Conflict Modelling and Instruction Scheduling
in Code Generation for In—House DSP Cores

Adwin H. Timme{™™ , Marino T.J. Strik', Jef L. van Meerbergénand Jochen A.G. Jéss

*Eindhoven University of Technology, Department of Electrical Engineering,
Design Automation Section, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
**Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

Abstract erating very efficient (compact) microcode undgght

feasibility constraints With tight feasibility constraints we

Application domain specific DSP cores are becoming increag¢an that both timing (from the algorithm) and resource (from

ingly popular due to their advantageous trade—off betwedhe DSP core and instruction set) constraints are present. The

flexibility and cost. However, existing code generation metho@embination of these constraints results in high OPU utilization

are hampered by the combination of tight timing and resour¢ates, while the only objective is to find a feasible (correct)

constraints, imposed by the throughput requirements of D$Fapping from algorithm to DSP core.

algorithms together with a fixed core architecture. In this paper,

we present a method to model resource and instruction setContributions of this paper

conflicts uniformly and statically before scheduling. With the

model we exploit the combination of all possible constraintgode generation can roughly be divided into three inter-

instead of being hampered by them. The approach results ingghendent subtasks: code selection, instruction scheduling and

exact and run time efficient method to solve the inStrUCtiqegister b|nd|ng Previous approaches concentrate aote

scheduling problem, which is illustrated by real life exampleselection problem [Marw93], [Liem94], [Praet94] or the
register binding problem [Cheng94], [Lann94]. However,

1. Introduction under the regime of tight feasibility constraints, many instances
appear where heuristic approaches for fimstruction

Predefined DSP cores which are tuned towards specific appli€ghedulingoroblem render unsatisfactory results (i.e. they do
tion domains are becoming increasingly popular, due to th&pt find a feasible schedule within the throughput constraints
advantageous trade—off betwdlemibility andcost Such a core <hough such schedules do exist).

is relatively flexible in comparison to an ASIC: different algo- . . .

rithms can be mapped on it, while an ASIC is a tailored solutid'® €Xisting scheduling methods do not produce satisfactory

for only one algorithm. On the other hand, domain specific DSpSUIS because they are hampered by the combination of tight

cores are more targeted towards a specific application domajffling and resource constraints instead of exploiting them. On

making them more suitable for such a domain than genef4I® hand, in the field of software compilation, the completion
processors: dedicated hardware is available for time critiddl'® of an algorithmis not thatimportant in comparison with the

tasks (e.g. a module performing a FFT butterfly in a sing rd constraints on the throughput of DSP algorithms. An

cycle). These cores also have an advantage over eption is [Chou94], but in that approach the resulting
combination of general purpose and ASIC components, becaﬁ% edule_ is f_uIIy serlal,_so no parall_ells_m in the datapath is pos-
there is no communication bottleneck between different parfidl® (Which is needed in DSP applications). On the other hand,
Therefore a new research topic is emerging: 'retargetable’ cdﬂéhe field of hardware compilation, most architectural synthe-

generation for domain specific DSP cores and other applicatipii SyStems do not treat hard resource constraints correctly (i.e.
specific instruction—set processors (ASIPs). they often just add resources in order to find a solution).

The size of the application domain of a core is inversely propdp- this paper we will therefore concentrate orodelling

tional to the required efficiency. Because of the relatively hi fySource and Instruction set co_nfllcts aedplo_|t|_ng the
efficiency required, the use of domain specific DSP cores lea bination of all possible constraints, thus obtaining an exact

to new design tools and methods [Paul92]. Experiments shg\ﬂld run time efficient method to solve the instruction scheduling
cases in which the utilization of the operation processing un oblem. The exploitation of the constraints leads to a reduction

(OPUs) in the core exceeds 90% of the total cycle bud tthe scheduling search space to a point where the solution

[Strik95]. So there is a need for a code generator capable of g ace can be s_earched gxhaustwely In many cases. T_he target
cores we consider are in—house DSP cores for which the

32nd ACM/IEEE Design Automation Conference [application domains are relatively small and the microcode
Permission to copy without fee all or part of this material is granted, provided ~ €fficiency must be high. As a consequence of the use of in—
that the copies are not made or distributed for direct commercial advantage, house DSP cores, we can control the core architectures and the

the ACM copyright notice and thetitle of the publication and its date appear, PR : Ll :
and notice 1< given thet. copying is by pormission of the Assodiation for COrresponding instruction set definitions, so we can adjust them
Computing Machinery. To copy otherwise, or to republish, requiresafee to facilitate our code generation approach [Strik95]. The exact

and/or specific permission. 0 1995 ACM 0-89791-756-1/95/0006 $3.50 contributions of this paper are as follows.

« In section 3, we show how different resource constraints Dest_1: reg_2_ram_1 <-Source_1:reg_1_acu_1,

(with respect to OPUs, memory accesses, buses and multi- Source_2: reg_2_acu_1,

plexers) can be modelled uniformly. Because in our case the acu_1 = add,

instruction set cannot steer all modules in the datapath simulta- B”f—ll—acu—ll = ‘,"’:j'tde's s oy

neously, the instruction set imposes additional restrictions on muusx— Z—Z?Zl;n— 1; p?ass([omﬂce_ Source_2),

the amount of parallelism in the datapath. A method has been - - T

developed, so that these restrictions can be handled as if they are)

normal resource conflicts. This means amongst others that tddure 2: Example register transfer.

instruction set conflicts are modelled statically before schedu-)

ling, thus making a compaction pass, used in other coti@n are mapped. RTs are fully characterlzed by the resources

generation systems like CodeSyn [Paul94], superfluous. Ndkat are used and the mode in which these resources have to

that register file size constraints are not yet dealt with in tigPerate. An example is given in figure 2. The resources are

approach presented here. This is still a topic of further researtind atthe left hand side of the ‘=’ sign and the mode (or usage)
is positioned at the right hand side. Figure 2 shows an addition

- In section 4, we cast the different resource conflicts to @ @n OPU called "acu_1’ and the storage of the result in a

bipartite graph matching formulation pruning the search spatg9ister of the OPU called 'ram_1" via one of the two available

The method is based on the execution interval analysis Bftiplexer inputs.

[Timm93], butis completely changed for our code generatio e RT generation step has equivalences to the instruction—set
Because of the large number and the tightness of the differ rqt '9 ep q .
atching and selection technigues of other approaches like

resource constraints, that approach is highly suitable for tﬁje . . ; >
retargetable code generation problem. iem94]. However, in our case this step is done by an existing

(architectural synthesis) RT generation tool from the
Mistral 2'™ compiler [Nieu94]. The tool uses the architectural

el of figure 1 as a starting point. Register files and busses
at are merged in the actual core are taken into account by
Bdifying the generated RTs [Strik95].

* Insection 5, we propose an exact branch—and—bound met
to solve the instruction scheduling problem. The approa
searches for a correct operation ordering (from which a sched
can be derived in linear time), instead of directly generating
exact time bounds for each operation. In section 6, results 9/ Rasource conflicts
real life examples show the efficiency of the approach.

RTs can only be combined into a single instruction by a sched-
3. Resource and instruction set conflicts uler if there are no resource conflicts. If RTs do not use the same
resources, then they can be combined. Otherwise it depends on
the usage of these resources. At the left of figure 3, an RT is
given that can be combined with the RT of figure 2: the usage
) .]] . of the shared resources is the same. The only difference between
Preceding the instruction scheduling step, register transfghg two RTs is the destination RF (see the resources in bold in
(RTs) and their dependencies are generated from an algorithlmj@,re 3). At the right of figure 3, an RT has been given that
input description using a generic architectural model, see figannothe packed into the same instruction as the RT of figure 2.
ure 1. That figure shows a number of (possibly pipelinedhe OPU is used differently (see the usage in bold in figure 3),
OPUs. Each OPU input is connected with a register file (RRyhich leads to a conflict. All possible conflicts due to the
The outputs of the OPUs are connected to RFs via buffers, bug&urces can be modelled with the following overall conflict

and (optionally) multiplexers. RTs corresp.ond toa complete (taph (OCG), which will be used by the graph matching
this case single clock cycle) path from origin register files tofgrmulation we introduce in section 4.

destination register file. So the RTs already contain the binding
information on which resources actions from the input descripefinition 1: OCG is an undirected graph represented by a tuple
(V, E), where V is the set of vertices representing all RTs and
E C V x Visthe set of edges; there is an edge/(V E if and
1 only if there is some resource that botfiw and y O V use,
K i
OPU OPU OPU e} instruction if they are not adjacent to each other in the OCG
(and, of course, if dependency relations between RTs are not
violated). For all OCG cliques only one RT at the time can be
packed into one instruction. So solving the resource conflicts of
a design problem can be interpreted as finding different inde-

, _ i , pendent sets of RTs for every instruction (or clock cycle) that do
Figure 1: Generic datapath architecture. not violate the dependency relations between RTs.

3.1. Register transfer generation

o

statically before scheduling. Two RTs can be packed into one

P

but in a different mode.
R
[FJ The OCG points out that the resource conflicts are modelled
U

Dest 1:reg_2_acu_1 <— Source_1:reg_1 acu_1, Dest_1:reg_2_ram_1<— Source_1:reg_1 acu_1,

Source_2:reg_2_acu_l1, Source_2:reg_2_acu_l1,
acu_1 = add, acu_1 = addmod ,
buf_1 acu_1 = write, buf 1 _acu_1 = write,
bus_1 acu_1 = 'add(Source_1, Source_2), bus_1 acu_1 = ’'add(Source_1, Source_2)’,
mux_1 acu_1 = pass[O0, 1]. mux_2_ram_1 = pass|[0, 1].

Figure 3: RTs without(left) and with(right) a conflict with the RT of figure 2.

3.3. Instruction set conflicts Because of the large number and tightness of the different
resource and instruction set constraints, such a pruning

A given DSP core is not only specified by its datapath but ald@Proach is highly suitable for the retargetable code generation
by its instruction set. In our case the instruction set cannot stegpblem. We therefore apply a similar analysis based on bipar-
all modules in the datapath simultaneously, so it imposes addf¢ graph matching to map algorithms to DSP cores. However,
tional restrictions on the amount of parallelism in the datapafigorous adaptation of the standard approach is needed to make
For exampléoad immediatés often a separate instruction clasdt Suitable for our code generation, due to the following reasons.

(or 'optype’) during which no other operations can take place. _ = .) ,
« Originally only resource conflicts with respectto OPUs were

In our approach these restrictions are modelled by adding exlfigen into account. The tgchnique is extended for all other re-
edges to the OCG defined in the previous subsection [Strikggpurce conflicts, i.e. conflicts with respect to memory accesses,
There is however a catch in the approach. The previous sub ses, multiplexers and the instruction set are also considered.

tion showed that the resource conflicts from the datapath gre|, many cases, the loops in a signal flow graph (SFG) have

_modelled _statlca!ly by the OCG. The matching forr_nulatlon W& be ‘folded’ (see section 4.3) to satisfy the throughput

introduce in section 4 uses the OCG and the conflicts modellgglstraints. Cyclic signal flow graphs were not considered in

by it. So the question arises whether such a static modelling#fnmo3], and loop folding also results in extra timing

the instruction set conflicts imposes any restrictions or demarngsstraints for the RTs because the consumption of a value must

on the instruction set definition itself. (Recall that we considjzc\r before a new version of the value is produced.

in—house DSP cores, so we can control the definition of the

instruction sets to make them suitable for code generation.)s In general the number of times a certain resource is occupied
is not known beforehand in the RT model we use. If two RTs do

Modelling the instruction set conflicts by additional edges in theot have any resource conflicts although they do use the same

OCG is only valid, if the result is thaveryarbitrary indepen- resources (i.e. they use resources in the same mode), then it

dent set of RTs from the OCG always corresponds to a leg@pends on the final schedule whether these resources are usec

instruction. This means amongst others that the NOP (no opepace or twice for the two RTs.

tion) must be a possible instruction, as well as each individual o

RT on its own. So modelling the instruction set conflicts by addé.2. Module execution intervals

tional OCG edges puts some special demands on the definition

of the instruction sets, see also [Strik95]. However, theddie considerations mentioned above have a large impact on the

demands are very well acceptable in real life situations and haaiculation of the so calledodule execution interva(MEls),

no influence on the efficiency of the implementation. which account for the resource (or instruction set) conflicts.

MElIs can be calculated for each resource separately and are part

of the bipartite graph matching formulation. Within the interval

of each MEI, the corresponding resource has to be occupied by

some RT (so the numbers of OEls and MElIs for each resource

4.1. Background are equal). Consequently, if the number of cycles of a MEI is

equal to one, then the resource must be utilized in that cycle.
The quality and run times of (exact) schedulers heavily depend

on powerful pruning techniques. Animportant device to suppdfor reasons of simplicity, in the above the MEIs were said to be
pruning is the operation execution interval (OEI). An OEI corealculated for each resource separately. However, because in
strains the interval of clock cycles to be assigned to an RT in aggneral the number of times a certain resource is occupied is not
schedule. If resource constraints are not considered, then an @ilwn beforehand (see subsection 4.1), it is very cumbersome
is given by the ASAP and ALAP cycles of the RT under thand difficult to calculate the MEIs per separate resource, see
assumption of unlimited resources. Recent research [Timm33lmm95b]. For the same reason, such a calculation will inevit-
showed, that the search space of schedulers that are ladily be less accurate than the original approach of [Timm93]. As
resource and time constrained can be pruned considerably bytihe- objective of the matching formulation we present in this
ducing the OEls. That (polynomial run time) approach is basedction is to model the combination of resource and timing
on a graph matching formulation exploiting both resource amonflicts between different RTs as accurately as possible, the
time constraints and does not exclude any possible schedultarmulation would not be as powerful as the original approach.

4. Bipartite graph matching formulation

Luckily it is possible to overcome these problems, namely Byhus, for any schedutg [0 @, the time potential of thé iRT
calculating the MEIs differently (i.e. not per separate resourcéom V' must be within the interval of time potentials of MEI(i).
Every clique of RTs from the OCG represents RTs that haumfortunately, it is not possible to calculate the exact bounds of
resource conflicts with each other. It is possible to constructtee MEIs in polynomial time (otherwise the existence of a feasi-
cliqgue cover such thatl edges in the OCG are induced (at least)le schedule under given time and resource constraints could be
once by a clique of RTs from the clique cover. MEIs can now lodecided in polynomial time). So we have to be content with
calculated for each clique from such a cover, leading to a md@oenservative) estimates of those bounds which preserve the
accurate, more powerful and much simpler approach than iategrity of the solution space, see property 1.

approach in which MEIs are calculated per resource

[Timm95b]. Note that a clique from the OCG can incorporatéroperty 1: The estimates of the first time potential, first(MEI),
resource conflicts from different resources; the MEIs am@nd the last time potential, last(MEI), of a MEI have to satisfy
therefore not calculated for each individual resource anymotbe following property.(b Vil :

0y(e(i)) = firstMEI(i)) A 04(e,(i)) < last(MEI())
4.3. Definition and calculation of MEIs
Let FTP(v) be the first time potential in which register transfer

A SFG schedule can be divided into a preamble, a loop body ahid V. can be scheduled, let the sebe ordered by increasing

a postamble. RTs are scheduled for the first time in either théF (if two RTs have the same FTP then this tie is broken in an
preamble or the loop body. In our case, the delay of each Rjgitrary way), and let \0). i O, be the RT in that order. If

one clock cycle. The throughput of a schedule is given by theE!S are calculated per OCG clique, then the following two
data introduction interval (dii), so the execution of an RT jgroperties hold (note that property 3 does not hold in case MEls
repeated every dii cycles. The schedule of an RT is therefore fifié c@lculated per separate resource).

ly defined by the first clock cycle in which itis executed togeth) .
with the dii. The schedule of each RT corresponds to the occu%!égpe_rty 2. Start of MEI() cannot be smaller than tHERTP.
tion of resources during ortéme potential(i.e. 'a specific Y, - IISUMEI(D)) = FTRV(D).

instruction cycle that returns every dii cycles’) in the loop body.

The number of times a SFG is 'folded’ depends on the laten&foperty 3: At each time potential, at most one MEI can start.
If the latency equals the dii, then the SFG is not folded. Ifthe la- ¥ | : first(MEI(i)) = first(MEI(i-1)) + 1.

tency is twice the dii, then the SFG is folded once, if the latenéy ' ="'

is three times the dii, then the SFG is folded twice, etcetera-thegrem 1: Algorithm 1 calculates (estimates) for all MEI(),
i 01, the value first(MEI(i)) while satisfying property 1. The

Resource conflicts occur when two RTs are scheduled at {6t time potentials of the MEIs can be determined similarly.

same time potential in the loop body, while they use the same

resource in a different mode. Consider a clique from the OQ@oof. The proof follows directly from property 2 and 3.

clique cover. Let Vbe the set of RTs in that clique, febe the

set of feasible (i.e. cor’rect) schedules, and{gt) be the time

potential at which {J V' is scheduled in case of some schedulgigorithm 1: calculate / estimate first time potentials of MEIs.

@O @. A schedulepimposes a notion of order on the seby

ordering the set according to the time potentials, see defiﬁfst(lMEKl)) = FTP(V(2));

tion 2. Note that two scheduled RTs from an OCG clique canr8f (i :=2t0 V) -

have equal potentials. first(MEI(7)) := max {FTP(V (i)), first(MEI(i — 1)) + 1};
Definition 2: Given some schedutgl] ®, we define<yas a
linear ordering relation on the set &6 follows: 4.4. Bipartite schedule graphs
¢V¢ V 1 V<,W=0,V) < oyw).
EP ywev

With the calculated MEIs, all resource and instruction set
conflicts can be cast topartite schedule grapH8SGs). In the
q‘%ﬂowing definition these BSGs incorporating both RTs and
MElIs are given.

As <y is a linear ordering it can be used to assign an inte
value 01, I=[1, |V]]to any vl V'. We capture this by defining
a bijective functiorgy | - V. Thusei) is the " RT under the

linear order induced by the schedgl&Ve are now prepared to Definition 4: The bipartite schedule graph BSG¥or OCG

formally introduce the notion of a MEL. clique V under the given timing and resource constraints is an

e . , _ undirected bipartite graph represented by a tuple (N, A), where:
Definition 3: Consider the RTs from Vassigned valuell « N =V UR is the set of vertices with ¥ R =0, V| =|R|,

over the set of all schedul@sThen the module executioninter- gng R={MEI() |1 < i < |V [};
val MEI(i) is defined by the following interval of time potentials, A C v’ x R is the set of edges; initially there is an edge

N = . ; ; (v, n)OAifand only if vl V' can be scheduled in the inter-
MEIC) [£2(0¢(8¢(I))), ¢r2%)(0"’(8“’(')>)]' val of time potentials of module execution interval iR .

For each feasible schedule a correspondamgpletematching derived from the result of the execution interval analysis in
exists (but not all complete matchings represent feasidleear time. The feasible schedule is derived by scheduling all
schedules). The OEls of the RTs can be reduced by identifyiRgs in the first cycle of their reduced OEI after the execution
the irreducible components [Dulm63] of the BSGs. Edges niotterval analysis has left its iteration. The proof of this theorem
belonging to these components cannot be part of any compleda be found in [Timm95a].

matching, so they can be removed without excluding an o _ _ _
schedule. Such a removal can reduce the incident OEI, becalglgéal{se the execution interval analysis runs in polynomial
an OEI cannot be larger than the union of adjacent MEls (afépe, it follows from theorem 2 that the correctness of some
the time potentials in the MEIs are translated back into clogkdering or complete matching of the RTs can be checked in

cycles). A more thorough discussion on BSGs and reduciRglynomial time. A matching can represent more than one
OEls can be found in [Timm93]. schedule, so the number of different matchings is equal to or less

than the number of different schedules. Because the check for

If an edge removal leads to the reduction of an OEI, a new iErectness is not more accurate when th? RTs are directly

can be started to reduce the OEIs even more (note that aftef&§9"€d t0 Specific cycle steps, itis more efficient to search for

OEI reduction, the OEI can be a set of non—overlapping intét-Correct ordering instead.

sl cockoylesnstead oo nteruaof cockciles) Susfe above eads o th folwing schedulng pproach, We st

S _ the initial s and match the s one—by-one to

e sarony Ao ol KT, v emovng he edges thal can 1o longe b
) rt of a complete matching. These edges are the ones

BSGs). Also the MElIs are calculated from scratch inanew r P g g

: ; ; viously connected to the RT and the MEI that have just been
The union of all OEls contaif(|C|- [V]) cycles, where |C|is the aiched (except for the one between them), together with other

latency, so the number of runs is in the worst @€l |V]). eqges that are no longer part of any irreducible component. So
However, in practice the algorithm already stops after a @i ime a matching between an RT and a MEI has taken place,
runs. With this approach the execution intervals of the RTs (whole execution interval analysis can be rerun to continue
consequently the scheduling search space) can be reducegy, - ning of the search space. The matching of RTs and MEIs
exploiting both resource and timing constraints. is a process in which the initial BSGs get more and more sparse
(an edge that is once removed does not return in a BSG as long
5. Instruction scheduling as a matching is not revoked). The search space is also getting
smaller during this process because the OEls and MEIs are

A common approach to schedule RTs is to assign them direcrf?)(/jUCEd more and more as well.

to specific cycle steps. In [Timm95a], it is proven that thgne priority functions in this instruction scheduling process are
existence of a schedule for a given SFG with timing angk follows. First we look for the MEI with the smallest end
resource constraints can be decided more efficiently by f'”d'%tential. This MEI is matched with an RT, and the RT is also
correct orderingsof the RTs in all BSGs of a design problempmsiched with the first MEIs in the other BSGs of which the RT
With a correct ordering we mean an ordering that correspondgn element. Then the next MEI with the smallest end potential
to (i.e. can be induced by) a feasible schedule, see def'”'t'orl\ﬁhich is not yet matched) is selected, then matched with an RT
and so on. If a matching leads to an infeasible schedule, then the
Definition 5: A linear orderingk of the RTsin a BSG is correct matching is revoked and another RT is matched to the MEI. So

if there is a schedule that induces that ordering, i.e. if a branch—and-bound approach is applied to obtain an exact
. — - scheduler.
q)élq) wWEwes sq,](v) < sq,J(w).

If a linear ordering on the RTs in a BSG is imposed, then ea@h Experiments and results

RT is adjacent tat mostone MEI, see [Timm95a]. A correct |
ordering implies a bijection between OEIls and MEls an
consequently, defines a complete matching in the BSG. In ¢
of a correct ordering, all adjacent reduced OEls and MEIS Wil 65 range from a simple delay line to a portable audio
have equal clock cycle intervals after the execution interv

lvsis of section 4 | its iterati therwi OEI plication (which is a real life industry example). The
analysis of section 4 leaves its iteration (otherwise an OEI s otion_set scheduler based on graph matching has been

lﬂ%plemented in C++ using the architectural interface of the
NEAT (New Eindhoven Architectural synthesis Toolbox)
system [Heij94]. In table 1, we have compared our approach

Theorem 2: If for each OCG clique from an OCG clique covekyith an industrial high—level synthesis (HLS) list scheduler.
of a design problem a linear ordering on the corresponding RTs

is imposed and the set of these orderings is not detectedTas table shows, that our approach finds the guaranteed optimal
infeasible by the execution interval analysis of section 4, thémoughput within acceptable run times for all but two cases.
these orderings are correct and a feasible schedule canThe mostinteresting examples are the largest examples 4a/b and

[Strik95], a DSP core together with an instruction set has been
iven. We have mapped the examples of table 1 onto this core,
tried to obtain the highest throughput possible. The

with a new run). This leads to the following theorem.

Table 1: Throughput results for various examples.

Example #0OCG size I_arg— lower bound| HLS NEAT instruc- CPU**

cligues | est clique| throughput | scheduler| tion scheduler NEAT
la: RAM delay line (12 RTs, unfolded) 4 4 5 5* 5* 0.3 sec
1b: RAM delay line (12 RTs, folded once) 4 4 4 5 4* 0.3 sec
2a: FIR filter (37 RTs, unfolded) 11 7 17 17* 17* 1.2 sec
2h: FIR filter (37 RTs, folded once) 11 7 9 9* 9* 1.2 sec
3a: FIR & Bass Boost (114 RTs, unfolded) 12 16 30 31 30* 7.9 sec
3b: FIR & Bass Boost (114 RTs, folded oncq) 12 16 25 26 26 8.0 sec
4a: Sym. FIR & Bass B. (288 RTs, unfolded 22 29 36 43 38 56.2 sec
4b: Sym. FIR & Bass B. (288 RTs, folded) 22 29 29 36 29* 56.3 sec
5a: Portable audio appl. (358 RTs, unfolded 21 58 62 67 62* 138.3 sec
5b: Portable audio appl. (358 RTs, folded) 21 58 58 61 58* 139.1 sec

* the throughput equals the lower bound estimation, i.e. is guaranteed to be optimal. ** measured on a HP 9000/735 workstati

5a/b. Example 4b shows the largest difference between {Rgou94] P. Chou and G. Borriello, "Software Scheduling in the Co-Synthesis
achieved throughputs of both schedulers. The largest examfjigeactive Real-Time Systems", Proc. of th¥ BRC, pp. 1-4,, June 1994.
5a/b consists of 58 multiplications, 58 additions, clip actiorsulmé3] A.L. Dulmage and N.S. Mendelsohn, "Two Algorithms for Bipartite
and delays. The throughput constraint of this real liferaphs”, J. Soc. Indust. Appl. Math., Vol. 11, No. 1, pp. 183-194, 1963.

app!ication_ is 64 C}/Cles- The results on exa_mple 5a ShOW, th_"{ﬁtlélj94] M.J.M. Heijligers, H.A. Hilderink, A.H. Timmer and J.A.G. Jess,
dedicated instruction—set scheduler exploiting the combinatiOfEAT: An Object Oriented High-Level Synthesis Interface”, Proc.

of resource and timing constraints is needed to meet th§AS-94. pp. 1.233-1.236, London (UK), May 1994.

throughput constraint without folding. The result on example 50ann94] b. Lanneer, M. Cornero, G. Goossens and H. De Man, "Data Routing:
shows, that our approach succeeds in generating a schedukeHgradigm for Efficient Data—Path Synthesis and Code Generation”, Proc. Int.
which the multiplier and ALU in the DSP core have a 10098Y™P- on HLS, pp. 17-22, Niagara—on-the—Lake (Canada), May 1994.

utilization during all clock cycles. [Liem94] C. Liem, T. May and P. Paulin, "Instruction—Set Matching and Selec-
tion for DSP and ASIP Code Generation”, Proceedings ED&TC (EDAC-ETC—
EuroASIC) '94, pp. 31-37, Paris (France), March 1994.

7. Conclusions [Marw93] P. Marwedel, "Tree—Based Mapping of Algorithms to Predefined
Structures”, Digest of Technical Papers of ICCAD-93, pp. 586593, Nov. 1993.

In this paper, we presented a code generation approach for[Mieu94] K. van Nieuwenhovégig, J. de Moortel, D. Genin and S. Note, "Mistral 2
; :True Architectural Synthests Tool: from a Behavioral Specification down

!‘IOU_SQ DSP cores. The approach mOd.els reso.urce COﬂflI(?tS (Od Register Transfer Level Description”, DSP Applications and Multimedia,

inating from both a DSP core and an instruction set) uniformiyet. 1994.

and before scheduling. The different resource conflicts are cast

. . . . aul92] P.G. Paulin, "DSP Design Tool Requirements for the Nineties: An
to a bipartite graph matching formulation to prune the schec{ﬁ(-justri‘,jI Perspective” BInt. HLS Workshop, Nov. 1992.

ling search space. In this way the instruction scheduling step can

exploit the combination of all possible constraints instead of bg’gg'%‘gta%g-Cigg"g'y,ﬁh;;;ms'ylghb" jnd asnydmﬁ' ;uﬁivsvaﬁéﬁ%%isyn: A

ing hampered by them. From the matching formulation, we have
derived an exact (branch—and—bound) method to solve iReaet94]J. Van Praet, G. Goossens, D. Lanneer and H. De Man, "Instruction

; ; ; - B t Definition and Instruction Selection for ASIPs”, Proc. Int. Symp. on HLS,
instruction schedulln_g problem. The branch gnd bour@ 11-16, Niagara—on-—the—Lake (Canada), May 1994,

process does not assign a clock cycle to each register transfer _ _

directly, but tries to find a correct ordering of the transferdgtik95] M. Stik, J. Van Meerbergen, A. Timmer, J. Jess and S. Note,
inst g’ = h deri hed Ig be deri "Efficient Code Generation for In-House DSP-Cores”, Proc. ED&TC
|_ns ea - rom SUC_ an or e””g a schedule can .e erlVe(\lE'IBAC—ETC—EuroASIC) '95, Paris (France), March 1995.

linear time. Real life examples illustrated the quality and ru[q_ 03] AL T dIAG.] c o | Analvsis und

; s imm .H. Timmer and J.A.G. Jess, "Execution Interval Analysis under
time efficiency of the approach. Resource Constraints”, Digest of Technical Papers of ICCAD-93, pp. 454-459,
Santa Clara (CA), Nov. 1993.

References [Timm95a] A.H. Timmer and J.A.G. Jess, "Exact Scheduling Strategies based
on Bipartite Graph Matching”, Proc. ED&TC (EDAC-ETC—EuroASIC), Paris
)) (France), March 1995.
[Cheng94] W.—K. Cheng and Y.-L. Lin, "Code Generation for a DSP Proces-
sor”, Proc. Int. Symp. on HLS, pp. 82-87, Niagara—on-the—Lake, May 199f[imm95b] A.H. Timmer, Ph.D. Thesis (to appear in 1995).

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

