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Abstract — Many asynchronous designs are naturally specified and
implemented hierarchically as an interconnection of separate asyn-
chronous modules that operate concurrently and communicate with
each other. This paper is concerned with the problem of synthesizing
such hierarchically defined systems. When the individual components
are synthesized and implemented separately, it is desirable to take into
account the degrees of freedom that arise from the interactions with the
other components and from the specification. Specifically, we consider
how one can find the set of implementations that can be “correctly sub-
stituted” for a component in the system while preserving the behavior
of the total system. The notion of correct substitution is formally de-
fined for a hierarchical network of possibly non-deterministic modules
and a new solution framework based on trace theory is presented to
compute and represent this complete set of correct substitutions. We
show that the complete set can be captured by a single trace structure
using the notion of a “maximaltrace structure”. We indicate how asyn-
chronous synthesis methods may be applied to explore the solution
space e.g. to generate a delay-insensitive implementation.

I INTRODUCTION

The role of asynchronous design is gaining importance due to
increasing difficulties with problems like clock skew and power
dissipation. In many design scenarios, the design is most natu-
rally described and implemented hierarchically as a network of
separate asynchronous modules that operate concurrently and
communicate with each other. Hierarchical representations are
especially important when the design is compiled from a high-
level language. Also, implementation constraints may force their
physical implementations to be separated. Indeed, real-life de-
signs show that many asynchronous applications are inherently
distributive and highly interactive, thus requiring methods to
handle them. When optimizing each individual component sep-
arately, it is desirable to take into account the degrees of freedom
that arise from the interactions with the other components and
from the specification. This is analogous to the problem of op-
timizing hierarchically combinational and synchronous circuits,
which has been studied extensively.

For the design of asynchronous control circuits, the ex-
isting literature describes a number of automated algorith-
mic approaches based on Petri net and state machine models
[2, 4, 10, 11, 15, 20, 21, 22, 23]. These works have focussed mainly
on the synthesis and optimization of individual asynchronous
modules without considering the optimization freedom avail-
able in optimizing concurrent behavior. Methods based on mod-
els of communicating processes have also been extensively stud-
ied in the literature [1, 3, 13, 18]. These methods are mainly based
on syntax-directed translation techniques. Though these meth-
ods can effectively model concurrent behavior, they also have
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not considered the degrees of freedom available for hierarchical
optimization. Recently, an approach based on a communicating
Petri net model was proposed for hierarchically optimizing con-
current asynchronous modules [5]. The approach works at the
Petri net level. For each module in the hierarchical description,
the approach aims at computing a “reduced” Petri-net model
for it by considering the restrictions imposed by the interactions
with other modules. However, not all degrees of freedom were
captured.

In this paper, we present a new approach to the hierarchi-
cal optimization problem based on trace theory. Our work is
mainly focussed at the signal-level, comparable to the level be-
ing explored by current Signal transition graph and State graph
based methods [2, 4, 10, 11, 20, 21, 22]. Trace theory has been
developed by Rem, van de Snepscheut, and Udding [16, 19], and
by Dill [6] for the analysis and verification of speed-independent
circuits. In contrast to these works, our work here is focussed on
automated synthesis and hierarchical optimization. We use a version
of prefix-closed trace structures as described by Dill [6], which
are closely related to the Muller state graph model [14] widely
used for synthesis, to model both the global specification and
the individual components. The global specification represents
the overall desired behavior, which may be mechanically com-
piled from different high-level formalisms [4, 13, 18, 20]. The
individual components that represent the partial implementa-
tion may either be described by a high-level specification, if it
has still to be synthesized, or by a circuit-level description, if it
has already been implemented. In both cases, a trace structure
representation can be derived for each individual component.

In Figure 1, the hierarchical optimization problem is depicted.
In this figure, T1 is the component being optimized, T2 is the
partial implementation, which may be composed from several
smaller components, and T is the overall desired specification
that we wish to implement. When optimizing T1, it is possible
to exploit the degrees of freedom that arise from the interactions
with the other components, which in this case are T2 and the
environment. The behavior of the environment is captured in T .
For example, certain “sequences of events” are never generated
by T2 or the environment, representing “don’t care” conditions
that can be exploited in optimization. Similarly, there are pos-
sibly alternative sequences of events that can be generated by
T1 that do not change the overall correctness of the composed
system. In general, the problem is to find all the behaviors
that can be “correctly substituted” for T1. This general problem
subsumes notions of “don’t care sequences” as there are other
degrees of freedom that can be exploited in optimization. We say
an implementation is a correct substitution at T1 if the result of the
entire system after composing with T2 meets the specification T .
When the partial implementation T2 has not been fully synthesized,
meaning that some of the components are still at the specification
level, T1 must be optimized in such way that it leads to a correct
implementation of T independent of the eventual implementation
of T2 as long as this eventual implementation meets the partial
specification of T2. This general situation is realistic in practice
and is properly handled in our framework.

To formally address the correct substitution problem, an im-
plementation preorder is needed that states when a circuit may
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Figure 1: SpecificationT of a hierarchical design;T1 is the compo-
nent to be optimized; T2 represents the partial implementation.

be “safely” substituted by another one, irrespective of its envi-
ronment. In e.g. [6, 7], such necessary conditions are given.
The insufficiency of these conditions, as they may lead to “incor-
rect circuits”, has also been observed in [8], where constraints
are defined to remedy this. However, these constraints restrict
the design space too severely by stating that all specified behav-
ior of the specification must be made. This is not necessary in
the case of non-deterministic output choices. In this paper we
extend the implementation pre-order of conformance to rem-
edy its deficiency for hierarchical synthesis and optimization of
incompletely specified and non-determistic specifications. In
[12], a similar approach is used for synchronous systems. Non-
determinism is usually the key to succinct (hierarchical) speci-
fications as it allows to describe a set of possible behaviors in a
single specification. It provides synthesis methods with all the
possible freedom for optimization.

We show that all possible correct substitutions for a hierarchically
defined component can be captured by a single trace structure us-
ing a notion of a maximal trace structure, and we present a general
solution framework for computing this maximal trace structure.
The computed trace structure is maximal in the sense that all
trace structures that correspond to “correct substitutions” can be
derived from it via some combination of “concurrency reduc-
tion” and “state assignment”. From a synthesis point of view,
this maximal trace structurecan be viewed as a state graph where
state graph based concurrency reduction, state assignment, and
gate-level hazard-free synthesis methods can be applied to ex-
plore the solution space [2, 4, 10, 11, 15, 20, 21, 22]. Note that
an initial behavior of T1 may not be given. This situation arises
in the “rectification” problem where we are trying to modify
an “existing” design (the partial implementation) by attaching
additional circuitry to it (the component under consideration).

The outline of the paper is as follows. Section II provides no-
tation and terminology used in this paper. Section III develops
notions of progress and simulation that extend the basic notion
of conformance used in verification in order to characterize the
correct substitution problem and the issue of implementability.
Section IV presents the framework for characterizing and com-
puting the set of all correct substitutions. Section V addresses the
problem of synthesis and optimization from the maximal set of
correct substitutions. We have implemented our solution frame-
work and have applied it to a number of examples. Section VI
summarizes these experiments.

II NOTATIONS AND TERMINOLOGY

In this section we will introduce the mathematical notions used in
this paper. First we will present state graphs as the specification
formalism for an asynchronous circuit to be synthesized.

A State Graphs

State graphs are a commonly used entry point for the auto-
matic synthesis of asynchronous circuits [21, 22]. State graphs
can be derived procedurally from higher-level specifications like
bounded Petri-nets (i.e. Signal Transition Graphs [4]) and can
thereafter be manipulated to yield, for example, a hazard-free
circuit.

Formally, a state graph is a finite state machine represented
by a five-tuple G = (I;O; S; �; so). I is the set of input wires,
and O is the set of output wires, (I \ O = ;). S is a finite set
of states and s0 2 S is the start state. Let the alphabet A be
defined by A = I [O. Then T = A� f+;�g is the set of signal
transitions, where each transition is represented as a+ or a� for
a rising or a falling transition on a wire a 2 A respectively. Then
� : S � T 7! 2S is a mapping representing the transition relation
such that if �(s; t) = s0 is defined, t is said to be enabled in state s
and the firing of t takes the system from state s to state s0. This is

also denoted as s
t

! s0.
Each state in the state graph is labeled with a binary vector

hs(1); s(2); : : : ; s(n)i according to the wires A = fa1; a2; : : : ; ang

of the system. The labeling is given by a state assignment function
�A : S � A 7! f0; 1g where for a given state s 2 S, s(i) denotes
the i-th component of s corresponding to the value of wire ai 2
A. The state assignment function is defined as follows: (1) if
s(i) = 0 ^ t = ai+ then s0(i) = 1; (2) else if s(i) = 1 ^ t = ai�

then s0(i) = 0; (3) otherwise, s0(i) = s(i).
A state in the state graph captures the state of all wires in a

circuit, while a state transition is a transition of exactly one wire.
There may be many wires enabled in a state, but exactly one
signal transition is fired at a time implying it to be an interleaved
concurrency model.

B Trace Structures

In the previous section, we have defined state graphs as a spec-
ification model of asynchronous circuits. In [6, 16, 19], trace
structures are defined to formally reason about asynchronous
circuits. Trace structures are an extension of state graphs by
having an additional notion of failure such that a refinement re-
lation can be introduced for correctness implementability. For
this paper to be self-contained, we will in this section review
trace theory as can for instance be found in [6].

A trace is a sequence of input and output transitions defined
over the input signals I and output signalsO of a circuit. A trace
structure then defines the set of success, failure and impossible
traces of an asynchronous circuit. Formally and most generally,a
trace structure T is a quadruple (I;O; S;F ), where I is a finite set
of input signals and O is a finite set of output signals (I \O = ;).
Let A = I [ O. Then S � A? is the set of success traces and
F � A? is the set of failure traces. The set P of possible traces is
defined to be P = S [ F and the set X = A?

� P forms the
impossible traces.

For asynchronous circuits, we only need to consider canonical
prefix-closed trace structures in which S is prefix-closed, S \F = ;

and F = ((S [ f�g)I � S)A?. It follows that for canonical trace
structures the sets F and X are suffix closed and are completely
determined by the success language S of the trace structure. Se-
mantically, for a canonical trace structure representing a circuit,
F captures the input events under which the behavior of the cir-
cuit is not defined. X represents traces with outputs that are not
generated by the circuit. Although we are only interested canon-
ical trace structures, some of the intermediate steps below may
yield non-canonical trace structures.

To define operations on trace structures, we first introduce two
auxiliary functions. Let �(D)(x) : A?

7! (A�D)? be a function
that maps a string x, defined over alphabet A, to a string x0



defined over A � D such that any occurrence of a symbol in x

that is inD is replaced by the empty string �. �(D)(x)on a string
x is extended in the natural way to a function �(D)(X) over a
set of strings X . Let ��1

(D)(x0) = fx 2 A?

j �(D)(x) = x0g be
the inverse homomorphic image function of �.

The hide operator is used to define a trace structure in only
a partial alphabet. Formally, let D be a set of signals to hide.
Then T 0

= hide(D)(T ) is the trace structure T 0

= (I � D;O �

D;�(D)(S); �(D)(F )). Normally, hiding is only applied to a set
of output signals. The projection onto a set of signals is the dual of
the hide operator: T 0 = project(D)(T ) = hide((I [O)�D)(T ).
As a result of applying hide the trace structure may be non-
canonical since the resulting success and failure language may
overlap. When a system is supposed to fail whenever it may
possibly fail, the resulting trace structure can be made canonical
by removing the overlapping failure traces from S, as in [6].

The essential operation on circuits is the construction of a
network of circuits by interconnecting them through common
wires. This composition operator determines the common behav-
ior of the two trace structures. To allow this, the languages have
to be defined over a common alphabet. Let T = (I;O; S; F ) and
T 0

= (I 0;O0; S0; F 0

), with O \ O0

= ;, be two trace structures
defined over the same alphabet. Formally, the composition of
T and T 0 , denoted as T k T 0 , is defined as the trace structure
T 00

= ((I [ I 0) � (O [ O0

);O [ O0; S00; F 00

) with S00 = S \ S0 ,
F 00 = (F \P 0)[ (P \F 0) andX 00 = X [X 0. For trace structures
T andT 0 that are not defined over the same alphabet, the compo-
sition is defined as T k T 0 = ��1(A0

�A)(T ) k ��1(A�A0)(T 0)
by first expanding them to a common alphabet.

C Conformance
Given a specification TS , and an implementation TI , TI is said
to be a “safe substitution” when it does not show more behavior
than given by the specification. This safe substitution is also
called conformance and can be formally defined in terms of lan-
guages as:

Definition 1 Let T = (I;O; S; F ) and T 0 = (I 0;O0; S0; F 0) be two
canonical, non-empty trace structures. T conforms to T 0, denoted
T � T 0 , iff I = I 0,O = O0 andP � P 0 andF � F 0 (or equivalently:
X � X 0 and F � F 0).

Conformance is a necessary condition for a circuit to correctly
implement a specification and the above definition directly pro-
vides a procedure for checking it based on language containment.

A trace structure T = (I;O; S; F ) is called failure free if its
failure set F is empty. The mirror or reflection of a trace struc-
ture T = (I;O; S; F ), denoted by mirror(T ), defines a unique
maximum environment TM such that T composed with that en-
vironment TM yields a failure-free trace structure [6, 7]. For a
canonical trace structure T = (I;O; S;F ), mirror(T ) is defined
as (O; I;S;X). Conformance can now equivalently be defined
using the mirror operation:

Lemma 1 Let TI and TS be two canonical, non-empty trace struc-
tures. Then TI � TS iff TI k mirror(TS) is failure-free:

While state graphs are used as a starting point for the synthesis of
a circuit implementing it, they can be translated very easily into
trace structures so that it is possible to formally reason with them.
As we consider only canonical trace structuresT = (I;O; S;F ) in
which the failure set and the impossible trace set are determined
uniquely by the success language, such trace structures are fully
characterized by a triple (I;O; S). In Section V we show that all
operations on trace structures can be implemented by operations
on (deterministic) finite automata [9]. It is then straightforward

to see that state graphs are canonical trace structures in which
the state graph itself represents exactly the success language.

Note that state graphs have a 4-phase interpretation of sig-
nal transitions by using explicit rise and fall transitions in the
description, whereas the trace structures defined in [6] use a 2-
phase interpretation of such events. However, this difference in
interpretation only shows up in the computation of the failure
(and impossible) trace sets for a canonical trace structure. Dill’s
trace theory can then be applied without further change.

III PROGRESS AND SIMULATION

In this section, we develop notions of progress and simulation
that extend the basic notion of conformance used in verifica-
tion in order to characterize the correct substitution problem.
Conformance is a necessary but not sufficient condition for a
trace structure TI to actually implement a trace structure TS . It
guarantees that nothing “bad” happens, but it does not require
for the actual implementation to produce sufficiently enough
success traces. As an example, the empty trace set is always
conforming.

To remedy this, we define a notion of progress of a trace struc-
ture TI with respect to a trace structure TS with the same input
and output signals. Intuitively, progress states that if a suc-
cess trace is in both trace structures TS and TI , and that trace
is followed in the specification TS by events on output signals
only, then TI generates at least one of those output events. This
property is not guaranteed by conformance alone. Conformance
would actually allow that success trace to become an impossible
trace on those outputs in TI , resulting in a practically useless
circuit. Formally, progress is defined as follows.

Definition 2 Let TI = (I;O; S;F ) and TS = (I 0;O0; S0; F 0) be
two trace structures with I = I 0;O = O0 . The set V (x) = faja 2

A;xa in S0g is the set of symbols that are accepting suffixes of a string
x in S0 . Then TI is said to make progress w.r.t. TS iff

x 2 S ^ V (x) � O ) 9p 2 V (x) : xp 2 S

I.e. when a success trace can only be extended by some outputs
in the specification, the set of success traces of TI must include
at least one of these outputs.

Now, we can define the necessary and sufficient conditions of
a trace structure to correctly implement a specification,expressed
by the term simulation:

Definition 3 Let TI = (I;O; S; F ) and TS = (I 0;O0; S0; F 0)

be two canonical, non-empty trace structures with I = I 0;O =

O0. TI simulates TS , denoted as TI � TS , iff TI �

TS and TI makes progress w.r.t. TS

When we say that T simulates T 0 , we imply several proper-
ties. First, all input choices in T 0 are maintained in T and
in addition no outputs may be generated by T that were not
specified in T 0 . These properties are expressed by the con-
formance constraint. Furthermore, the progress constraint ex-
presses that at least one output has to be generated by T when
there are only output choices for a trace in T 0 . As an exam-
ple, let T 0 = (fag; fb; c; dg; (a(b + c + d))?;A?aaA?). Then
T = (fag; fb; c; dg; (a(b + c)a(c+ d)a(b + d))?;A?aaA?) makes
progress w.r.t. T 0 but T 00 = (fag; fb; c; dg; a(d)a; A?aaA?) does
not.

Note that in a situation where for a success trace there are in-
put choices as well as output choices, simulation implies that all
inputs choices must be present in T but an arbitrary (and possi-
bly empty) subset of the output choices may be present inT . This
reduction of output choices allowed by the simulation property,
is called output concurrency reduction, and it is valid from a behav-
ioral point of view, i.e. in terms of success traces. However, it is



possible that synthesis techniques do not allow arbitrary output
concurrency reduction as the assumed underlying architecture
of the circuit may require certain properties about the structure
of the state graph and therefore of the set of success traces.

IV FINDING THE MAXIMUM SET OF CORRECT SUBSTITUTIONS

A known and important problem in the context of interacting
hierarchical asynchronous circuits, is the correct substitution prob-
lem. This problem was already motivated and intuitively de-
picted in Section I. In this section, the theoretical framework for
this problem is stated in terms of trace structures using the no-
tions of progress and simulation defined in the previous section.
This will provide us with a general solution to the problem by the
derivation of a maximal trace structure.

Due to the interaction of the replaceable circuit with its sur-
rounding network, of which the behavior is (partially) specified,
the environment of the circuit to be replaced may be more re-
stricted, e.g. by generating less inputs to this circuit, then given
by its initial specification. Therefore, in general more than a
single solution exists to the correct substitution problem.

Besides this cause of possibly having more than one correct
substitution, the choice of network topology also affects the solu-
tion space. A network topology defines the actual interconnection
of the substituted module with the rest of the system. In Fig-
ure 1, the replaceable module T1 is shown to have a particular
set of input and output signals. It can, however, be the case that
a solution for T1 with also using some internal signal of T2, or
primary input or output of T which was not specified as input or
output for T1, may result in a more efficient solution replacement
for T1. Those signals reflect behavior already implemented by
another module which may be used in the implementation of T1.

To represent all the possible solutions to the correct substitu-
tion problem, we will exactly define the maximal behavior to
which the solution must conform. It will be proven that this
maximal behavior can be represented by a single canonical trace
structure. By the use of trace structures, which describe the
behavior of hierarchical systems in terms of languages, a full
general model is provided. In addition, it can be made inde-
pendent of the specific network topology of (local) input and
(local) output signals. This allows to describe solutions ranging
over an arbitrary topology. Therefore, we formulate the solution
of the correct substitution problem in two ways. One describes
the circuit to be substituted depending on the global space of all
possible inputs, while the other describes it in terms of a particu-
lar topology. In the following, let the specification of the overall
circuit be given by a trace structure T = (I;O; S;F ), and the
module that is to be replaced be given by T1 = (I1;O1; S1; F1).
The remaining and (possibly only partially) specified partial im-
plementation is represented by a single canonical trace structure
T2 = (I2;O2; S2; F2). T2 can be derived by the parallel composi-
tion of all the trace structures of its modules.

In the following, we will show that a maximal trace struc-
ture can be derived for the correct substitution problem. This
circuit is maximal in the sense that there exists no other solu-
tion that has more concurrency. It is the solution that does not
restrict the freedom of synthesis tools to generate an implemen-
tation with respect to their own implementation constraints and
optimization strategies. Two main techniques are used in au-
tomatic asynchronous circuit design: (1) reduction of output
concurrency, and (2) addition of state signals. State signals may
be added to get a state assignment with which, for example, a
speed-independent circuit can be generated. We show that any
implementation generated in this way from the maximal solu-
tion is also a solution to the correct substitution problem. The
correct substitution problem is formally defined as follows.

Problem 1 Let T2 and T be canonical trace structures. T represents
the specification and T2 represents a partial implementation. The cor-
rect substitution problem is defined to be the problem of findingT1 such
that T1 k T2 � T

To provide a solution to this problem we make use of the follow-
ing intermediate results.

Theorem 1 (Global Space) Let T1, T2 (implementations) and T

(specification) be canonical trace structures with alphabets A1, A2

and A, respectively. Assume O1 \ O2 = ; and that A = A1 [ A2

and A1 = A [ A2. Then T1 k T2 � T if and only if
T1 � mirror(T2 k mirror(T )):

Proof: Let TI = T1 k T2, which implies TI � T . By the defini-
tions of conformance and the mirror operator, we know thatTI �
T if and only if TI k mirror(T ) is failure free. Expanding on TI ,
it follows that T1 k T2 � T if and only if (T1 k T2) k mirror(T )
is failure free. Because the compose operator is associative, it
follows that T1 k (T2 k mirror(T )) must also failure free. This is
the case if and only if T1 � mirror(T2 k mirror(T )). 2

Corollary 1 If T1 � mirror (T2 k mirror(T )), then 8 T 0

2 � T2 :
T1 k T

0

2 � T .

Let Tmax = mirror(T2 k mirror(T )) be the maximal trace struc-
ture. Theorem 1 shows that all T1 � Tmax composed with T2

conform to T . However, as the corollary shows, this is also valid
when T1 is composed with an arbitrary implementation T 0

2 of
T2. This shows that Tmax is maximal wrt to the conformance
ordering�.

Theorem 1 defines the trace structure T1 in terms of the global
space of all possible input signals. However, in reality, a compo-
nent in a network of asynchronous circuits may only be defined
in terms of a subset of all possible input signals. This can be
required for reasons of optimization, to reduce the number of
dependencies, or simply because in the actual implementation
of the network, T1 does not have all possible input signals at its
disposal. Then, T1 in Theorem 1 should be made independent of
certain inputs. Equivalently, this can be expressed as the hiding
of output signals on the mirror of T1.

Now, we can express the conformance constraint to find the
maximal trace structure in terms of a local space for T 0

1 .

Theorem 2 (Local Space) LetT1, T2 (implementations) andT (spec-
ification) be trace structures with alphabets A1, A2 and A, respec-
tively. Assume that T1 and T2 do not share any outputs (so they
can be composed), and that A = A1 [ A2. Also assume that
A1 � A [ A2. Then project(A)(T1kT2) � T if and only if
T1 � mirror(project(A1)(T2kmirror(T ))):

A similar corollary as above can be stated.
As Tmax is in general not independent on all input signals, it

is evident that signals may not be arbitrarily hidden. For those
network topologies, an implementable solution does not exist to
the correct substitution problem. It will be shown later how this
can be checked according to the progress notion.

Theorem 3 Let Tmax = mirror(T2 k mirror(T )) in the case of
the global space situation, and let Tmax = mirror(project(A1)

(T2 k mirror(T ))) in the case of the local space situation. Then
(T1 k T2) � T if and only if T1 � Tmax and (I;O; S1; (S1:I �

S1):A
?) � T .

Note that the latter condition equals to T1 � T in case T1 has
the same set of inputs and outputs as T (e.g. in the global space
situation).



Proof: By definition of simulation, (T1kT2) � T holds iff
(T1kT2) � T and (T1kT2) makes progress w.r.t. T . This first
condition holds iff T1 � Tmax, by Theorem 1.

Regarding the second necessary condition that (T1kT2) must
make progress w.r.t. T , note that the success language generated
by (T1kT2) is at mostSmax\S2 = (S\S2)\S2 = (S\S2) = Smax .
Therefore, (T1kT2) makes progress w.r.t. T iff the success lan-
guage of T1 � Tmax actually makes progress w.r.t. T . There-
fore, since strict formally we can not compare T1 and T directly,
since their input and output signals are not compatible, we use
(I;O; S1; (S1:I � S1):A

?

) � T . 2
Instead of checking for all possible T1 � Tmax if it simulates T
to see if a solution exists to the correct substitution problem, we
actually compute Tmax first and remove all traces from it that do
not make progress w.r.t. T . The resulting trace structure T 0

max

contains all possible solutions. If T 0

max
, after composition with

(I2;O2;A
�

2 ; ;), does not simulate T , then no solution exists, due
to the restricted behavior of T2.

V SYNTHESIS PROCEDURE

The theorems stated in the previous sections provide us a with
a solution framework to optimize or synthesize a hierarchical
network of asynchronous circuits.

Starting from a high-level specification, for example in the
form of a signal transition graph, of the specification P and a
partial implementation P2, we first convert both specifications
into state graphs G and G2, respectively. As described in Sec-
tion II, the state graphs can be converted to trace structuresT and
T2, respectively, in a straightforward way. To find all possible
ways to optimize T1, or just to find a legal T1 in the case of the
rectification problem, such that T1 composed with T2 simulates
T , we apply Theorem 3 and compute Tmax by

Tmax = mirror(project(A1)(T2kmirror(T )));
where A1 may be a subset of all signals present in the network.

Then, we check if there is a solution at all in transformingTmax
into a T 0

max by removing all non-simulating traces recursively.
To satisfy the conditions of Theorem 3, it is checked if, this trace
structure properly simulates the specification.

Before converting the maximal trace structure Tmax back to a
state graph, we can first apply classical state minimization [9] as
Tmax is now canonical and can be represented by a deterministic
finite automaton Gmax, which is the maximal state graph. Then
we apply an asynchronous circuit synthesizer on Gmax , e.g. [21,
22] to produce a speed-independent implementation for it.

A Implementation details
For finite state systems, all canonical prefix-closed trace struc-
tures can be modeled by classical finite automata[6, 12], In these
automata, every state is accepting. The set of failure traces and
the set of impossible traces can be modeled by adding two states,
the failure state F and the impossible state X to which the unde-
fined inputs and outputs are directed. All trace structure oper-
ations can be implemented as operations on these automata [9].
For the global space problem, Tmax can then be computed in
polynomial time and space. For the local space problem, a de-
terminization procedure may be needed, which is exponential in
the worst case.
Tmax is the solution to the correct substitution problem when

we only consider conformance. In that case, any conforming
T1 � Tmax is a solution. As all success trace sets� Smax [Xmax

are conforming, any subautomaton of the (unfolded) Tmax is
a solution. For implementability, we need to check also the
progress condition. This check and the removal of the non-
simulatable traces in Tmax can be implemented (in a similar way
as in [12]) as additional language containment checks to gener-
ate a T 0

max
in which all subautomata (possibly after unfolding)

are simulating solutions to the correct substitution problem. For
the case of a non-deterministic T2, it may not be clear how to
construct a satisfying T1 � Tmax as the choices made when im-
plementing T2 may influence the correct choice of T1. However,
it is possible to derive conditions such that any T1 � Tmax is a
correct solution for any choice of T 0

2 � T2. But in many cases,
such a solution does not exist. But the above method can be used
if the partial implementation T2 is completely given.

B Synthesis techniques
The above Tmax is identical, before or after classical state
minimization[9], to the maximal state graph Gmax . We will
now show that all kinds of optimization and implementation
strategies as used by automatic synthesis tools for asynchronous
circuits can be applied to this Gmax to yield an implementable
solution to the correct substitution problem. One of the first steps
in synthesis is state assignment. Different methods of state as-
signment exist that operates at the state graph level, e.g. [11, 21].
However, this is not the concern of this paper. The goal for
state assignment is to transform the state graph to make it sat-
ify certain properties, like distributivity, in order to synthesize a
hazard-free implementation. It also depends on the implementa-
tion architecture, e.g. by using bounded delay assumptions and
delay information [11], speed-independent circuits with com-
plex gates [4, 13, 20] or other sum-of-product architectures [2],
or only external hazard-free architectures [17].

State assignment adds new state signalsQ and transitionsQ�
f+;�g to G to produce G0 = (I;O[Q;S0). The associated trace
structures to these state graphs are T = (I;O; S;F ) and T 0 =

(I;O [ Q;S0; F 0), as adding state signals changes the network
topology by adding outputs. But because for all these state
assignments

hide(Q)(T 0

) � T;

it is clear that such state assignments will only yield trace struc-
tures that form solutions to the correct substitution problem, i.e.
they always conform to Tmax .

Another synthesis technique is “concurrency reduction” of
outputs, e.g. [22]. In the most general case, this means that
when more than one output choice exists at a state in the speci-
fication, only a subset of those “excited” outputs is generated in
the implementation. As input choices are not reduced, the imple-
mentation will be conforming to the specification, as it will also
not generate more outputs than specified. In the case of having
only output choices at a state in the state graph, at least a non-
empty subset of these outputs should be generated to satisfy the
progress property. Together, this yields that all types of output
concurrency reduction are allowed. The synthesis tool may use
more restricted forms of concurrency reduction to satisfy other
constraints, as for instance induced by the type of architecture
for an implementation.

Thus we have shown that T 0

max
contains all correct and safe

substitutable solutions in the sense that any T 0

1 � T 0

max is pos-
sible. T 0

1 corresponds to some output concurrency reduction of
T 0

max in addition to some new signal insertions.

VI IMPLEMENTATION AND EXPERIMENTS

We have implemented the solution framework described in this
paper in C. Currently, very few examples are available for use as
benchmark circuits to evaluate the described method. We have
examined an interface protocol conversion module, for which
the block diagram is shown in Figure 2. This example consists of
two modules: a VME bus controller module vmectrl and a local
conversion module pcm. Both modules were described using
the Signal Transition Graph model [4] and were mechanically
translated to state graphs. The processor can read and write
data from and to a memory.
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Figure 2: Block diagram of protocol converter.

The overall design can operate in two modes: a read and a
write mode. We took as global specifications two versions of the
problem where the environment restricts the operations to only
read or only write transfers. This gives a global specification
for the read-only mode and the write-only mode respectively.
For each of these two specifications, we computed the maximal
trace structure for each of the two components by regarding the
other component as the partial implementation. Thus, in one
experiment we regarded vmectrl as partial implementation and
tried to find the maximal replacement for pcm, and vice-versa
for the second experiment. The suffixes -ro and -wo indicate that
the read-only or write-only mode global specification was used.

The results of these experiments are shown in Table 1. The col-
umn labeled “I/Owires” gives the number of inputs and outputs
of the corresponding module. The column labeled “CPU (sec)”
shows the CPU time (on an HP9000/715 workstation) required
to compute the maximum set of correct substitutions for that
module as performed by an automaton manipulation package
which implements all types of operations on finite automata, e.g.
language intersection and automaton minimization, by means of
fully explicit enumeration methods. The four columns labeled
under “without optimization” show the results of synthesis of
the original state graph. The columns labeled under “with opti-
mization” show the synthesis results of the state graph obtained
from the maximum correct substitution procedure. The number
of states of the corresponding state graphs are shown under the
columns labeled “#states”. Each of the state graphs were syn-
thesized using the state assignment technique described in [21].
The number of new state signals inserted by this technique for
each module is shown under the columns labeled “#signals”.
The SYN tool of [2] was used to produce a gate-level hazard-
free circuit for each module and it reported the area and delay
figures under the columns “area” and “delay”. These are still
preliminary experiments, but they indicate that optimization is
possible.

VII CONCLUSIONS

In this paper, we addressed the correct substitution problem for
a design which is implemented hierarchically as an interconnec-
tion of separate asynchronous modules. Specifically, we have
presented a new solution framework based on trace theory for

Table 1: Experimental results.

name I/O without with CPU
wires optimization optimization (sec)

Q/s A/D Q/s A/D
pcm-ro 5/3 68/2 1322/4.8 34/0 300/2.4 1.8
vmectrl-ro 6/4 192/2 1724/6.0 62/1 670/3.6 2.1
pcm-wo 5/3 68/2 1322/4.8 32/1 316/2.4 2.6
vmectrl-wo 6/4 192/2 1724/6.0 84/1 1032/4.8 3.6

Q: number of states A: area
s: number of state signals D: delay

computing and representing the complete set of correct sub-
stitutions (permissible behaviors) for an asynchronous module
embedded in such a hierarchically defined network. With this
theory, we have derived a single maximal trace structure which
describes this set of solutions. This maximal trace structure takes
into account all the degrees of freedom that arise from the inter-
action with the other components and from the overall speci-
fication. We also have shown that the maximal trace structure
does not restrict the freedom of available asynchronoussynthesis
tools to generate hazard-free circuits.
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