
Measures of Syntactic Complexity for Modeling Behavioral VHDL

 Neal S. Stollon, Ph.D., P.E.
DSC Communications Corporation

Dallas, Texas

 John D. Provence, Ph.D., P.E.
 Southern Methodist University, Electrical Engineering Dept.

 Dallas, Texas

Abstract– Complexity measures are potentially useful in
developing modeling and re–use strategies and are recognized
as being useful indictors of development cost and lifecycle
metrics for systems design. In this paper, a syntactic measure
complexity model for VHDL descriptions is investigated. The
approach leverages similarities between VHDL models and
software algorithms, where syntactic modeling has been
previously applied. Aspects of the measure, including observed
and estimated model length, volume, syntactic information, and
abstraction level are defined and discussed. As a principle
result, syntactic information modeling is related to Kolmogorov
intrinsic complexity as a minimum design size implementation.
Experimental data on VHDL modeling and complexity
measurement is presented, with potential model
comprehensibility and resource estimation applications.

1. Introduction
This paper addresses a recent investigation into applying

complexity measures to HDL model characterization as a means
of quantizing the model quality [3]. The approach is inspired by
observations that VHDL, in common with many other hardware
description languages, share structural and process similarities
to software high order languages (HOLs). In addition to
hardware modeling features such as boolean and sequential
functions, VHDL includes abstract HOL operations such as
recursive, alternative, and user defined functions. Comparisons
between types of HDL and HOL characteristics hold true only
for abstracted behavioral descriptions.

Commonalities between VHDL model and software
algorithm development are often noted, but seldom exploited.
Our approach to leveraging this commonality is by evaluating
ways of applying complexity measures previously used only in
software design to VHDL modeling. Common measure metrics
provide a means of comparing, estimating, and developing
insights into the VHDL modeling process. In this context,
complexity analysis supports potential applications in
managing and reducing risk in the increasingly complex task of
VHDL model generation and support.

Complexity measures for VLSI systems design can be
based on graphical or extracted statistical representations of a
design model [3]. For HDL/VLSI design, generating such a

abstracted design representation requires intimate knowledge of
the data and control flow structure of a model or the probability
distributions associated with the design functions.

In this paper, an alternative information measure of design is
presented which has significantly reduced dependance on
availability and extraction of a model’s structural and statistical
functionality. The measure is based purely on the syntactic
information available in textural description of a design. VHDL
is used as the description language for this discussion, but
concepts and applicability of the approach appear extensible to
other design languages. A syntactic information theory of
complexity of a VHDL model can be derived as a fusion of
intrinsic complexity theories of Kolmogorov [1] and the
software science approaches of Halstead [6]. This is the first
work, to our knowledge, that attempts to relate these two
disparate efforts in areas of modeling complexity.

2. Intrinsic Complexity
The concept of intrinsic or descriptive complexity was

originally developed by A. Kolmogorov in the mid–1960s.
Kolmogorov defines an algorithmic or descriptive complexity
of a given function to be the length of the shortest model that
describes the function after a finite amount of computation. This
complexity definition is attractive for modeling at a behavioral
level of abstraction, since it is independent of the both the
structure and the probability distributions of the function. As
such, Kolmogorov complexity is a largely computer and
language independent measure [1], which allows a neutral
reference point for other complexity measures. We interpret
Kolmogorov complexity K(u) in a modeling context as follows:
Definition: A halting function U is described as one that
generates a output vector in response to stimulus and which then
halts or resets at some point during model function after the
generating operation has been completed.
Definition: The Kolmogorov complexity K(u), of a function u
where u ∈ U are a set of functions that can be described in a
modeling language (V), is defined as:

 K(u) = min l(p) (1)
 p: V(p)=u

where l(u) is the minimum length model that that generates a
desired output u and then halts. For a function with multiple
orthogonal outputs s.t. for [u1,...,un] ∈ U.

n
 K(U) ��� K(u) (2)

 It is often difficult in practice to define the shortest model of
an arbitrary function. Alternately, minimal (while not

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

necessarily minimum) model implementations which meet the
Kolmogorov criteria can be approximated for many functions.

3. Length and Volume Complexity Measures
Software complexity and its measurement has been an area

of ongoing investigation since the mid–1970s [5–8]. Studies
have shown that the proper selection and application of a
complexity metric can be applied to estimations of interest
software design, including; design creation and debug time,
software error rates, and maintenance costs. Our primary
proposition is that an equivalent VHDL model metric could
potentially be effective in resource allocation during design
synthesis and analysis; with a resulting better understanding of
the life cycle issues associated with model reuse and redesign.

The measures utilized in this paper are based on a set of
software measures originally developed by M. Halstead [6].
Halstead’s measures are based on use of syntactic information,
and specifically the distribution of operand and operator
representations (which in high order languages follow a family
of Zipf probability distributions [2], to describe the relative
frequency occurrence of sets of words in language) as a measure
of properties of software programs and algorithms. Since the
measures also provide a means of expressing a minimum
possible algorithm size, they also appear to be appropriate for
comparison with Kolmogorov complexity.

Halstead measure defines four observable model statistics
that form the basis for measures applied to model estimates:
 n1 = number of distinct (unique) operators
 n2 = number of distinct (unique) operands
 N1 = total number of operators
 N2 = total number of operands
These in turn allow us to define the observed length of a given
program string that implements the model as:

N = N1 + N2 (3)
and a language vocabulary defining the model construction as:

 n = n1 + n2 (4)
 By applying a statistical upper limit on the assumed

distribution of operators and operands in distinct vocabulary
strings such that:

1. operator and operand instances occur within the model with
a statistical regularity and
2. identical operator/operand combinations are not repeated

a calculated vocabulary algorithm length of a model can be
estimated [6] as a power series formulation of:

2N = n1
n1 x n2

n2. (5)
Solving for the length , the equation (5) becomes

� = n1 log2(n1) + n2 log2(n2). (6)
where �� is a calculated length value of the string N.

The program volume defines the size of the language
dependent implementation of an algorithm, as a function of both
length and vocabulary such that:

V = N(log(n)). (7)

Kolmogorov complexity of a model can be inferred through
these volume statistics of a potentially minimum
implementation. As a most succinct form representation,
operators (n1) and operands (n2), define a potential minimum

volume implementation as follows:
a) The minimum operator count of a model, n1* defines a
minimum implementation constant. For VHDL function and
procedure syntax, we assign can n1* = 2, as an implementation
where the only required operators are
 1. a defined functional procedure of the model operation and
 2. a unique assignment of variables to that operation.
b) The potential minimum operand count, n2*, for a minimal
model implementation are the operands that appear at the model
periphery. Peripheral signals are assumed to approximate
operands which define conceptually unique and independent
input/output parameters.
 For a potential minimal model representation, each operator
and operand is referenced only once; therefore N1*=n1*,
N2*=n2*, where N1* and N2* are minimal equivalents of N1
and N2 as previously defined. The potential minimum volume
of a model is therefore defined as :

V* = (N1* + N2*)log(n1* + n2*) = (2 + n2*)log(2 + n2*) (8)

The minimum potential volume shares characteristics with
the Kolmogorov measure. Both minimum implementations are
essentially language independent;. since defining unique
operations minimize the operator count n1*. This is generally
unrealizable for real high level languages since extending a
language to efficiently support all operations is not viable.
Despite this limitation, the minimum volume of a model is
useful as a point of reference in language level measures.

Evaluated purely from a model complexity viewpoint,
Kolmogorov and Halstead both introduce conceptually similar
measure of minimum complexity as a function of model length.
This leads us to a central proposition of the minimum volume
measure as a structured method for implementing an estimate
for a Kolmogorov minimum length model.
 Lemma: For an abstract HDL description of a function (u), the
potential minimum volume V*(u) = (k+n2*)log(k+n2*) where
(k is constant and n2* is the minimum operand count) is related
to the Kolmogorov minimum length complexity K(u) s.t.

 V*(u) � K(u). (9)

Proof: Let the minimum model syntactic length
 N*= N1* + N2* = l(u).

 Let V*(u) be a non–minimum length model implementation .
Then this assumes a model implementation with either fewer
operators (n1) or operands (n2) that forms the function l(u).
Since V* defines a minimum operator count n1*=2 for an
operation and n2* are the minimum required operands for the
function, then any n1<n1* would not fully define the function.
Similarly, any n2<n2* would not fully implement the function.
By the definition of minimum implementation, N1*=n1* and
N2*=n2*. Since V* is a function of (n1*, n2*) of a model (u),
then V*(u) � l(u). As l(u) is composed of n1*, n2*, it’s length is
minimum. By (1), K(u) = min l(u). Therefore V*(u) must be a
minimum length description K(u) of a function u.� � � � �

4. Level and Information Measures
Using the previous observations, several synthetically

derived parameters of an algorithmic model implementation
can be defined. Of interest to this discussion are the Program
Level (��); Syntactic Information� (�); and Language Level
(��) of a model.

Program Level: �� = V*/V � (n1* n2)/(n1 N2) (10)
 � �� provides a volume measure (as a function of verboseness
or comprehensibility) of a model’s language implementation
referenced against its potential minimum volume. High ��
implies greater modeling efficiency, which is normally
associated with higher levels of modeling abstraction.

Syntactic Information : � �� = V (n1* n2)/(n1 N2) (11)
� � � measures the level of information content communicated by
implementation of the model. Halstead refers to syntactic
information as ’intelligence’ and notes [6] that for irredundant
model implementations, �� is largely independent of algorithm
abstraction levels or implementation. This is supported by �’s
equivalence to theoretic minimum volume V* as seen in (10) .

Language Level : � ��� = �� V* = ��2 V (12)
� �� provides a measure of the power of a language to contain
information (intelligence) in a minimum volume and bounds
achievable levels of modeling abstraction.

Syntactic predictions and measurements provide a means of
evaluating model complexity for a given implementation style.
Syntactic measures have been verified in several studies as
being a highly correlated measure of prediction for software
lifecycle metrics in diverse applications [6,7,8]. While in some
applications (synthesis as an example), models deviate from
these measures, in general application, significant variances
from the syntactic norm are traceable to implementation
”impurities” (or inefficiencies) in a model such as operand
redundancy, misapplied variables, unfactored logical
expressions and other practices that increase model ambiguity.
This are discussed further in section 7.

5. VHDL application to the complexity measure
VHDL is a verbose modeling language; using many types of

language constructs which are largely information neutral.
Such constructs insure compliance to language typing, but may
not provide valued information otherwise.
 From a purely syntactic viewpoint,we can consider a VHDL
model to consist of three types of language constructs:

1. operators; which include all language syntax (functions
and procedures) which manipulates model data. These include
defined function operators as well as VHDL keywords. In
VHDL, procedural functions may be defined in externally
referenced standard packages. Since these packages define
functions externally to the model, the function can be treated as
extending the operator set of the VHDL language. Some
common VHDL language operators are listed in TABLE 1a.

2. operands; which include all signals, variables, and
constants that are functionally transformed in some way during
model execution. For a HDL–centric interpretation of the
minimum operand count (n2*) of a model, conceptually unique
and independent signals are referenced in the port section of the
VHDL entity declaration. Signals and variables internal to the
VHDL model are considered derivative (not being conceptually
unique and independent), since they are formed from operations
on input signals.

3. structural constructs; which include information neutral
language syntax which define the structural infrastructure of the
VHDL design, independently of model size, abstraction, or
complexity level. Many are referenced only once (typically as a

marker for parsing operations) in the model. Since structural
constructs are largely independent of the underlying model. we
ignore them in generation of our syntactic complexity measure.
By eliminating structural constructs, the remaining operators
and operands in the model can be mapped to the complexity
measures in a straightforward manner. A listing of typical
VHDL structural constructs is given in TABLE 1b.

 TABLE 1: (a) VHDL operators (b) structural constructs
abs guarded rem | alias label
access if report | architecture library

 after ’left return | array of
 all linkage ’right | attribute out
and loop select | bit package
assert map ’stable | bit_vector port
begin..end mod then | block procedure

 body nand to | bus process
buffer new transport | component range
case next wait for | configuration record
constant nor wait on | entity register
disconnect not wait until | file severity
downto null when | function signal
else open while | generic subtype
elsif for xor | in type
exit others | inout units

 generate ’quiet | integer use
 <= => /= := = | & | is variable

6. Experiments on Behavioral Level Benchmarks
 In order to assess the applicability of complexity measures, a
VHDL analyzer was developed to extract the statistics from
several classes of VHDL test cases. The Model Analysis and
Syntactic COmplexity uTility (MASCOT) utilizes syntactic
rules previously discussed to extract operator and operand
information from models and calculate measures.

Models were used from VHDL behavioral benchmark
repositories created at University of California– Irvine [9] and
University of Cincinnati [10]. These models have been widely
used for high level synthesis and represent a good cross section
of modeling styles and applications.

To evaluate contrasting lower abstraction (register level)
design, finite state machine (FSM) benchmarks [11] from
MCNC were also evaluated. Models in state table format were
translated into equivalent VHDL using model generation
utilities [12]. Resulting VHDL models had the dual properties
of a consistent modeling style irregardless of model size and of
conformance to common VHDL synthesis guidelines.
 Tables 2 and 3 provide experimental results for behavioral
and register level test cases respectively.
 Two areas of interest for complexity modeling were
 (a) whether and what types of VHDL models fit the software
 statistical profile assumed for syntactic measurement and
 (b) were information levels associated with each model
consistent with reasonable assumptions.
 Correspondingly two measure relationships were monitored:
 – the equivalence between N (observed program length) and
� , (calculated program length) for N/���1, calculates model
vocabulary distribution. s.t. convergence between N and� �

indicate that the models fit the measure profile assumed.

 – equivalence between� �� (syntactic information) and V*
(potential minimum volume) s.t. � �/V*�1. calculates model
information transfer effectiveness. Since V* has minimal
redundancy (operators and operands are uniquely referenced),
convergence of� � and V* indicates that the modeling style used
is largely irredundant.

 Fig. 1 shows the normalized correlation between the N/�

(x axis) and �/V* (y axis) measures for the cases. Optimal
correspondence between extracted values and those predicted
by the measures converge in a (1:1) relationship along both
axes. Data from MASCOT for the behavioral test cases is given
in Table 2. Analysis of these models shows a general relation
between predicted and observed values, indicating that
behavioral models conform to measure analysis. Fig. 1 shows
that most models fell within a 1 sigma (�27%) range of
confidence (area bounded by circle) window. with a statistically
significant compliance (89% confidence level in Chi–Square fit
testing). This indicated that for behavioral level models,
syntactic measure analysis is a viable approach.

Convergence between model measurements and expected
syntactic values was significantly contrasted by the test results
developed from the FSM VHDL models. The FSM VHDL
models were created using VHDL logic synthesis register
transfer level (RTL) modeling templates which had a weak N/�

relationship. Sample data for these test cases is given in Table
3a. Interestingly, the �/V* relationship for the FSM models
remained well correlated throughout the range of 20+ test cases
used. While the models were verbose (N >>� �), their �/V* ratio
(��V*) indicated they were largely irredundant in information
content. It was assumed that a FSM case statement based
structure should not invalidate the measures, The lack of
convergence was hypothesized to indicate that the models’
inefficiency exceeded the compliance bounds of the measure.

Subsequent FSM model evaluation indicated excessively
large N values appeared attributable to the modeling style used
in model creation. As auto–generated models, the FSM VHDL
had a consistent modeling style. This caused uniformly high
N/�� ratios, since modeling templates for auto–generated
models, while syntactically correct, are often inefficient
(verbose), when compared to behavioral models of similar
information complexity (Table 2).

model N � � � V V* �� � � � ���
AM2910 577 515 3736 64 0.029 108 3.15
A8251 176 1456 24390 140 0.007 181 1.34
ARMCNT 229 234 1292 19 0.029 37 1.07
BLCKJAC 146 186 787 –– 0.032 25 .81
DECODER 321 463 2046 24 0.032 66 2.13
DIFFEQ 149 187 803 38 0.041 33 1.36
ELEVATOR 86 81 389 19 0.047 18 .87
ELLIP 252 276 1482 38 0.075 111 8.43
ENCODER 177 271 1023 19 0.043 44 1.95
FIND 174 221 971 8 0.027 26 .71
FM8501 979 734 6750 28 0.013 93 1.30
FRISC 563 518 3672 0.014 52 .74
Table 2. Complexity Data for VHDL Synthesis benchmarks

�

�

���

� �

�

�

�

�
�

�

�

�

� �
� �

�

�

��

�

�

�
�

� �

�

�

�

�
� ��

�� �����
��"�� ���

��� ���

�� ���

�

���� �	� � ����!���� ����
���"������ ����� �����

���

If model length inefficiencies could be corrected, then any
resulting convergence between N and� �� would allow RTL
abstraction (such as the FSM models) to be addressed by
complexity analysis. Syntactic complexity measures of model
length vs. information as a means of evaluating Incremental
changes in VHDL modeling styles and related impact on
syntactic complexity (model length, information) are
investigated in the next section through a set of model ”tuning”
process experiments on the FSM models.

model N � � � V V* �� � � � � ���
BBARA 1200 135 6053 28 0.006 33 0.19
BBTAS 458 101 2177 19 0.010 22 0.23
CSE 2985 222 16580 69 0.003 56 0.19
KEYB 2873 209 15778 43 0.004 62 0.24
LION 181 86 829 15 0.022 17 0.38
S8 449 96 2110 24 0.011 23 0.27
SAND 7589 375 46357 104 0.002 100 0.22
 Table 3a. Complexity Data for autogenerated VHDL models

model N � � � V V* � �� � � � � ���
BBARA 689 140 3505 28 0.010 33 0.32
BBTAS 276 111 1340 19 0.014 19 0.28
CSE 1745 23 9797 69 0.005 53 0.29
KEYB 1496 219 8309 43 0.007 56 0.39
LION 177 101 841 15 0.027 22 0.62
S8 305 117 1496 24 0.018 26 0.47
SAND 3652 400 22605 104 0.004 91 0.37
 Table 3b. Complexity Data for manually tuned VHDL models

7. Complexity Based Tuning of Models
”Syntactic tuning” defines a method of quantitatively

reducing length and impurities in a model. Tuning is used in
this context as a process of implementing model language
modifications in structure, logic, or syntax changes to a model,
which do not modify the model functionality.

For a hypothesis that significant inefficiencies in the FSM
models resulted in excessive length relative to measure
estimates, then syntactic tuning could provide a means of
decreasing model size without adversely affecting other model
parameters. Based on the VHDL model auto–generation
templates, four tuning steps were identified as potential
corrections to most identified inefficiencies. Tuning was
manually applied to several FSM test cases (Fig. 3b). The
impurity tuning steps consisted of:

1. reordering terms to combine into common CASE
and IF..THEN statements.

2. minimization of AND/OR combinations of the function.
3. application of XOR operations to the logical function.
4. combining of redundant output terms and repositioning
 them outside of the sequential operations.

A pre and post–tuning VHDL fragment of a typical
auto–generated FSM model is given in Listing 1(a) and (b). For
this example, tuning reduced the model length by
approximately 2x without changing functionality. Tuning
decreased observed length (N) and increased calculated length
(�) converged estimated and measured values. Changes in
syntactic information � (�) were minimal (<7% with respect to
other parameters). Model conciseness after tuning improved by
a 33% increase in language level.

CASE CURRENT_STATE is – – baseline model of FSM
 WHEN st0 => – – as auto–generated by tool
 if (in1 and (not in2)) =’1’
 then a <=’0’; b <=’1’; c <=’0’; NEXT_STATE <= st1; end if;
 if ((not in1) and in2) =’1’
 then a <=’0’; b <=’1’; c <=’0’; NEXT_STATE <= st1; end if;
 if (in1 and in3) =’1’
 then a <=’0’; b <=’0’; c <=’1’; NEXT_STATE <= st0; end if;
 if (in1 and in2) =’1’
 then a <=’0’; b <=’0’; c <=’1’; NEXT_STATE <= st0; end if;
 WHEN st1 => – –. similar logic duplicated for s1 case
 Listing 1(a): Fragment VHDL model of FSM (with impurities)
 statistics: N= 182, � � = 81,� �� = 17, V*=10, � ��� = .36

CASE CURRENT_STATE is – – VHDL model after tuning
 WHEN st0 => a <=’0’; – – to minimize impurities
 if (in1 xor in2) =’1’
 then b <=’1’; c <=’0’; NEXT_STATE <= st1; end if;
 if (in1 and (in2 or in3)) =’1’
 then b <=’0’; c <=’1’; NEXT_STATE <= st0; end if;
 WHEN st1 => – – similar logic duplicated for this case
Listing 1(b) : Fragment of VHDL model of FSM (after tuning)
 statistics: N= 99, � � = 86,� �= 16, V*=10, � ��� = .54

 Table 3b presents complexity statistics for several FSM
VHDL models re–analyzed after manual tuning. Fig. 2 shows
the reductions in normalized length for different tuning steps
and related changes in the information measures. Model size
improved on average 2–3x using this informal procedure. While
models remained verbose, they now begin to approximate N/�

ratios achieved for the behavioral test cases. More formal and
extensive application of a tuning process would be expected to
improve the ratio still further.

Tuning operations implemented changes largely consistent
with formal language modeling comprehensibility guidelines.
Realistic reductions in model length from tuning appear to be
limited in practice by considerations such as model synthesis
(which limits language options in a model implementation
upper bounding the language level measure ��).

	

��

�

��

�

�������

�

�

�
�

�

�

�

�

�

	

	

	

� ��� 	�� � �*$ $�� �#&'%+�#�$)(� $� ���� ����� #%��"(

���'�� ���
�(�� �	�

��)�(� �
�

!�,�� ���

(�� ���

(�$�� �
�

�

� ��

�

��� ��

8. VHDL behavior and structural complexity
In software applications, complexity measures in general,

and variations of the syntactic measures presented have been
used to model life cycle and process parameters such as sw
construction, debug, and test times and program error rates. [7]

Since complexity measures can be used to analyze VHDL
models in a similar mode as for software processes, it may be
reasonable to propose complexity correlations in the VHDL life
cycle and process to those for software development.
Inadequate comprehensive VHDL documentation is available
however to test this hypothesis.

For applying complexity measures to the design process,
VHDL does offer a correlation opportunity not available for
software applications. Given previous assumptions about
minimum size in Kolmogorov models as being abstraction
independent in the logical hardware description domain, then
the physical realization, (as a VLSI hardware implementation)
should have a corresponding minimum representation. In this
context, comparison of pre–synthesis behavioral complexity
measures to post–synthesis size measures (gates or chip area) is
potentially appropriate. Correlation between VHDL abstract
complexity measures and structural resources for hardware
design can establish complexity measures as estimation tools in
the design process. Such estimation could have potential use in
the systems design tasks, including behavioral partitioning
tradeoffs and higher abstraction resource allocation.
In logic synthesis operations, optimization is largely
independent of syntactic features, which are typically stripped
away during the synthesis process. The syntactic information
measure� �, which has been previously discussed, is largely
independent of a model’s redundancy or impurity. Since � and
V* converge, we can hypothesize extending our Lemma on

equivalence between intrinsic complexity and minimum
volume to include �� as a minimum complexity measure; s.t.

K(u) � V*(u) �� �I(u) (13)
A comparison of the relationship between syntactic

information as a model complexity measure and literal count (a
technology independent size measure used in synthesis
evaluation) for 20 MCNC benchmarks [4] is presented in Fig. 3.
The systemic correlation between complexity (as measured by
information content) and structural realization size (as
measured by literal count) is an experimental confirmation of
syntactical complexity as a basis for logical hardware measure.

�� �	��� ��� ��� ��� ��� ���

��

��

��

��

��

�

���

���

��

�
�

� �

�

�

�
�

�

�

�

�

�

�

�

�
������

�

�

�

�

 Fig. 3 : Literal Count vs. Model Syntactic Information (�)

9. Conclusions
 While the problem of managing the complexity of HDL
based designs is widely recognized, the concept of applying
software complexity measures to hardware design has received
limited attention. In this paper, syntactic complexity measures
are presented as a basis for VHDL model evaluation. This
approach allows HDL models to be compared against other
model abstractions [3]. In particular, model volume, length,
information, and language level measures provide a means of
comparing efficiency in model implementation alternatives.
While syntactic measures of VHDL complexity are not
complete model characterizations, they potentially provide a
simplified means of capturing and representing information at
initial modeling phases in the design process.

This paper overviews an approach and experimental data
for VHDL model compliance to syntactic complexity
measures. Establishing the relation between complexity and
modeling issues can potentially mitigate resource related design
process risks by giving estimates of model parameters early in
the design flow. As an example, syntactic information is shown
both experimentally and in theory to relate to literal counts of a
design. Applications of this type indicate that potential
application of complexity as a measure can transcend abstract
VHDL modeling to provide predictors of parameters typically
associated with lower levels of design abstraction.

The concept of complexity measures of a VHDL model can
be approached from several aspects. Syntactic complexity’s
relation to formal information measures such as Kolmogorov
intrinsic complexity indicates that, for efficient behavioral
modeling styles, VHDL appears to comply with statistical
complexity bounds. Syntactic measures can be applied in the

design process though the tuning of a VHDL model for
improved volume and complexity. This provides a basis for the
somewhat ambiguous task of addressing and enhancing model
comprehensibility. It is known through language studies that
increased comprehension is a function of reduced model length
and redundancy in a language model. Comprehension in the
VHDL modeling task becomes increasingly relevant in context
of graphical and model synthesis ESDA systems which
auto–generate models.

A relation between complexity to comprehensibility is
increasingly important, since hardware descriptions such as
VHDL tend to discount modeling tradeoffs that address human
comprehension considerations in favor of machine readability.
This facet of design has not been addressed in large part due to
lack of applicable quantitative measures. Syntactic measures,
can potentially fulfill this need. Language abstraction and
information/volume measures in particular address both
characterization and comprehension issues of VHDL models.

[1] A. Kolmogorov, ”Three Approaches to the Problem of
Defining the Concept of ”Quality of Information” Problems in
Information Transmission, v.5 pp.1–7, 1969
[2] M. Shooman and A. Laemmel, ”Statistical Theory of
Computer Programs” Proceedings of IEEE Computer
Conference, pp.511–517, Oct. 1977
[3] N. Stollon. Information Content and Measurements for VLSI
Functions. Ph.D thesis, Electrical Engineering Dept., Southern
Methodist University, Nov. 1994.
[4] S. Devadas, ”Mustang: State Assignment of Finite State
Machines Targeting Multi–Level Logic Implementation” IEEE
Transactions CAD, pp.1290–1300, Dec. 1988
[5] E. Weyuker, ”Evaluating Software Complexity Measures”
IEEE Transactions Software Eng., pp.1357–1365, Sept. 1988
[6] M. Halstead, Elements of Software Science. Elsevier North
Holland, 1977
[7] J. Davis, R. LeBlanc, ”A Study of the Applicability of
Complexity Measures” IEEE Transactions Software Eng., pp.
1366–1371, Sept. 1988
[8] L. Baker, S. Zweben, ”A Comparison of Measures of
Control Flow Complexity” IEEE Transactions Software Eng.,
pp.506–512, Nov. 1980
[9] N. Dutt, C. Ramachandran, ”Benchmarks for the 1992 High
Level Synthesis Workshop” University of California–Irvine
Technical Report 92–107. 1992
[10] R. Vemuri, J. Roy, P. Mantor, N. Kumar, ”Benchmarks for
High Level Synthesis” University of Cincinnati Technical
Memo ECE–DDE–91–11. 1991
[11] R. Lisanke, ”Finite State Machine Benchmark Set”;
Microelectronics Center of North Carolina (MCNC), Sept.
1987
[12] N. Stollon, ”Automated VHDL Model Generation for
Programmable Logic” Proceedings of VHDL International
Spring 1992 Conference, pp.245–252, May 1992

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

