
Accurate Estimation of Combinational Circuit Activity

Huzefa Mehta, Manjit Borah, Robert Michael Owens, Mary Jane Irwin
Department of Computer Science and Engineering,

The Pennsylvania State University
University Park, PA 16802

Abstract
Several techniques to estimate power consumption of
a combinational circuit using probabilistic methods
have been proposed. However none of these tech-
niques take into account circuit activity when two or
more inputs change simultaneously or when glitch-
ing occurs. A formulation is presented in this paper
which includes signal correlation and multiple gate in-
put switching. Work is also presented in estimating
the glitching contribution to the switching activity.
Results obtained from benchmarks and test circuits
show very good accuracy when compared to actual
activities as measured by SPICE and IRSIM.

1 Introduction
With the emergence of battery-operated applications that de-
mand intensive computation in a portable environment, power
analysis and optimization have become important functions in
order to reduce power dissipation in circuits. Accurate estima-
tion of power dissipation is a signi�cant task needed to assist
design and synthesis tools in their attempt towards design-
ing low power circuits. Power dissipation in a CMOS circuit
is directly related to the extent of switching activity of the
nodes in the circuit. A direct and simple approach to esti-
mate power is to simulate the circuit[13]. Given the speed
of circuit simulation, these techniques cannot be used to sim-
ulate long-enough input vector sequences to get meaningful
power estimates. A Monte Carlo simulation based technique
was proposed in [11]. The use of symbolic simulation in order
to produce a set of boolean functions representing conditions
for switching at each gate in the circuit has been proposed
in [2][14]. Other approaches [3][4][9] have been proposed that
require the user to specify the typical behavior at the circuit
inputs using probabilities. These techniques allow the user to
cover a large set of possible input patterns with little e�ort.
The switching activity is propagated along the network from
the inputs and the activity for all nodes in the network are
estimated. The transition density concept was introduced in
[4]. The model in [4] however did not take into account signal
correlation. Recently, a way to consider signal correlation was
proposed in [3]. In [8] it was shown that hazard contribution
to power dissipation in CMOS ICs (glitch power) cannot be
neglected.
Presently none of the techniques on improving transition

density consider multiple input switching or glitching contri-

0

butions to the signal activity. This paper incorporates both
multiple input switching and glitching into the power estima-
tion model.
The rest of the paper is organized as follows. Section 2

presents the de�nitions for the terms used in the paper. Sec-
tion 3 discusses the activity estimation using the zero delay
model, in particular multiple input switching. Section 4 dis-
cusses the activity estimation using the unit delay model. In
section 5 we demonstrate the results from our implementation.
Section 6 concludes with comments on future work.

2 Power model de�nitions
We de�ne some commonly used terms in the paper.

� Signal probability of a node is de�ned as the duty cycle of
the signal or the probability of the signal being ONE in
a vector event.

� Switching probability of a node is the probability of the
signal switching from one state to another.

� Transition density [4] has been de�ned as the \average
switching rate" at the gates in the circuit. This is denoted
by D(f). The equation for power can be de�ned as

Power = 0:5Vdd
2

X

f2N

CfD(f)

where f is an internal or output node in the circuit, Vdd
is the supply voltage and Cf is the capacitance at node f
and N is the set of internal and output nodes. A vector
event (ve) is a change of the input vector to the circuit.
Normalized transition density is the number of transitions
per vector event or the amount of switching per vector
event. This is similar to switching probability and both
the de�nitions are used interchangeably. Thus, the equa-
tion for power can also be rewritten as

Energy=ve = 0:5Vdd
2

X

f2N

CfD(f)

An uncorrelated input with this de�nition has a normal-
ized switching density of 0.5 events per vector event(epv).
The clock has a normalized switching density of 1 epv.

� In Zero delay model all gates are assumed to have zero
delay and in unit delay model all gates have unit delay.

� Glitching is the spurious transition(s) which occur when
the signal switches more than the required logic switch-
ing. A static hazard exists if a signal that should remain
constant changes twice(in opposite directions). It is a 0-
hazard if the signal should stay at 0, and a 1-hazard if the
signal should stay at 1. A dynamic hazard exists if a sig-
nal which should change its state once changes multiple
times.

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

a

b

c

t1

f

t2

Figure 1: Overestimation of switching activity

3 Activity estimation
Estimation techniques under two delay models - zero delay
model and the unit delay model are described.

3.1 Zero delay model
The zero delay model is used to calculate the switching ac-
tivities due to logic alone. The transitions are assumed to be
instantaneous, therefore glitching cannot occur.
3.1.1 Previous work
It was shown in [4] that transition density D(f) is D(f) =P

x2I p(df=dx)D(x) where f is the output of a circuit and x

is an input of the circuit, df=dx is the boolean di�erence of f
with respect to x and I is the set of all inputs. D(x) is the
transition density for node x. There are a couple of problems
with this de�nition for D(f).
1. It only considers single input switching.
2. The partitioning of the nodes is at the lowest level (i.e.,

individual gates) and hence does not take into account the
correlation between the signals.
Attempts have been made to take care of the correlation by

partitioning[3] however multiple input switching has not been
considered. Consider Figure 1. The inputs nodes (a; b; c) are
assumed to have switching probabilities 0:5 and signal prob-

abilities of 0:5. The node at t1 is a + b and has switching
probability of 0:5 and signal probability of 0:25. Similarly

the node at t2 is b+ c and also has switching probability of
0:5 and signal probability of 0:25. If the model proposed by
[4] is used then the node at f will be calculated to have a
switching probability of 0:75 and signal probability of 0:5625.
A
aw with this gate level partitioning is that signals t1 and
t2 are correlated. The partitioning of circuits so as to \see"
independent signals only is proposed in [3] and this would es-
timate the switching probability at node f to be 0:625 and
the signal probability to be 0:625. This estimation model is
still inaccurate because it overestimates the switching proba-
bility, since it considers switching by single inputs only and
does not take into account simultaneous switching by multiple
inputs. The switching probability derived from experiments
using logic simulation(IRSIM) is 0:47, demonstrating the lack
of accuracy in the single input switching model. We have de-
rived a model which takes simultaneous switching into account
and also the correlation between the intermediate signals.
Given a circuit realizing function f with input vector I =

(x0; x1::xn�1), the boolean di�erence df=dxi of a circuit with
respect to one of the inputs xi is de�ned to be

df=dxi = f(xi)� f(�xi) = fxi=0 � fxi=1

where � is the logical XOR operation. It was �rst suggested in
[4] to calculate the boolean di�erence by using BDDs(Binary
Decision Diagrams)[10]. This is a very e�cient tool to carry
out probability computation. The scan function of the BDD
package can be used to compute the probabilities at the nodes.
Similarly the boolean di�erence for two inputs is de�ned as

df=d(xixj) = fxi=0;xj=0 � fxi=1;xj=1

Several properties of the boolean di�erence are listed in [5].
These de�ne the boolean di�erence functions for operations
NOT, AND, OR and XOR. A complex function is recursively
computed by breaking down the function into smaller ones.
The boolean di�erence can hence be computed in a bottom-
up fashion.
3.1.2 Activity considering multiple input switching
Given a circuit realizing function f with input vector I =
(x0; x1::xn�1) the switching probability at the output f is
given by

D(f) =
1

nC1

X

xi2I

p(
df

dxi
)D(xi)+

1
nC2

X

xi ;xj2I

p(
1

2
(

df

d(xixj)
+

df

d(�xixj)
))D(xi)D(xj)+

1
nC3

X

xi;xj ;xk2I

p(
1

4
(

df

d(xixjxk)
+

df

d(xixj �xk)
+

df

d(xi �xjxk)
+

df

d(�xixjxk)
))D(xi)D(xj)D(xk)

+ � � � (1)

The �rst term is the contribution of signal input switching, the
second term of two input simultaneous switching, the third of
three input simultaneous switching and so on.
Single input switching
The single input switching probability of f is

X

xi2I

p(fxi=0 � fxi=1)D(xi)

Using the boolean di�erence de�nition and since there are nC1

ways to select signal xi the contribution due to single input
switching for all inputs to the overall switching is

1
nC1

X

xi2I

p(
df

dxi
)D(xi)

Multiple input switching
The condition for two input simultaneous switching is de-

rived and we will extrapolate the result for multiple input
switching.
The two input switching probability of f is

X

xixj2I

p(
2

4
(fxi=0xj=0�fxi=1xj=1+fxi=0xj=1�fxi=1xj=0))D(xi)D(xj)

Using de�nition of boolean di�erence and since there are nC2

ways to select signals xi and xj, the contribution due to two
input switching to the overall switching probability is

1
nC2

X

xixj2I

p(
1

2
(

df

d(xixj)
+

df

d(�xixj)
))D(xi)D(xj)

Similarly the three input switching contribution is

1
nC3

X

xi;xj ;xk2I

p(
1

23�1
(

df

d(xixjxk)
+

df

d(xixj �xk)
+

df

d(xi �xjxk)
+

df

d(�xixjxk)
))D(xi)D(xj)D(xk)

The support set fsup of a function f are the set of variables
f depends on. Using the support set allows us to partition

Algorithm calculateMultipleInputDensity(f;I;G)
/* I is the primary input vector */
/* f is the output vector */
/* G is the set of gates*/
(8i 2 I)isup := ;;
(8g 2 G)gvisited := FALSE;
nodeList := IfanOuts;
8k 2 nodeList

/*ksup is the support set for node k*/
ksup := ;
8i; j 2 kfanIns

if(isup \ jsup 6= ;)
ksup := ksup [isup [jsup;

else
ksup := ksup [i [j;

kformula :=calculateFormula(k; ksup);
kdensity :=evalDensity(kformula ; ksup);
8g 2 kfanOuts

/*if all gates driving gate g have been visited
then add g to nodeList */
if((8h 2 gfanIns)hvisited = TRUE)

nodeList := nodeList [g;
kvisited := TRUE;

Figure 2: Algorithm for calculating multiple input density

Table 1: Activity estimation results (zero delay)
Gates Zero Delay Model IRSIM

Single input Multiple input results
switching switching

nand2 0.5 0.375 0.38
nand3 0.375 0.21875 0.23
nand4 0.25 0.1172 0.15
nor2 0.5 0.375 0.38
nor3 0.375 0.21875 0.20
nor4 0.25 0.1172 0.13
xor2 1.0 0.5 0.48

the circuit so that every node only depends on the directly
correlated signals. The algorithm to calculate the minimal
support set so that each partition packs more correlated nodes
is shown in [6]. The pseudo-code for the multiple input density
calculation algorithm is given in Figure 2.
The procedure calculateFormula calculates the formula for

the node using the support sets and is implemented using
BDDs. The procedure evalDensity evaluates the switching
density given the multiple input switching equation(Equation
1). The algorithmmakes one pass through all the gates of the
circuit. The procedure evalDensity depends exponentially on
the size of the support set. For a tree based circuit support
sets for each node consist only of its immediate inputs.

3.1.3 Examples
Table 1 shows the accuracy obtained using our multiple input
switching and signal correlation model along with single input
switching model with respect to the experimental results. It
is obvious that multiple input switching gives more accurate
results. The experimental results were corroborated with IR-
SIM results by calculating the switching activity for about 400
vectors. The IRSIM linear model is used which models tran-
sistors as a resistor in series with a voltage controlled switch.
This model uses a single-time-constant computed from the re-
sulting RC network and uses a two-time-constant model to
analyze charge sharing and spikes[6]. All the gates were im-
plemented in CMOS and analyzed by IRSIM by counting the
transitions.
The following example shows the calculation of switching

activity for the NAND gate. The input switching probability
is 0.5 and the signal probability is 0.5.
2 input nand gate

3 4

f

b

a

b

21

a

b

a

Figure 3: Glitching

A 2 input nand gate implements f = ab. The boolean
di�erences are df=da = b and df=db = a. The second order
boolean di�erences are df=d(ab) = 1 and df=d(�ab) = 0. The
switching probability of f is thus

1

2
(p(a)D(b) + p(b)D(a)) +

1

1
(p(1=2(1 + 0))D(a)D(b))

The switching probability of the output is calculated to be
0.375.

3.2 Unit delay model
The contribution of hazards to power dissipation (glitch
power) is a critical issue in power estimation and low power
circuit design[8]. Glitching of a gate depends on several fac-
tors.
1. The di�erence in delay of signals arriving at a gate.
2. The sensitivity of the gate to the signal arrivals.
It is known that some gates are more sensitive to glitching

than others. This sensitivity also depends on the arrival se-
quence of the signals at the gates. Using the unit delay model
one can estimate the switching due to glitching. We assume
in a unit delay model that all gates have same propagation
delay(1 gd). The arrival times at the gates can simply be cal-
culated by counting the number of gates encountered in the
path. The �rst condition is easily detected when the signals
arrive at the gates di�ering by more than certain � time. We
consider � � 2gd as the condition for glitching in our imple-
mentation. The second condition is to �gure out how many
of these transitions di�ering in time actually cause a glitch.
Glitching sensitivity (gs) of a gate is de�ned as the probabil-
ity of a gate glitching under a given arrival sequence of input
vectors. We propose the following algorithm to calculate the
glitching sensitivity of the gates given the arrival times to the
inputs of gates. Step functions (and their inverse) are applied
on the inputs of the gate. The step functions are staggered by
their arrival times. The gate transforms the steps at the input
into steps or pulses on the output depending on the gate and
the arrival sequence. The number of pulses which occur on the
gate divided by the number of all possible input step patterns
(2n) gives the glitching sensitivity of the gate. For example,
assume switching across a NAND gate (Figure 3). If signal a
arrives at time t and signal b arrives at time t+ � then glitch-
ing can only occur if signal a is rising and signal b is falling
which is one of the possible four conditions (3rd condition).
Thus the glitching rate is .25 times the switching probabilities
of signal a and signal b of a NAND gate. By observing small
gates(NAND/NOR/OR/AND) it is clear that they glitch only
0.25 times the possible glitch conditions, however for a gate
like XOR glitches are 1.0 times the possible glitch conditions
if the arrival time at the inputs di�er. Assuming input signal
probabilities 0.5 and input switching probabilities of 0.5 then
transition density of a NAND gate is 0.375(Section 3.1.3).
pt(f) = 0:375; ptg(a) = 0:5; ptg(b) = 0:5
ptg(f) = pt(f) + 2 � ptg(a) � ptg(b) � :25
ptg(f) = 0:5
where pt(f) is the transition density at f without glitching
and ptg(f) is the transition density at f with glitching.

Algorithm calculateGlitchingSensitivityOfGate(f;I; �)
/* I is the primary input vector */
/* f is the output vector */
/* � is the arrival vector*/
pulseCount := 0;

8 2n input assignments of I with u(�) and u(�)
evaluate f(I);
8 pulse component 2 f(I)

pulseCount := pulseCount+ 1;
/*set glitching sensitivity of gate f*/
fgs := pulseCount/2n ;

Figure 4: Algorithm to calculate glitching sensitivity

The logic operations(NOT, AND, OR) on step, pulse and
step/pulse functions is given in [5].

3.2.1 Activity considering glitching

Let I = (x0; x1::xn�1) be the input vector with arrival vector
� = (�0; �1::�n�1) at a gate with n inputs satisfying function
f . An ordering on the arrival vector at the gate is known.
For each 2n combinations of the input vector with step re-
sponse and its inverse, f(I) is calculated using rules from [5].
The total number of pulse components for each input assign-
ment is then incremented for all inputs. The probability of
glitching is calculated by dividing the total number of pulse
components for all inputs by the total number of input pat-
terns 2n. For most gates in practice n is small (n � 5), so
the algorithm given in Figure 4 can be used to calculate the
sensitivity for most of the commonly used gates and then used
by table lookup in the estimation.
The pseudo-code to calculate the sensitivity and to update

the activities are given in Figure 4 and Figure 5.
After the glitching sensitivity has been calculated, the new

activity factor can be calculated as

D1(f) = D0(f) + 2 � fgs �D
1(xi) �D

1(xj) � � � (2)

where xixj :: are the inputs which arrive at di�erent times and
fgs is the glitching sensitivity of the gate with the given ar-

rival times. D0; D1 are the zero delay switching density and
the unit delay switching density respectively. The factor 2
is multiplied because glitching causes two transitions at the
output (one in each direction). The procedure updateDen-
sity (Figure 5) updates the transition density for unit delay
model with the Equation 2. The procedure calculateUnbal-
ancedGates (Figure 5) calculates the arrival times on the gate
and computes whether the gate is unbalanced (� � 2). It is
assumed that glitching propagates through the network.
Table 2 shows the circuit activity of simple gates when con-

sidering glitching under various arrival patterns. �,� and

are the arrival times at di�erent input. The activity is cor-
roborated using IRSIM for about 400 vectors. Note that for
a gate implementation like XOR glitching could double the
activity factor of the gate.

4 Experimental results
We have incorporated the algorithms for multiple input
switching and glitching estimation into an estimator (PSIM)
built using a BDD package. This estimator gives two sets of
activity results, one considering only multiple input switching
and the other considering multiple input switching and glitch-
ing. This estimator operates on the logical description (eqn
format) of the circuit. This estimator also gives a power factor

Algorithm calculateDensityWithGlitching(f;I;G)
/* I is the primary input vector */
/* f is the output vector */
/* G is a set of gates*/
8g 2 G

gvisited := FALSE;
gbalanced := TRUE;

/* Compute unbalanced gates and their arrival times */
calculateUnbalancedGates();
nodeList := IfanOuts

8k 2 nodeList
if(kbalanced = FALSE)

/* kdensity is the zero delay density at gate k*/
/* k� is the arrival vector at gate k*/
/* kgs is the glitching sensitivity of gate k*/
kdensity := updateDensity(kdensity ; k�; kgs);

8g 2 kfanOuts

if((8h 2 gfanIns)hvisited = TRUE)
nodeList := nodeList [g;

kvisited := TRUE;

Figure 5: Algorithm to calculate activity with glitching

Table 2: Activity estimation results (unit delay)

Gates Arrival Glitching Unit delay model IRSIM
seq. sensitivity (multiple input) results

nand2 � = � 0.0 0.375 0.38
� < � 0.25 0.5 0.47

nand3 � = � =
 0.0 0.21875 0.19
(� = �) <
 0.125 0.2795 0.29
� < � <
 0.25 0.3425 0.36

nor2 � = � 0.0 0.375 0.38
� < � 0.25 0.5 0.48

nor3 � = � =
 0.0 0.21875 0.23
(� = �) <
 0.125 0.2795 0.30
� < � <
 0.25 0.3425 0.35

xor2 � = � 0.0 0.5 0.48
� < � 1.0 1.0 0.90

Table 3: Circuits used for comparison
Circuits Inputs Outputs Gates
hpar 9 2 17
mux8 11 1 49
hcomp 11 3 51
rca4 8 5 34
cla4 9 5 76
sd 6 5 66
rca8 9 2 74
halu 14 8 93

Table 4: Comparison of SPICE results with PSIM
Circuits Power CPU Time

SPICE PSIM SPICE PSIM
(mW) (power factor) (secs) (secs)

(multiple inputs)
(& glitching)

hpar 0.1399 16.01 17.23 1500 2
mux8 0.3135 19.58 24.2 2880 54
hcomp 0.3605 20.01 27.32 3600 32
rca4 0.4402 20.13 35.26 1200 3.5
cla4 0.7222 55.69 68.45 6420 9
sd 0.898 85.01 90.27 6600 12.5
rca8 1.080 87.54 101.34 7440 93
halu 1.18 92.03 105.0 2440 72

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

10 20 30 40 50 60 70 80 90 100 110 120

S
P

IC
E

 (
m

W
)

PSIM (power factor)

Plot of PSIM results with SPICE

hpar

mux8

hcomp

rca4

cla4

sd

rca8

halu
multiple inputs with glitching

multiple inputs

Figure 6: Plot of SPICE results with PSIM

for the circuit which is

Powerfactor =
X

f2allnodes

fanoutsfD(f)

where fanoutsf are the fan-outs of signal f . The fanoutsf is
proportional to the gate capacitance driven by signal f . Power
is hence proportional to the powerfactor.
The glitching sensitivity of gates which occur frequently

within the circuits are evaluated. This is used to compute
the glitching for gates within the large circuits by looking up
the right sensitivity values depending upon the actual arrival
times of the inputs at the gates.
The results for some circuits and their characteristics are

given in Tables 4 and 3. The power factor from PSIM is
calculated with glitching and without glitching (both of them
including multiple input switching) and plotted along with
actual power values (mW) obtained from 100 random runs of
SPICE (Figure 6). The dotted curve denotes the power fac-
tor estimated considering multiple input switching only and
the solid curve shows the power factor estimated when consid-
ering multiple input switching and glitching. The di�erence
between the two curves represents the glitching power contri-
bution. It can be noted that circuits such as rca4, rca8 and
halu have more switching energy loss due to glitching. This
can be attributed to the imbalanced paths in these circuits.
Comparisons between CPU times of SPICE and PSIM are
shown in Table 4. We see that the CPU times for PSIM are
several orders of magnitude faster than SPICE.

5 Conclusions and future work
We have described a quick and accurate method of estimating
switching activity from the logical description of the combi-
national circuit.
We would like to extend the work to use actual gate delays.

This will help in determining when glitches get damped when
propagating through the circuit.
Switching activity results can be used as an input to other

CAD tools in order to make performance based decisions on
partitioning, routing or transistor sizing.
Switching activity results could be used to compare the

power consumption of two functionally equivalent but logi-
cally di�erent implementations of a function. Currently the
estimation is based only on gate level implementations how-
ever this could be extended to transistor level implementations
either by extending the eqn syntax of the circuit with \if then
else" statements or by including transistor level switching ac-
tivity by reading from the transistor-level description of the
circuit. A fallout of this work would be to compare di�erent
logic implementation styles (e.g., static v/s dynamic).

References

[1] A. Chandrakasan, T. Sheng , R. W. Brodersen, "Low
Power CMOS Digital Design", IEEE J. of Solid-State
Circuits, Apr 1992, pp. 473-484.

[2] Abhijit Ghosh, Srinivas Devadas, Kurt Keutzer, Jacob
White, \Estimation of Average Switching Activity in
Combinational and Sequential Circuits", 29th IEEE De-
sign Automation Conference, 1992, pp. 253-259.

[3] B. Kapoor \Improving the accuracy of circuit activity
measurement", IWLPD '94 Workshop Proceedings, pp
111-116.

[4] F. Najm, \Transition Density, A New Measure of Activity
in Digital Circuits", IEEE Trans. on Computer Aided
Design, Feb 1993, pp. 310-323.

[5] Huzefa Mehta, Robert Michael Owens, Mary Jane Irwin
\Accurate Estimation of Combinational Circuit Activ-
ity", Tech Report CSE-95-007.

[6] IRSIM USERs Manual.

[7] J. Monteiro, S. Devadas, B. Lin, C-Y Tsui, M. Pedram,
\Exact and approximate methods of switching activ-
ity estimation in sequential logic circuits", IWLPD '94
Workshop Proceedings, pp 117-122.

[8] L. Benini, M. Favalli, B. Ricco, \Analysis of hazard con-
tributions to power dissipation in CMOS ICs", IWLPD
'94 Workshop Proceedings, pp 27-32.

[9] M. A. Cirit, \Estimating Dynamic Power Consumption
of CMOS Circuits" Proceedings of the Int'l Conference
on Computer-Aided Design, Nov 1987, pp 534-537.

[10] R. Bryant, \Graph Based Algorithms for Boolean Func-
tion Manipulation" IEEE Transactions on Computers,
volume C-35, August 1986, pp. 677-691.

[11] R. Burch, F. Najm, P. Yang, T. Trick, \McPOWER: A
Monte Carlo Approach to Power Estimation" Proceed-
ings of the Int'l Conference on Computer-Aided Design,
November 1992, pp 90-97.

[12] R. Murgai, R. Brayton, Alberto Sangiovanni-Vincentelli,
\Decomposition of Logic Functions for Minimum Tran-
sition Activity", IWLPD '94 Workshop Proceedings, pp
33-39.

[13] S. M, Kang, \Accurate Simulation of Power Dissipation
in VLSI Circuits", IEEE J. of Solid-State Circuits, Oct
1986, volume 35, pp 889-891.

[14] Srinivas Devadas, Kurt Keutzer, Jacob White, \Esti-
mation of Power Dissipation in CMOS Combinational
Circuits Using Boolean Function Manipulation", IEEE
Trans. on Computer Aided Design, March 1992, pp. 373-
383.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

