
Code Optimization Techniques for Embedded DSP Microprocessors

Stan Liao Srinivas Devadas Kurt Keutzer Steve Tjiang Albert Wang
MIT Department of EECS Synopsys, Inc.

Cambridge, MA 02139 Mountain View, CA 94043

Abstract—We address the problem of code optimization for
embedded DSP microprocessors. Such processors (e.g., those in
the TMS320 series) have highly irregular datapaths, and conven-
tional code generation methods typically result in inefficient code.
In this paper we formulate and solve some optimization problems
that arise in code generation for processors with irregular datap-
aths. In addition to instruction scheduling and register allocation,
we also formulate the accumulator spilling and mode selection
problems that arise in DSP microprocessors. We present optimal
and heuristic algorithms that determine an instruction schedule
simultaneously optimizing accumulator spilling and mode selec-
tion. Experimental results are presented.

Keywords—code generation, optimization, digital signal pro-
cessors

I. INTRODUCTION

An increasingly common micro-architecture for embedded systems
is to integrate a microprocessor or microcontroller, a ROM and an
ASIC all on a single IC. Such a micro-architecture can currently be
found in many diverse embedded systems, e.g., FAX modems, laser
printers, and cellular telephones.

The programmable component in embedded systems can be an
application-specific instruction processor (ASIP), a general-purpose
microprocessor such as the SPARC, a microcontroller such as the Intel
8051, or a digital signal processing (DSP) microprocessor such as the
TMS320C25. This paper focuses on the DSP application domain,
where embedded systems are increasingly used. Many of these sys-
tems use processors from the TMS320C2x, 56K or ADSP families,
all fixed-point DSP microprocessors with irregular datapaths.

As the complexity of embedded systems grow, the need to de-
crease development costs and time to market mandates the use of
high-level languages (HLLs) in programming DSP processors; only
short, time-critical portions of the program can be assembly-coded.
Recent statistics from Dataquest support this trend: high-level lan-
guages (HLLs) such as C (and C++) are gradually replacing assembly
language, because using HLLs greatly lowers the cost of development
and maintenance of embedded systems. However, current compilers
for fixed-point DSP microprocessors generate poor code — thus pro-
gramming in a HLL can incur significant code performance and code
size penalties.

While optimizing compilers have proved effective for RISC pro-
cessors, the irregular datapaths and small number of registers found
in DSP processors remain a challenge to compilers. The direct appli-
cation of conventional code optimization methods (e.g., [1]) has, so

far, been unable to generate code that efficiently uses the features of
fixed-point DSP microprocessors.

Code size matters a great deal in embedded systems since program
code resides in on-chip ROM, the size of which directly translates into
silicon area and cost. Designers often devote a significant of time to
reduce code size so that the code will fit into available ROM; exceeding
on-chip ROM size could require expensive redesign of the entire IC
[6]. As a result, a compiler that automatically generates small, dense
code will result in a significant productivity gain as well.

There has been relatively little previous work in the area of code
generation for DSP processors. Cheng and Lin present methods for
code generation for the TMS320C40 in [2]. The algorithms they use
are similar to high-level scheduling and allocation methods. Various
groups in the hardware design community have recently started work-
ing on the problem of retargetable code generation for embedded pro-
cessors [9]; the focus, however, has been on horizontally microcoded
architectures.

In this paper, we develop code optimization techniques for DSP mi-
croprocessors with irregular datapaths that improve code performance
and reduce code size. Our techniques are applicable to a broad class
of DSP microprocessors, including those in the TMS320, DSP56K,
and ADSP series. The optimization problems we target include in-
struction scheduling and register allocation. We also formulate the
accumulator spilling and mode selection problems that arise in DSP
microprocessors. The individual problems of scheduling and register
allocation have traditionally been solved independently in compilers.
We present optimal and heuristic algorithms that determine an instruc-
tion schedule while simultaneously optimizing accumulator spilling
and mode selection. The experimental results we have obtained show
significant improvements over existing code generation methods.

The paper is organized as follows. We use the TMS320C25 to
illustrate our architecture model in Section II. In Section III we for-
mulate the mode selection problem. We describe the general register
allocation problem in Section IV and go on to formulate the accu-
mulator spilling problem that is specific to DSP microprocessors. A
branch-and-bound scheduling algorithm that produces a schedule for
a basic block with a minimal number of accumulator spills and mode
switches is presented in Section V. Experimental results are presented
in Section VI. We conclude in Section VII with our ongoing research.

II. EXAMPLE: TMS320C25

We describe Texas Instruments’ popular TMS320C25 DSP micro-
processor [7], highlighting the key features of this irregular architec-
ture that are not addressed in traditional compiler optimizations. Fig. 1
shows a simplified model of its datapath.

The TMS320C25 is an accumulator-based machine. In addition to
the usual ALU, there is a separate multiplier which takes input from
the T register and memory and places the result in the P register. With
the separate multiplier the machine can execute one-cycle multiply-
accumulate operations. Note that there are no general-purpose regis-
ters other than the accumulator. Most operations involve an operand
taken from the memory.

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

D−Bus

A−Bus

Dmem

T

P

shift

AR

AGU

ARP

ALU

acc

x

Fig. 1. TMS320C25 datapath (simplified model)

The memory is addressed by the address register file (AR0 through
AR7), which is in turn addressed by the 3-bit address register pointer
(ARP) (denoting the “current”AR). The address generation unit (AGU)
allows the current AR to be auto-incremented or auto-decremented
during the execution of any TMS320C25 instruction that uses indirect
addressing mode.

Another feature of the TMS320C25 that is usually missing in gen-
eral register machines is the use of modes (or residual control in
microprogramming terminology). The most commonly used mode
classes are sign-extension and product-shift. Some instructions are
affected by the setting of the modes, and if the current mode setting is
different from that desired by the instruction, then it must be set to the
appropriate values.

The use of address registers and modes is likely intended to allow
for more compact code. However, this means that the compiler’s job
is made more difficult. In the subsequent sections we will examine the
problem of mode settings and present a formulation for the generalized
problem. We will then extend this framework for the problem of
minimizing the spills of the accumulator.

III. MODE OPTIMIZATION PROBLEM

The goal of mode optimization is to schedule the instructions so
that the number of mode-setting instructions is minimized.

A. Simple Mode Optimization

Let the DAG G = hV;Ei for a basic block be given. Let r be the
number of modes, and l : V ! f1; : : : ; rg label each node v 2 V

with a mode l(v). Let C = [cij] be the cost matrix, where cij � 0
is the cost of switching from mode i to mode j. We assume that the
following hold for the cost matrix C:

cii = 0; for all i (1)

cik � cij + cjk; for all i; j; k (2)

Inequality (2) (triangular inequality) will be used later to establish
lower bounds in the branch-and-bound algorithm. The simple mode
optimization problem (SMOPT) is the problem of finding a linear
schedule S that is a topological sort of G, (v1; v2; : : : ; vn), such that

mode cost(S) =
nX

i=1

cl(vi)l(vi+1) (3)

is minimized.
Theorem 1: The decision problem for simple mode optimization

is NP-complete.

B. Multiple Mode Classes and Don’t-Cares

In Section III-A we only considered a single mode class. A mode
class is a set of mutually exclusive modes, and at any point the machine
can only be in exactly one of the modes. For example, sign extension
and product shift are two mode classes in the TMS320C25. We assume
that each mode class has a cost matrix whose values are independent
of every other mode class. In the absence of don’t-cares, multiple
mode classes are equivalent to a single mode class: their Cartesian
product.

Let us first consider the presence of don’t-cares (denoted by �)
in a single mode class. A node is labeled �, if it is not affected by
the current mode. Hence, we can first disregard these nodes, try to
optimally schedule the other nodes, and then put these nodes back
in the schedule, consistently with the original DAG. To do so, we
construct from G a reduced DAG G0

= hV 0; E0

i as follows:
Procedure: Don’t-Care Reduction

1. For each path v1; v2; : : : ; vk�1; vk in G where l(vj) = �, for
2 � j � k � 1, and l(v1); l(vk) 6= �, we add an edge (v1; vk).
This preserves the precedence relationship fromG.

2. Remove each node v 2 V such that l(v) = �, and all edges
incident on or emanating from v.

Now let us consider m mode classes. The label of each node is
an m-tuple, some or all of whose components may be �. For each
mode class p we can construct a reduced DAG from G by projecting
the label to the corresponding component and then reducing the graph
using the above procedure; this derived graph is called the p-reduced
DAG. We may then schedule these reduced DAGs separately. Each of
these schedules is called a reduced schedule.

Definition 1: Let Sp and Sq be valid reduced schedules for the p-
and q-reduced DAGs. Sp and Sq are said to be compatible if they can
be merged to form a schedule that is valid with respect to G.

For example, the reduced schedules ABEG and AEFG are compat-
ible; whereas ABEG and AGDE are not, since they have conflicting
orders for nodes E and G. We state without proof the following
proposition.

Proposition 1: Let Sp be an optimal reduced schedule for the p-
reduced DAG, p = 1; : : : ;m. If all Sp’s are compatible, then they
can be merged to form an optimal schedule for G.

Unfortunately, not all optimal reduced schedules are compatible.
Thus, if reduced DAGs are employed in a heuristic algorithm, some
non-optimal reduced schedules will have to be chosen in order to
achieve compatibility. In a branch-and-bound algorithm, we consider
all modes classes simultaneously and compute the lower-bound by
resolving the don’t-cares conservatively.

C. Example

Let us consider the expression DAG G shown in Fig. 2(a). There
are two mode classes, p=fu,sg and q=f0,1,2g. The corresponding
reduced DAGs are shown in Fig. 2(b) and (c).

Assuming that any mode change incurs a unit cost, there are two
optimal reduced schedules for the p-reduced DAG: Sp1 =ACBEF
and Sp2 =BACFE. There is only one optimal reduced schedule for
the q-reduced DAG: Sq =ADFHEG. Sp1 and Sq are not compatible,
since the former schedules F after E whereas the latter schedules F
beforeE. However, Sp2 and Sq are compatible, we obtain the optimal
schedule for G: BACDFHEG.

A B

C D

E F

G H

(u,1) (s,−)

(u,−) (−,1)

(s,2) (u,0)

(−,2) (−,0)

A B

C

E Fs u

u

u s

A

D

E F

G H

1

1

2 0

2 0

(a)

(b) (c)

Fig. 2. (a) An expression DAG G. (b) p-reduced DAG. (c) q-reduced
DAG.

IV. REGISTER ALLOCATION AND ACCUMULATOR SPILLING

This section describes the effect of the scheduling step on the
number of values that have to be stored to perform a given computation.
We first focus on conventional architectures and then switch focus to
irregular datapaths such as the TMS320C25.

A. RISC Architectures

Register allocation deals with allocating variables in the given
basic block to a minimum number of registers. If at any time we
have to store a set of values whose cardinality exceeds the number
of available registers, spilling into memory is the only alternative.
The register allocation problem for RISC machines is quite different
from machines such as the TMS320C25 since the latter does not have
a register file. However, in both cases it is possible to arrive at a
cost function for scheduling that simplifies the succeeding register
allocation step.

B. Effect of Scheduling on Register Allocation

It is well known that different schedules corresponding to a data-
dependency graph require differing number of registers. We formalize
this effect in the sequel.

We are given a basic block represented as a DAG G = hV;Ei.
We will assume a sequential model of processor execution, however,
the discussion can easily be generalized to include parallelism corre-
sponding to multiple execution threads. Each node v 2 V is assumed
to have two input variables i1(v) and i2(v) and an output variable
o(v). We further assume the graph is in static single assignment form,
that is, every assignment is to a unique variable.

If we schedule the nodes inG, the the life-times of all the variables
can be calculated. The life-time of a variable is the duration between
its unique assignment and last use. Since most processors allow the
reading and writing of values into a register in a single instruction, if
a variable is written in instruction i and is read in instruction j > i,
we will denote its life-time as the (open-ended) interval [i; j).

v1 = v2 + v3
v4 = v2 - v3
v5 = v1 * v2
v6 = v4 & v3
v7 = v5 | v6

(a)

R1 = R2 + R3
R4 = R2 - R3
R1 = R1 * R2
R4 = R4 & R3
R4 = R1 | R4

(b)

R1 = R2 + R3
R1 = R1 * R2
R2 = R2 - R3
R2 = R2 & R3
R3 = R1 | R2

(c)

Fig. 3. (a) Code sequence (b) Register allocation on original code
sequence (c) Register allocation on reordered code sequence

Variables with non-overlapping life-times can be merged into the
same register. For example, the variable i1(v) with life-time [i; j) can
be merged with variable i2(v) with life-time [k; l) if k � j.

The number of registers required is proportional to the overlap of
the live periods of the variables, or to put it differently, the number of
registers required is the maximal density of variable life-times across
the entire sequence. Given a set of variable life-times in a schedule
we can compute the maximal density in linear time.

The simple register allocation problem is to find the best possible
grouping of variables with non-overlapping life-times into a minimum
number of sets. Given a fixed schedule the simple register allocation
problem (SRAOPT) can be solved in polynomial time. (A polynomial-
time solution is only possible when static single assignment for each
variable is assumed, in which case the interference graph is an interval
graph, which can be colored in polynomial time [3].) However, there
is freedom in the ordering of the nodes of the given DAG as long
the dependency constraints are not violated. Given a code sequence,
exploiting this freedom can result in a smaller set of registers being
required. This is illustrated in Fig. 3. In Fig. 3(a), an example code
sequence being executed on a processor with a single arithmetic unit
is shown. Without changing the order of the operations in the code
sequence, the minimum number of registers required is 4, as shown
in Fig. 3(b). Allowing re-ordering of operations within the sequence
produces a 3 register solution in Fig. 3(c). (A similar example was
given in [10].)

Finding the optimal ordering of operations within a sequence, so
as to allocate a minimum set of registers reduces to a one-dimensional
linear arrangement problem similar to SMOPT of Section III. The
register allocation problem (RAOPT), involves finding a schedule S
that is a topological sort of a basic block represented by a DAG G,
(v1; v2; : : : ; vn), such that

reg cost(S) =
n

max
i=1

density(i) (4)

is minimized, where density(i) corresponds to the number of variables
that are live at instruction i.

C. DSP Microprocessor Architectures

Register allocation for processors with a general-purpose register
file is relatively straightforward. Obtaining a schedule that mini-
mizes the maximal density of variable life-times will result in minimal
spilling into memory.

For processors such as the TMS320C25, the register allocation
problem is more complicated due to several reasons, the foremost of
which is the indirect addressing mechanism that is used in the datapath.

� The TMS320C25 has a single accumulator and no general-
purpose registers.

� The address registers AR0 through AR7 are in turn addressed by
the register ARP.

� The address registers AR0 through AR7 can be auto-incremented
and auto-decremented during the execution of any TMS320C25
instruction that uses indirect addressing mode. However, loading
a new address requires a separate instruction.

� The ARP can be switched to point to a different address register
during any instruction using indirect addressing mode.

All of the above complications can be taken into account by formu-
lating the register allocation problem for a fixed code schedule as
an offset assignment problem [8]. In this paper, we will focus on
the first item above, and formulate the minimal spilling problem for
accumulator-based architectures.

In the TMS320C25, instructions such asADD, MAC and LAC (load-
accumulator) write into the accumulator. The MPY instruction writes
into the P register. Given a schedule it is easy to determine the number
of accumulator spills using life-time analysis. If the accumulator
value is used in the immediately following instruction and nowhere
else, then spilling into memory is not required, else we need to spill
the contents into memory for later access. Different schedules will
result in different numbers of accumulator spills.

The accumulator spilling problem (ASOPT), involves finding a
linear schedule S that is a topological sort of a basic block represented
by a DAG G, (v1; v2; : : : ; vn), such that

spill cost(S) = Number of accumulator spills in S (5)

is minimized.

V. A BRANCH-AND-BOUND ALGORITHM FOR SCHEDULING

In this section we present a branch-and-bound algorithm which,
given a basic block represented as a DAG, determines an optimal code
schedule under a specified cost function.

A. Cost Function

The cost we use includes the number of accumulator spills required
by the scheduleS (see Eqn. (5)) as well as the number of mode switches
required (see Eqn. (3)).

The cost function we use in the branch-and-bound method is:

C(S) = WS � spill cost(S) + WM � mode cost(S)

where WS and WM depend on the relative cost of instructions re-
quired to spill the accumulator to memory and instructions required to
accomplish a mode switch.

B. Branching Search

Branching over all possible solutions is accomplished using the
recursive branching strategy of Fig. 4. Initially, find-optimal-
schedule() is called with the original DAGG = hV;Ei, andP = � as

find-optimal-schedule(G, P):
f

/* G = DAG of basic block */
/* P = Current partial schedule for DAG */
/* C(P) = Cost of partial schedule */
N = find-scheduleable-nodes(G, P);
if (N � �) f

if (C(P) < C(S))
[S; C(S)] = [P; C(P)];
return [S; C(S)];

g

foreach node v in N f

LB = lower-bound(G� v, P [v);
if (C(P [v) + LB < C(S)) f

[T; C(T)] = find-optimal-schedule(G� v, P [v);
if (C(T) < C(S))

[S; C(S)] = [T; C(T)];
g

g

return [S; C(S)];
g

Fig. 4. Branch-and-bound procedure to determine optimal schedule

parameters. It returns the best schedule S and the cost of the schedule
C(S).

The procedure find-scheduleable-nodes() determines the set of
nodes N 2 V that can be scheduled given the partial schedule P

such that dependency constraints are not violated. If there are no
scheduleable nodes it means that the schedule is complete. If the cost
of this complete schedule is less than the best cost seen thus far, we
save the complete schedule P as the best schedule and return to the
previous level of recursion.

If there are scheduleable nodes in N , we select each of them in
sequence and recursively call find-optimal-schedule(). Once we have
chosen a node v to add to P , we first compute a lower bound on the
cost of any schedule we will see in this recursion path. If the cost
of the partial schedule P [v plus the computed lower bound on the
unscheduled DAG G � v is greater than or equal to the best cost
seen thus far, there is no need to explore this recursion path. The
best schedule with its associated cost is returned by procedure find-
optimal-schedule().

C. Lower Bound Computation

The procedure lower-bound() is critical to improving the efficiency
of the search. If we can compute tight lower bounds, then we can prune
the search considerably by reducing the depth of recursion.

Given a DAG ~GhV;Ei we need to compute a lower bound over
all possible schedules ~P consistent with ~G. This entails computing a
lower bound for mode cost(~P) and a lower bound for spill cost(~P).

C.1 Lower Bound for Spill Cost

We assume that the accumulator has no useful value upon entry to
the basic block in Eqn. (5) as well as in the lower bound computation
below.

We mark the nodes in the given DAG ~G using the steps below.
Initially all nodes are unmarked.

1. Nodes whose outputs are outputs of the basic block and which
write into the accumulator (e.g., MAC and ADD) will spill their
contents, and these nodes are marked.

2. If a node v in the ~G has more than 2 fanouts, it means that o(v)
is used as an input in two other instructions and this implies that
the accumulator contents corresponding to o(v) has to be spilled
into memory.

3. If node v receives inputs from nodes x and y which correspond
to instructions that write into the accumulator, then eithero(x) =
i1(v) or o(y) = i2(v) has to be spilled. Therefore, if both x and
y are unmarked, we will mark x or we will mark y (but not both).

The number of marked nodes in ~G corresponds to a lower bound on
the number of accumulator spills in any schedule consistent with ~G.

C.2 Lower Bound for Mode Cost

To estimate a lower bound for the mode cost given an unscheduled
DAG ~G, we simply compute the maximum cost for mode switching
using Eqn. (3) along any path of ~G. This follows from Inequality (2),
since any schedule must contain this path as a subsequence, and the
cost of switching from mode i ! j cannot be greater than that of
mode i! j ! k for any k (for otherwise we can replace the former
by the latter).

D. Hashing

The branching procedure of Fig. 4 may perform a significant
amount of redundant computation. Consider a situation where we
have constructed a partial schedule P1 which corresponds to the set
of nodes V1. The optimal scheduling subproblem is then solved for
G� V1 with appropriate initial conditions corresponding to the mode
and accumulator contents of the last instruction in P1. Now, if we
compute a different partial schedule P2 corresponding to the same set
of nodesV1, and the last instruction inP2 is the same as the last instruc-
tion in P1, we solve exactly the same optimal scheduling subproblem
forG�V1. However, there is no mechanism in the procedure of Fig. 4
to detect that we have solved the subproblem for G� V1 already.

The lower bounding technique alleviates the above inefficiency to
a certain extent. However, since the bounds may not always be tight,
significant redundant computation may occur.

A hashing mechanism of “remembering” previously computed op-
timal solutions for parts of the original DAG can greatly improve
the efficiency of the search. We hash each partial schedule Pi such
that jPij � L, where L is a user-specified parameter in the range
2 � L � jV j. The hash is computed in such a way that if different
partial schedules Pi and Pj contain the same set of nodes V1, the
same hash is computed. Once the subproblem of finding an optimal
schedule for G � V1 has been solved for Pi, we store the result in a
hash table that is accessible by the hash for Pi. Before we begin to
solve the subproblem associated withPj , we check to see if jPj j � L,
if so we compute the hash for Pj and access the hash table. If we get
a “hit” in the hash table, we immediately return the best solution for
the subproblem of scheduling G� V1. A hit in the hash table implies
that Pi and Pj correspond to the same set of instructions, and further
that the last instructions in Pi and Pj are the same.

E. Heuristics

Once the nodes in N have been determined by the procedure
find-scheduleable-nodes(), we can recursively call find-optimal-
schedule() for each of the nodes in N in any order. However, to
improve efficiency it is worthwhile to first explore partial solutions
that have a good chance of being extended to optimal solutions. This
determination can only be made heuristically.

We sort the nodes in N based on a cost estimate to obtain a sorted
list sort(N). The cost estimate for any v 2 N is equal toC(P [v)�

basic fixed costs orig. sched.
block I C V L S M

SpeedCtl386 11 0 5 6 1 10
SpeedCtl389 11 0 6 7 1 8
Compaction3 13 0 6 12 6 6

FFTBR28 22 4 9 17 4 11
ChenDct1 78 20 17 47 11 25
ChenDct4 80 20 17 46 11 25
ChenIDct1 78 26 10 55 20 33
ChenIDct4 72 18 10 39 12 17
LeeDct1 76 17 25 45 4 26
LeeDct4 50 8 21 31 2 16
LeeIDct1 79 26 10 49 17 32
LeeIDct4 64 15 20 35 2 21

TABLE I
FIXED COSTS AND ORIGINAL SCHEDULE

basic heur. sched. ratio ratio
block L S M (LSM) (all)

Speedctl386 5 0 8 0.764 0.879
Speedctl389 6 0 6 0.750 0.879
Compaction3 7 1 2 0.417 0.674

FFTBR28 12 2 6 0.625 0.820
ChenDct1 32 6 6 0.530 0.803
ChenDct4 31 6 6 0.524 0.804
ChenIDct1 29 6 5 0.370 0.694
ChenIDct4 29 6 5 0.588 0.833
LeeDct1 38 5 2 0.600 0.844
LeeDct4 26 1 2 0.592 0.844
LeeIDct1 25 2 2 0.296 0.676
LeeIDct4 27 2 4 0.569 0.840

TABLE II
HEURISTIC SCHEDULE AND RATIOS

C(P) which includes both the spill cost and the mode switching cost.
Nodes in N are sorted in increasing order of this cost estimate.

For small to moderate-sized basic blocks the optimal algorithm of
Fig. 4 that explores all possible solutions is viable. For large basic
blocks, we have to resort to heuristic search techniques. A fast, greedy
heuristic is based on the node sorting method described above. We
only explore solutions corresponding to the first t nodes in the sorted
list sort(N). The foreach loop of Fig. 4 is replaced with t calls to
find-optimal-schedule(), where typically 1 � t � 3.

VI. EXPERIMENTS AND RESULTS

We have implemented the heuristic algorithm of Section V-E to
perform scheduling for minimum cost. Our experiments are based on
a code generator for a simplified TMS320C25 architecture with all the
features described in Section II. A full-featured TMS320C25 code
generator is currently under development (see Section VII).

To accurately account for the various types of costs, we attribute
the following cost components to each node.

� Instruction (I). Each node in the DAG is associated with an
instruction that has a cost of 1.

� Common subexpression (C). If the node has two or more uses, it is

a common subexpression. Under our assumption of aggressive
common subexpression elimination, the result of this node is
stored to memory rather than be recomputed at a later time.

� Live-on-exit variable (V). The result of the computation for this
node is live upon exit of this basic block.

� Load (L). One operand of the node is not in the accumulator;
therefore, it needs to be loaded.

� Spill (S). The result of the previously scheduled node will be
used later but not now.

� Mode change (M). The node requires a mode setting different
from the current setting. The mode classes considered are sign-
extension and product-shift.

The first three items are fixed costs. Under any schedule, the num-
ber of instructions, common subexpressions, and live-on-exit variables
remains the same. Therefore, the only optimizable costs are those of
loads, spills, and mode changes.

We present our experimental results in Tables I and II. The former
gives the original schedule generated by the front-end after common
subexpression elimination. This schedule closely resembles that found
in the source code. The latter shows the results we have obtained after
our heuristic scheduling.

SpeedCtl is a routine in an ADPCM transcoder applying the CCITT
recommendation G.721. Compaction is a notch-filter routine. FFTBR
is an Fast Fourier Transform routine with a mechanism to prevent
overflows. These three are taken from the DSPstone benchmark suite
[11]. ChenDct, ChenIDct, LeeDct, and LeeIDct are discrete cosine
transform routines in a JPEG package. We have chosen the largest
basic blocks from these routines. The column labeled “ratio (LSM)”
gives the ratio of only the optimizable costs (loads, spills, and mode
changes), where as the “ratio (all)” column gives the ratio with the
fixed costs (I, C, and V) taken into account. These results are very
encouraging. Even with the simple heuristic we were able to achieve
substantial improvement over the schedule given by the front-end.

VII. CONCLUSIONS AND ONGOING WORK

Code generation for irregular datapaths, such as those used in
DSP microprocessors, is a problem that has received relatively little
attention to date. With the advent and increasing use of embedded
systems, this problem has become very important. In this paper we
presented scheduling algorithms that are able to exploit the features
of the TMS320C25 microprocessor. Our initial results indicate that
these algorithms obtain substantial improvements in code size and
performance over conventional code generation techniques.

We are currently developing a framework for retargetable code
generation [9]. There are many avenues for further work in this
area. Our framework is directly applicable to traces [4][5] rather
than just basic blocks, and experiments on traces will be conducted
in the near future. Traces will allow for more global optimization
and afford the possibility of even greater savings over conventional
optimization. One way to avoid the possible code explosion caused
by trace scheduling is to restrict the movement across basic blocks to
mode-setting instructions. This way we ensure that along the most
frequent traces the number of such instructions is minimized.

The framework can be easily generalized to accumulator-based
machines which also have a general-purpose register file such as the
TMS320C40. This can easily be done by adding Eqn. (4) to the cost
function.

Storage assignment [8] is a very important post-scheduling prob-
lem that has to be solved in order to ensure that memory accesses have
minimal cost. For machines (such as the TMS320C25) without index-

ing addressing mode, variables are accessed through address registers
(the ARs) and it is desirable that the auto-increment/decrement feature
be efficiently utilized. The placement of variables in storage has a
significant impact on the size and performance of the generated code.
For instance, if variables are accessed in the order abacd and the
following assignment is made: a:1, b:2, c:3, and d:4, accessing a
followed by c requires an explicit instruction to increase the AR by
two; every other access can be accomplished using auto-increment or
decrement. On the other hand, if we use the assignment: a:2, b:1, c:3,
and d:4, then all changes in the AR can be done via auto-increment or
decrement; no explicit instruction for changing the AR is necessary.
This problem is related to the mode optimization problem in that the
AR can be considered a mode class and our goal is again to mini-
mize the number of “mode-setting” instructions. Its relationship with
scheduling is, however, much more complicated because before the
actual assignment is made, the information is only symbolic, and it is
very difficult to estimate the effect of scheduling on offset assignment.

Finally, to fully exploit the features of many DSP microproces-
sors, zero-overhead loops have to be detected and appropriate code
generated wherever possible.

VIII. ACKNOWLEDGEMENTS

This research was supported in part by the Advanced Research
Projects Agency under contract DABT63-94-C-0053, and in part by a
NSF Young Investigator Award with matching funds from Mitsubishi
Corporation.

REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman. Compilers Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

[2] W-K. Cheng and Y-L. Lin. Code Generation for a DSP Processor.
In Proceedings of the Int’l Symposium on High-Level Synthesis,
pages 82–87, May 1994.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, MA, 1990.

[4] John R. Ellis. A Compiler for VLIW Architectures. MIT Press,
1985.

[5] J. A. Fisher. Trace Scheduling: A Technique for Global Mi-
crocode Compaction. IEEE Trnsactions on Computers, C-
30(7):478–490, 1981.

[6] J. G. Ganssle. The Art of Programming Embedded Systems. San
Diego, CA: Academic Press, Inc., 1992.

[7] Texas Instruments. TMS320C2x User’s Guide. Texas Instru-
ments, January 1993. Revision C.

[8] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang. Storage
Assignment to Decrease Code Size. In Proceedings of ACM
SIGPLAN’95 Conference on Programming Language Design
and Implementation, June 1995.

[9] P. Marwedel and G. Goossens, editors. Code Generation for Em-
bedded Processors. Kluwer Academic Publishers, 1995. Pro-
ceedings of the 1994 Dagstuhl Workshop on Code Generation
for Embedded Processors.

[10] S. S. Pinter. Register Allocation with Instruction Scheduling:
a New Approach. In Proceedings of the ACM Programming
Language Design and Implementation Conference, pages 248–
257, June 1993.

[11] V. Živojnović, J. Martı́nez Velarde, and C. Schläger. DSPstone:
A DSP-oriented Benchmarking Methodology. Technical report,
Aachen University of Technology, August 1994.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

