of existing
communication mechanisms available within the system
(for example, Inter Process Communication of UNIX). If
the communication is to be executed on a standard
processor, the call becomes an access to a bus routine
written as an assembler code. The communication can also
be executed as an embedded software on a hardware datapath
controlled by a micro-coded controller, in which case, our
communication procedure call will become a call to a
standard micro-code routine. To summarize, we have one
HW view given in VHDL, one SW simulation view given
in C, and a SW synthesis view specific to each target
architecture.

4. An example

Our approach has been successfully used for modelling
an Adaptative Motor Controller system. The Adaptative
Motor Controller adjusts the position and speed parameters
of a motor to avoid discontinuous operation problems. For
example, the control in a 2-D space needs one motor for
each axis (X and Y) and an associated control system for a
continuous movement. As shown in figure 4, the
Adaptative Motor Controller is composed of two sub-
systems communicating via a channel of communication.

Communication
Channel

USER
Interface

parameters
MOTOR

Coordinates
Control
Signals

DISTRIBUTION
Sub-System
position/motor
coordinates

SPEED
CONTROL

Sub-System
speed

coordinates

Figure 4: Adaptative Motor Controller

The Distribution sub-system provides the traveling
distance to the Speed Control sub-system. With the
specified final position and the current state of a motor, the
Speed Control sub-system computes the number of speed
control pulses and translates them into motor control
signals.The system is partitioned into communicating
HW/SW sub-systems and its associated communication
units (figure 5). The communication between software and
hardware is described using a SW/HW communication unit
composed of two groups of access procedures
(Distribution_Interface and Control_Interface). The
communication between the Speed Control sub-system and
the motor is achieved by a HW/HW communication unit
(accesed by a collection of procedures called
Motor_Interface). The use of the above communication
units enables the description of the sub-systems
independent of the architectural platform that may be
chosen.

The Distribution sub-system is a software model.
Figure 6a shows its main computation steps and the main

SW/HW
COM. UNIT

HW/HW
COM. UNIT

Hardware Ports

Communication
Controller

Control_Interface
Access Procedures

Distribution_Interface
Access Procedures

Hardware Ports

Communication
Controller

Motor_Interface
Access Procedures

Motor
Abstract Model

Hardware

Speed Control
Sub-system

Abstract Model

Software

Distribution
Sub-system

Abstract Model

Figure 5: The Adaptative Motor Controller: HW/SW communicating sub-systems

communication primitives used by this subsystem. It
activates the Speed Control sub-system of the motor by
specifying the maximum position value and the maximum
number of speed-pulses.

The total translation distance of the motor is divided
into segments and is sent to the Speed Control sub-system
as bundles of data. The initialization data, motor selection
and position coordinates are transmitted to the Speed
Control sub-system by the Distribution_Interface access
procedures (Se tupCon t ro l , MotorPos i t i on , and
ReadMotorState) which communicate through the I/O
interface (SW/HW ports).

Figure 6b shows an extract of the C code corresponding
to the Distribution Sub-system. The code is organized as a
finite state machine composed of states and transitions.
During simulation, each time a software component is
activated, all the code is executed. In our case, only one
transition is executed. This model allows for a precise
synchronization between software and hardware.

The Speed Control sub-system is a hardware model
described in VHDL (figure 7). This sub-system uses
communication procedures, which are described in VHDL.
The sub-system is composed of three parallel units, named:
P o s i t i o n , C o r e and T i m e r . The P o s i t i o n unit
communicates with the Distribution sub-system using the
Control_Interface access procedures by sending the actual
motor state (via ReturnMotorState access procedure) and
waiting for the new coordinates and motor constraint
parameters (ReadMotorConstraints and ReadMotorPosition
access procedures). TheCore unit computes the residual
position and the next operation conditions. It

communicates with the two other units using simple
VHDL signals. The Timer unit sends a set of control
pulses to the motor and reads the motor coordinates using
the Motor_Interface access procedures (SendMotorPulses
and ReadSampledData).

As stated above we use a VHDL based simulator. The
cosimulation step allows for a functional validation of the
specification. Once the co-simulation step is achieved, co-
synthesis may start. In this case we used an architecture
composed of a PC-AT communicationg with an FPGA
based board via the extension bus of the PC. During co-
synthesis, the communication primitives selected
correspond to the target architectures. The software
primitives correspond to C programs that makes use of
specific system calls (I/O routines) requiring some physical
addresses. The communication primitives used by the
hardware side are written in order to respect the timing and
the protocol considerations required by the PC and the
motor signals. As shown in figure 8, the Distribution sub-
system (a C program) was compiled on a 386-based PC-
AT which communicates with a development board (the
Speed Control sub-system) via a 16-bit parallel bus
(synchronous communication, 10 Mhz, address 300h). The
Speed Control sub-system was synthesized onto a Xilinx
4000-series FPGA, associated with memories (EPROMs)
and a microcomputer interface. An analysis of the
prototype system indicates that this solution correctly
implements the system functionality while meeting the
real-time constraints.

In order to map this application onto another
target architecture, we need to have the corresponding

b)

int DISTRIBUTION()
{ DONE = 1;
 switch(NextState)
 { case Start:
 { /*LoadMotorContraints*/
 NextState=SetupControlCall; } break;
 case SetupControlCall:
 { if (SetupControl()){ NextState=Step; } } break;
 case Step:
 { /*PositionDefinition*/
 NextState=MotorPositionCall; } break;
 case MotorPositionCall:
 { if(MotorPosition(POSITION)) { NextState=Next; } } break;
 /*OTHER "CASE" STATEMENTS*/
 default:
 { NextState=Starts; } }
 return DONE; }a)

DISTRIBUTION
SUB-SYSTEM

SW/HW
Bus

Distribution_Interface
Communication
Procedures :
* SetupControl
* MotorPosition
* ReadMotorState

Compute
Communication
Primitive
State
Test

Start

MotorPosition

Step

PositionDefinition

SetupControl

LoadMotorConstraints

UpdatePosition

ReadMotorState

NextStepNext

Figure 6: Distribution Sub-system

SPEED CONTROL
SUB-SYSTEM

SpeedControl_Interface
Communication
Procedures :
* ReadMotorConstraints
* ReadMotorPosition
* ReturnMotorState

Motor_Interface
Communication
Procedures :
* ReadSampledData
* SendMotorPulses

SW/HW
Bus

Motor
Signals

-- POSITION unit :
process begin
 if not STARTUP then
 ReadMotorconstraints
 ReadMotorPosition
 end if ;
 if ENDPOSITION then
 ReturnMotorState
 ReadMotorPosition
 end if ;
end process ;

-- CORE unit :
process begin
 ReadSampledData
 MotorVariables :
 --ComputeDirection
 --ComputeSpeed
 --ComputeAsceleration
 --ComputeResidualPosition
 end process ;

-- TIMER unit :
process begin
 --ComputePulseWide
 SendMotorPulses
 --ComputeDesviation
end process ;

Figure 7: Speed Control System(VHDL)

communication primitives. One can note that the target
architecture may be a complex multiprocessor architecture.

5. Conclusion

This paper presented an environment for hardware-
software co-design based on mixed C, VHDL
specifications. A unified co-synthesis and co-simulation
methodology is ensured by the utilization of the same
descriptions for both steps. It also allows to accomodate
several architectural models through the use of a library of
communication models enabling the abstraction of existing
communication schemes. In other words, the same module
descriptions are usable with different architectures in terms
of their underlying communication protocols. Future work
consists of developing tools for evaluation and back-
annotation with the results of co-synthesis tools.

Microprocessor

Speed Control
Component

FPGA

Software
Part

Hardware
Part

Motor

PC AT Extension bus

System
Memory
EPROM

RAM

Figure 8: The Adaptative Motor Controller System
Prototype

References

[1] T.Ben Ismail, M.Abid, K.O'Brien, A.A.Jerraya, "An
Approach for Hardware-Software Codesign", RSP'94,
Grenoble, France, June 1994.

[2] K.Ten Hagen, H.Meyer, "Timed and Untimed Hardware/
Software Cosimulation: Application and Efficient
Implementation", International Workshop on Hardware-
Software Codesign,Cambridge,October 1993.

[3] W.M.Loucks,B.J.Doray,D.G.Agnew,"Experiences In
Real Time Hardware-Software Cosimulation",Proc VHDL
Int. Users Forum (VIUF),Otawa,Canada,pp.47-57,April
1993.

[4] B.K.Fross, "Modeling Techniques Using VHDL/C-
language Interfacing", March 30,1993.

[5] R.K.Gupta,G.De Micheli,"System-level Synthesis using
Re-programmable Components",Proc.Third European
Conf. Design Automation, IEEE CS Press,pp.2-7,1992.

[6] A.Kalavade,E.A.Lee,"A Hardware-Software Codesign
Methodology for DSP Applications",IEEE Design and
Test of Computers,pp.16-28,September 1993.

[7] J.K.Adams, H.Schmit, D.E.Thomas, "A Model and
Methodology for Hardware-Software Codesign",
International Workshop on Hardware-Software
Codesign, Cambridge, October 1993.

[8] S.Lee,J.M.Rabaey,"A Hardware Software Cosimulation
Environment",International Workshop on Hardware-
Software Codesign,Cambridge,October 1993.

[9] H.Fleukers,J.A.Jess,"ESCAPE: A Flexible Design and
Simulation Environment", Proc. of The Synthesis and
Simulation Meeting and International Interchange,
SASIMI'93,pp.277-288,Oct.1993.

[10] N.L. Rethman, P.A.Wilsey, "RAPID: A Tool For
Hardware/ Software Tradeoff Analysis", Proc. CHDL'93,
Otawa,Canada,April 1993.

[11] P.Camurati, F.Corno, P.Prinetto, C.Bayol, B.Soulas,
"System-Level Modeling and Verification: a
Comprehensive Design Methodology", Proc. of EDAC-
ETC-EuroASIC'94,Paris,February 1994.

[12] E.A.Walkup,G.Boriello,"Automatic Synthesis of Device
Drivers for Hardware/Software Co-design", International
Workshop on Hardware-Software Codesign, Cambridge,
October 1993.

[13] A.A.Jerraya,K.O'Brien, "SOLAR: An Intermediate
Format for System-level Modeling and Synthesis",
"Computer Aided Software/Hardware Engineering",
J.Rozenblit, K.Buchenrieder(eds),IEEE Press,1994.

[14] K.O'Brien,T.Ben Ismail,A.A.Jerraya,"A Flexible
Communication Modelling Paradigm for System-level
Synthesis",International Workshop on Hardware-
Software Codesign,Cambridge,October 1993.

[15] "Synopsys VHDL System Simulator Interfaces Manual:
C-language Interface",Synopsys Inc.,Version 3.0b,June
1993.

[16] D.Ungar, R.B.Smith, C.Chambers, U.Holzle, “Object,
Message, and Perfomance: How They Coexist in Self“,
IEEE Computer, October1992.

	ED&TC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

