
Conflict Modelling and Instruction Scheduling
in Code Generation for In–House DSP Cores

Adwin H. Timmer*/** , Marino T.J. Strik** , Jef L. van Meerbergen** and Jochen A.G. Jess*

*Eindhoven University of Technology, Department of Electrical Engineering,
Design Automation Section, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

**Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

Abstract

Application domain specific DSP cores are becoming increas-
ingly popular due to their advantageous trade–off between
flexibility and cost. However, existing code generation methods
are hampered by the combination of tight timing and resource
constraints, imposed by the throughput requirements of DSP
algorithms together with a fixed core architecture. In this paper,
we present a method to model resource and instruction set
conflicts uniformly and statically before scheduling. With the
model we exploit the combination of all possible constraints,
instead of being hampered by them. The approach results in an
exact and run time efficient method to solve the instruction
scheduling problem, which is illustrated by real life examples.

1. Introduction

Predefined DSP cores which are tuned towards specific applica-
tion domains are becoming increasingly popular, due to their
advantageous trade–off between flexibility and cost. Such a core
is relatively flexible in comparison to an ASIC: different algo-
rithms can be mapped on it, while an ASIC is a tailored solution
for only one algorithm. On the other hand, domain specific DSP
cores are more targeted towards a specific application domain,
making them more suitable for such a domain than general
processors: dedicated hardware is available for time critical
tasks (e.g. a module performing a FFT butterfly in a single
cycle). These cores also have an advantage over the
combination of general purpose and ASIC components, because
there is no communication bottleneck between different parts.
Therefore a new research topic is emerging: ’retargetable’ code
generation for domain specific DSP cores and other application
specific instruction–set processors (ASIPs).

The size of the application domain of a core is inversely propor-
tional to the required efficiency. Because of the relatively high
efficiency required, the use of domain specific DSP cores leads
to new design tools and methods [Paul92]. Experiments show
cases in which the utilization of the operation processing units
(OPUs) in the core exceeds 90% of the total cycle budget
[Strik95]. So there is a need for a code generator capable of gen-

erating very efficient (compact) microcode under tight
feasibility constraints. With tight feasibility constraints we
mean that both timing (from the algorithm) and resource (from
the DSP core and instruction set) constraints are present. The
combination of these constraints results in high OPU utilization
rates, while the only objective is to find a feasible (correct)
mapping from algorithm to DSP core.

2. Contributions of this paper

Code generation can roughly be divided into three inter-
dependent subtasks: code selection, instruction scheduling and
register binding. Previous approaches concentrate on the code
selection problem [Marw93], [Liem94], [Praet94] or the
register binding problem [Cheng94], [Lann94]. However,
under the regime of tight feasibility constraints, many instances
appear where heuristic approaches for the instruction
scheduling problem render unsatisfactory results (i.e. they do
not find a feasible schedule within the throughput constraints
although such schedules do exist).

The existing scheduling methods do not produce satisfactory
results because they are hampered by the combination of tight
timing and resource constraints instead of exploiting them. On
one hand, in the field of software compilation, the completion
time of an algorithm is not that important in comparison with the
hard constraints on the throughput of DSP algorithms. An
exception is [Chou94], but in that approach the resulting
schedule is fully serial, so no parallelism in the datapath is pos-
sible (which is needed in DSP applications). On the other hand,
in the field of hardware compilation, most architectural synthe-
sis systems do not treat hard resource constraints correctly (i.e.
they often just add resources in order to find a solution).

In this paper we will therefore concentrate on modelling
resource and instruction set conflicts and exploiting the
combination of all possible constraints, thus obtaining an exact
and run time efficient method to solve the instruction scheduling
problem. The exploitation of the constraints leads to a reduction
of the scheduling search space to a point where the solution
space can be searched exhaustively in many cases. The target
cores we consider are in–house DSP cores for which the
application domains are relatively small and the microcode
efficiency must be high. As a consequence of the use of in–
house DSP cores, we can control the core architectures and the
corresponding instruction set definitions, so we can adjust them
to facilitate our code generation approach [Strik95]. The exact
contributions of this paper are as follows.

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

• In section 3, we show how different resource constraints
(with respect to OPUs, memory accesses, buses and multi-
plexers) can be modelled uniformly. Because in our case the
instruction set cannot steer all modules in the datapath simulta-
neously, the instruction set imposes additional restrictions on
the amount of parallelism in the datapath. A method has been
developed, so that these restrictions can be handled as if they are
normal resource conflicts. This means amongst others that the
instruction set conflicts are modelled statically before schedu-
ling, thus making a compaction pass, used in other code
generation systems like CodeSyn [Paul94], superfluous. Note
that register file size constraints are not yet dealt with in the
approach presented here. This is still a topic of further research.

• In section 4, we cast the different resource conflicts to a
bipartite graph matching formulation pruning the search space.
The method is based on the execution interval analysis of
[Timm93], but is completely changed for our code generation.
Because of the large number and the tightness of the different
resource constraints, that approach is highly suitable for the
retargetable code generation problem.

• In section 5, we propose an exact branch–and–bound method
to solve the instruction scheduling problem. The approach
searches for a correct operation ordering (from which a schedule
can be derived in linear time), instead of directly generating
exact time bounds for each operation. In section 6, results for
real life examples show the efficiency of the approach.

3. Resource and instruction set conflicts

3.1. Register transfer generation

Preceding the instruction scheduling step, register transfers
(RTs) and their dependencies are generated from an algorithmic
input description using a generic architectural model, see fig-
ure 1. That figure shows a number of (possibly pipelined)
OPUs. Each OPU input is connected with a register file (RF).
The outputs of the OPUs are connected to RFs via buffers, buses
and (optionally) multiplexers. RTs correspond to a complete (in
this case single clock cycle) path from origin register files to a
destination register file. So the RTs already contain the binding
information on which resources actions from the input descrip-

OPU OPU OPU OPU

R
F

R
F

R
F

R
F

R
F

R
F

Figure 1: Generic datapath architecture.

Dest_1: reg_2_ram_1 <–Source_1: reg_1_acu_1,
Source_2: reg_2_acu_1,

acu_1 = add,
buf_1_acu_1 = write,
bus_1_acu_1 = ’add(Source_1,Source_2)’,
mux_2_ram_1= pass[0, 1].

Figure 2: Example register transfer.

tion are mapped. RTs are fully characterized by the resources
that are used and the mode in which these resources have to
operate. An example is given in figure 2. The resources are
found at the left hand side of the ‘=’ sign and the mode (or usage)
is positioned at the right hand side. Figure 2 shows an addition
on an OPU called ’acu_1’ and the storage of the result in a
register of the OPU called ’ram_1’ via one of the two available
multiplexer inputs.

The RT generation step has equivalences to the instruction–set
matching and selection techniques of other approaches like
[Liem94]. However, in our case this step is done by an existing
(architectural synthesis) RT generation tool from the
Mistral 2TM compiler [Nieu94]. The tool uses the architectural
model of figure 1 as a starting point. Register files and busses
that are merged in the actual core are taken into account by
modifying the generated RTs [Strik95].

3.2. Resource conflicts

RTs can only be combined into a single instruction by a sched-
uler if there are no resource conflicts. If RTs do not use the same
resources, then they can be combined. Otherwise it depends on
the usage of these resources. At the left of figure 3, an RT is
given that can be combined with the RT of figure 2: the usage
of the shared resources is the same. The only difference between
the two RTs is the destination RF (see the resources in bold in
figure 3). At the right of figure 3, an RT has been given that
cannot be packed into the same instruction as the RT of figure 2.
The OPU is used differently (see the usage in bold in figure 3),
which leads to a conflict. All possible conflicts due to the
resources can be modelled with the following overall conflict
graph (OCG), which will be used by the graph matching
formulation we introduce in section 4.

Definition 1: OCG is an undirected graph represented by a tuple
(V, E), where V is the set of vertices representing all RTs and
E � V � V is the set of edges; there is an edge (vi, vj) ∈ E if and
only if there is some resource that both vi ∈ V and vj ∈ V use,
but in a different mode.

The OCG points out that the resource conflicts are modelled
statically before scheduling. Two RTs can be packed into one
instruction if they are not adjacent to each other in the OCG
(and, of course, if dependency relations between RTs are not
violated). For all OCG cliques only one RT at the time can be
packed into one instruction. So solving the resource conflicts of
a design problem can be interpreted as finding different inde-
pendent sets of RTs for every instruction (or clock cycle) that do
not violate the dependency relations between RTs.

Dest_1: reg_2_acu_1 <– Source_1: reg_1_acu_1, Dest_1: reg_2_ram_1 <– Source_1: reg_1_acu_1,
Source_2: reg_2_acu_1, Source_2: reg_2_acu_1,

acu_1 = add, acu_1 = addmod ,
buf_1_acu_1 = write, buf_1_acu_1 = write,
bus_1_acu_1 = ’add(Source_1, Source_2)’, bus_1_acu_1 = ’add(Source_1, Source_2)’,
mux_1_acu_1 = pass[0, 1]. mux_2_ram_1 = pass[0, 1].

Figure 3: RTs without (left) and with (right) a conflict with the RT of figure 2.

3.3. Instruction set conflicts

A given DSP core is not only specified by its datapath but also
by its instruction set. In our case the instruction set cannot steer
all modules in the datapath simultaneously, so it imposes addi-
tional restrictions on the amount of parallelism in the datapath.
For example load immediate is often a separate instruction class
(or ’optype’) during which no other operations can take place.

In our approach these restrictions are modelled by adding extra
edges to the OCG defined in the previous subsection [Strik95].
There is however a catch in the approach. The previous subsec-
tion showed that the resource conflicts from the datapath are
modelled statically by the OCG. The matching formulation we
introduce in section 4 uses the OCG and the conflicts modelled
by it. So the question arises whether such a static modelling of
the instruction set conflicts imposes any restrictions or demands
on the instruction set definition itself. (Recall that we consider
in–house DSP cores, so we can control the definition of the
instruction sets to make them suitable for code generation.)

Modelling the instruction set conflicts by additional edges in the
OCG is only valid, if the result is that every arbitrary indepen-
dent set of RTs from the OCG always corresponds to a legal
instruction. This means amongst others that the NOP (no opera-
tion) must be a possible instruction, as well as each individual
RT on its own. So modelling the instruction set conflicts by addi-
tional OCG edges puts some special demands on the definition
of the instruction sets, see also [Strik95]. However, these
demands are very well acceptable in real life situations and have
no influence on the efficiency of the implementation.

4. Bipartite graph matching formulation

4.1. Background

The quality and run times of (exact) schedulers heavily depend
on powerful pruning techniques. An important device to support
pruning is the operation execution interval (OEI). An OEI con-
strains the interval of clock cycles to be assigned to an RT in any
schedule. If resource constraints are not considered, then an OEI
is given by the ASAP and ALAP cycles of the RT under the
assumption of unlimited resources. Recent research [Timm93]
showed, that the search space of schedulers that are both
resource and time constrained can be pruned considerably by re-
ducing the OEIs. That (polynomial run time) approach is based
on a graph matching formulation exploiting both resource and
time constraints and does not exclude any possible schedule.

Because of the large number and tightness of the different
resource and instruction set constraints, such a pruning
approach is highly suitable for the retargetable code generation
problem. We therefore apply a similar analysis based on bipar-
tite graph matching to map algorithms to DSP cores. However,
a rigorous adaptation of the standard approach is needed to make
it suitable for our code generation, due to the following reasons.

• Originally only resource conflicts with respect to OPUs were
taken into account. The technique is extended for all other re-
source conflicts, i.e. conflicts with respect to memory accesses,
buses, multiplexers and the instruction set are also considered.

• In many cases, the loops in a signal flow graph (SFG) have
to be ’folded’ (see section 4.3) to satisfy the throughput
constraints. Cyclic signal flow graphs were not considered in
[Timm93], and loop folding also results in extra timing
constraints for the RTs because the consumption of a value must
occur before a new version of the value is produced.

• In general the number of times a certain resource is occupied
is not known beforehand in the RT model we use. If two RTs do
not have any resource conflicts although they do use the same
resources (i.e. they use resources in the same mode), then it
depends on the final schedule whether these resources are used
once or twice for the two RTs.

4.2. Module execution intervals

The considerations mentioned above have a large impact on the
calculation of the so called module execution intervals (MEIs),
which account for the resource (or instruction set) conflicts.
MEIs can be calculated for each resource separately and are part
of the bipartite graph matching formulation. Within the interval
of each MEI, the corresponding resource has to be occupied by
some RT (so the numbers of OEIs and MEIs for each resource
are equal). Consequently, if the number of cycles of a MEI is
equal to one, then the resource must be utilized in that cycle.

For reasons of simplicity, in the above the MEIs were said to be
calculated for each resource separately. However, because in
general the number of times a certain resource is occupied is not
known beforehand (see subsection 4.1), it is very cumbersome
and difficult to calculate the MEIs per separate resource, see
[Timm95b]. For the same reason, such a calculation will inevit-
ably be less accurate than the original approach of [Timm93]. As
the objective of the matching formulation we present in this
section is to model the combination of resource and timing
conflicts between different RTs as accurately as possible, the
formulation would not be as powerful as the original approach.

Luckily it is possible to overcome these problems, namely by
calculating the MEIs differently (i.e. not per separate resource).
Every clique of RTs from the OCG represents RTs that have
resource conflicts with each other. It is possible to construct a
clique cover such that all edges in the OCG are induced (at least)
once by a clique of RTs from the clique cover. MEIs can now be
calculated for each clique from such a cover, leading to a more
accurate, more powerful and much simpler approach than an
approach in which MEIs are calculated per resource
[Timm95b]. Note that a clique from the OCG can incorporate
resource conflicts from different resources; the MEIs are
therefore not calculated for each individual resource anymore.

4.3. Definition and calculation of MEIs

A SFG schedule can be divided into a preamble, a loop body and
a postamble. RTs are scheduled for the first time in either the
preamble or the loop body. In our case, the delay of each RT is
one clock cycle. The throughput of a schedule is given by the
data introduction interval (dii), so the execution of an RT is
repeated every dii cycles. The schedule of an RT is therefore ful-
ly defined by the first clock cycle in which it is executed together
with the dii. The schedule of each RT corresponds to the occupa-
tion of resources during one time potential (i.e. ’a specific
instruction cycle that returns every dii cycles’) in the loop body.
The number of times a SFG is ’folded’ depends on the latency.
If the latency equals the dii, then the SFG is not folded. If the la-
tency is twice the dii, then the SFG is folded once, if the latency
is three times the dii, then the SFG is folded twice, etcetera.

Resource conflicts occur when two RTs are scheduled at the
same time potential in the loop body, while they use the same
resource in a different mode. Consider a clique from the OCG
clique cover. Let V’ be the set of RTs in that clique, let Φ be the
set of feasible (i.e. correct) schedules, and let σφ(v) be the time
potential at which v ∈ V’ is scheduled in case of some schedule
φ ∈ Φ. A schedule φ imposes a notion of order on the set V’ by
ordering the set according to the time potentials, see defini-
tion 2. Note that two scheduled RTs from an OCG clique cannot
have equal potentials.

Definition 2: Given some schedule φ ∈ Φ, we define �φ as a
linear ordering relation on the set V’ as follows:

���

v,w�V�
: v�� w 	��(v) � ��(w).

As �φ is a linear ordering it can be used to assign an integer
value i ∈ I, I = [1, |V’ |] to any v ∈ V’. We capture this by defining
a bijective function εφ: I → V’. Thus εφ(i) is the ith RT under the
linear order induced by the schedule φ. We are now prepared to
formally introduce the notion of a MEI.

Definition 3: Consider the RTs from V’ assigned value i ∈ I
over the set of all schedules Φ. Then the module execution inter-
val MEI(i) is defined by the following interval of time potentials

MEI(i) = �min
�� �

������(i)��, max
�� �

������(i)���.

Thus, for any schedule φ ∈ Φ, the time potential of the ith RT
from V’ must be within the interval of time potentials of MEI(i).
Unfortunately, it is not possible to calculate the exact bounds of
the MEIs in polynomial time (otherwise the existence of a feasi-
ble schedule under given time and resource constraints could be
decided in polynomial time). So we have to be content with
(conservative) estimates of those bounds which preserve the
integrity of the solution space, see property 1.

Property 1: The estimates of the first time potential, first(MEI),
and the last time potential, last(MEI), of a MEI have to satisfy
the following property.

�� �

i � I
:

�����(i)� � first(MEI(i))� �����(i)� � last(MEI(i))

Let FTP(v) be the first time potential in which register transfer
v ∈ V’ can be scheduled, let the set V’ be ordered by increasing
FTP (if two RTs have the same FTP then this tie is broken in an
arbitrary way), and let V’(i), i ∈ I, be the ith RT in that order. If
MEIs are calculated per OCG clique, then the following two
properties hold (note that property 3 does not hold in case MEIs
are calculated per separate resource).

Property 2: Start of MEI(i) cannot be smaller than the ith FTP.

i � I
: first(MEI(i)) � FTP(V(i)).

Property 3: At each time potential, at most one MEI can start.

2� i � |V�|
: first(MEI(i)) � first(MEI(i–1))� 1.

Theorem 1: Algorithm 1 calculates (estimates) for all MEI(i),
i ∈ I, the value first(MEI(i)) while satisfying property 1. The
last time potentials of the MEIs can be determined similarly.

Proof. The proof follows directly from property 2 and 3.

Algorithm 1: calculate / estimate first time potentials of MEIs.

first(MEI(1)) := FTP(V’(1));
for (i := 2 to |V’|) �

first(MEI(i)) := max {FTP(V’(i)), first(MEI(i – 1)) + 1};

4.4. Bipartite schedule graphs

With the calculated MEIs, all resource and instruction set
conflicts can be cast to bipartite schedule graphs (BSGs). In the
following definition these BSGs incorporating both RTs and
MEIs are given.

Definition 4: The bipartite schedule graph BSG(V’) for OCG
clique V’ under the given timing and resource constraints is an
undirected bipartite graph represented by a tuple (N, A), where:
• N = V’ � R’ is the set of vertices with V’
 R’ = �, |V’ | = |R’|,

and R’ = {MEI(i) | 1 � i � |V’ |};
• A � V’ � R’ is the set of edges; initially there is an edge

(v, n) ∈ A if and only if v ∈ V’ can be scheduled in the inter-
val of time potentials of module execution interval n ∈ R’.

For each feasible schedule a corresponding complete matching
exists (but not all complete matchings represent feasible
schedules). The OEIs of the RTs can be reduced by identifying
the irreducible components [Dulm63] of the BSGs. Edges not
belonging to these components cannot be part of any complete
matching, so they can be removed without excluding any
schedule. Such a removal can reduce the incident OEI, because
an OEI cannot be larger than the union of adjacent MEIs (after
the time potentials in the MEIs are translated back into clock
cycles). A more thorough discussion on BSGs and reducing
OEIs can be found in [Timm93].

If an edge removal leads to the reduction of an OEI, a new run
can be started to reduce the OEIs even more (note that after an
OEI reduction, the OEI can be a set of non–overlapping inter-
vals of clock cycles instead of one interval of clock cycles). Such
a run starts with determining new OEIs based on the reduced
OEIs and the dependency relations in the SFG (so the reduction
of the OEIs in one BSG can induce the reduction of OEIs in other
BSGs). Also the MEIs are calculated from scratch in a new run.
The union of all OEIs contains O(|C|�|V|) cycles, where |C| is the
latency, so the number of runs is in the worst case O(|C|�|V|).
However, in practice the algorithm already stops after a few
runs. With this approach the execution intervals of the RTs (and
consequently the scheduling search space) can be reduced by
exploiting both resource and timing constraints.

5. Instruction scheduling

A common approach to schedule RTs is to assign them directly
to specific cycle steps. In [Timm95a], it is proven that the
existence of a schedule for a given SFG with timing and
resource constraints can be decided more efficiently by finding
correct orderings of the RTs in all BSGs of a design problem.
With a correct ordering we mean an ordering that corresponds
to (i.e. can be induced by) a feasible schedule, see definition 5.

Definition 5: A linear ordering � of the RTs in a BSG is correct
if there is a schedule that induces that ordering, i.e. if

�
�� �

: v � w � ��
–1(v)� ��

–1(w).

If a linear ordering on the RTs in a BSG is imposed, then each
RT is adjacent to at most one MEI, see [Timm95a]. A correct
ordering implies a bijection between OEIs and MEIs and,
consequently, defines a complete matching in the BSG. In case
of a correct ordering, all adjacent reduced OEIs and MEIs will
have equal clock cycle intervals after the execution interval
analysis of section 4 leaves its iteration (otherwise an OEI or
MEI could be reduced further and the analysis would continue
with a new run). This leads to the following theorem.

Theorem 2: If for each OCG clique from an OCG clique cover
of a design problem a linear ordering on the corresponding RTs
is imposed and the set of these orderings is not detected as
infeasible by the execution interval analysis of section 4, then
these orderings are correct and a feasible schedule can be

derived from the result of the execution interval analysis in
linear time. The feasible schedule is derived by scheduling all
RTs in the first cycle of their reduced OEI after the execution
interval analysis has left its iteration. The proof of this theorem
can be found in [Timm95a].

Because the execution interval analysis runs in polynomial
time, it follows from theorem 2 that the correctness of some
ordering or complete matching of the RTs can be checked in
polynomial time. A matching can represent more than one
schedule, so the number of different matchings is equal to or less
than the number of different schedules. Because the check for
correctness is not more accurate when the RTs are directly
assigned to specific cycle steps, it is more efficient to search for
a correct ordering instead.

The above leads to the following scheduling approach. We start
from the initial BSGs and match the MEIs one–by–one to
specific RTs, while removing the edges that can no longer be
part of a complete matching. These edges are the ones
previously connected to the RT and the MEI that have just been
matched (except for the one between them), together with other
edges that are no longer part of any irreducible component. So
each time a matching between an RT and a MEI has taken place,
the whole execution interval analysis can be rerun to continue
the pruning of the search space. The matching of RTs and MEIs
is a process in which the initial BSGs get more and more sparse
(an edge that is once removed does not return in a BSG as long
as a matching is not revoked). The search space is also getting
smaller during this process because the OEIs and MEIs are
reduced more and more as well.

The priority functions in this instruction scheduling process are
as follows. First we look for the MEI with the smallest end
potential. This MEI is matched with an RT, and the RT is also
matched with the first MEIs in the other BSGs of which the RT
is an element. Then the next MEI with the smallest end potential
(which is not yet matched) is selected, then matched with an RT
and so on. If a matching leads to an infeasible schedule, then the
matching is revoked and another RT is matched to the MEI. So
a branch–and–bound approach is applied to obtain an exact
scheduler.

6. Experiments and results

In [Strik95], a DSP core together with an instruction set has been
given. We have mapped the examples of table 1 onto this core,
and tried to obtain the highest throughput possible. The
examples range from a simple delay line to a portable audio
application (which is a real life industry example). The
instruction–set scheduler based on graph matching has been
implemented in C++ using the architectural interface of the
NEAT (New Eindhoven Architectural synthesis Toolbox)
system [Heij94]. In table 1, we have compared our approach
with an industrial high–level synthesis (HLS) list scheduler.

The table shows, that our approach finds the guaranteed optimal
throughput within acceptable run times for all but two cases.
The most interesting examples are the largest examples 4a/b and

Table 1: Throughput results for various examples.

#OCG
cliques

size larg-
est clique

lower bound
throughput

HLS
scheduler

NEAT instruc-
tion scheduler

CPU**
NEAT

1a: RAM delay line (12 RTs, unfolded) 4 4 5 5* 5* 0.3 sec

1b: RAM delay line (12 RTs, folded once) 4 4 4 5 4* 0.3 sec

2a: FIR filter (37 RTs, unfolded) 11 7 17 17* 17* 1.2 sec

2b: FIR filter (37 RTs, folded once) 11 7 9 9* 9* 1.2 sec

3a: FIR & Bass Boost (114 RTs, unfolded) 12 16 30 31 30* 7.9 sec

3b: FIR & Bass Boost (114 RTs, folded once) 12 16 25 26 26 8.0 sec

4a: Sym. FIR & Bass B. (288 RTs, unfolded) 22 29 36 43 38 56.2 sec

4b: Sym. FIR & Bass B. (288 RTs, folded) 22 29 29 36 29* 56.3 sec

5a: Portable audio appl. (358 RTs, unfolded) 21 58 62 67 62* 138.3 sec

5b: Portable audio appl. (358 RTs, folded) 21 58 58 61 58* 139.1 sec

 * the throughput equals the lower bound estimation, i.e. is guaranteed to be optimal. ** measured on a HP 9000/735 workstation.

5a/b. Example 4b shows the largest difference between the
achieved throughputs of both schedulers. The largest example
5a/b consists of 58 multiplications, 58 additions, clip actions
and delays. The throughput constraint of this real life
application is 64 cycles. The results on example 5a show, that a
dedicated instruction–set scheduler exploiting the combination
of resource and timing constraints is needed to meet this
throughput constraint without folding. The result on example 5b
shows, that our approach succeeds in generating a schedule in
which the multiplier and ALU in the DSP core have a 100%
utilization during all clock cycles.

7. Conclusions

In this paper, we presented a code generation approach for in–
house DSP cores. The approach models resource conflicts (orig-
inating from both a DSP core and an instruction set) uniformly
and before scheduling. The different resource conflicts are cast
to a bipartite graph matching formulation to prune the schedu-
ling search space. In this way the instruction scheduling step can
exploit the combination of all possible constraints instead of be-
ing hampered by them. From the matching formulation, we have
derived an exact (branch–and–bound) method to solve the
instruction scheduling problem. The branch–and–bound
process does not assign a clock cycle to each register transfer
directly, but tries to find a correct ordering of the transfers
instead. From such an ordering a schedule can be derived in
linear time. Real life examples illustrated the quality and run
time efficiency of the approach.

References

[Cheng94] W.–K. Cheng and Y.–L. Lin, ”Code Generation for a DSP Proces-
sor”, Proc. Int. Symp. on HLS, pp. 82–87, Niagara–on–the–Lake, May 1994.

[Chou94] P. Chou and G. Borriello, ”Software Scheduling in the Co–Synthesis
of Reactive Real–Time Systems”, Proc. of the 31st DAC, pp. 1–4,, June 1994.

[Dulm63] A.L. Dulmage and N.S. Mendelsohn, ”Two Algorithms for Bipartite
Graphs”, J. Soc. Indust. Appl. Math., Vol. 11, No. 1, pp. 183–194, 1963.

[Heij94] M.J.M. Heijligers, H.A. Hilderink, A.H. Timmer and J.A.G. Jess,
”NEAT: An Object Oriented High–Level Synthesis Interface”, Proc.
ISCAS–94, pp. 1.233–1.236, London (UK), May 1994.

[Lann94] D. Lanneer, M. Cornero, G. Goossens and H. De Man, ”Data Routing:
a Paradigm for Efficient Data–Path Synthesis and Code Generation”, Proc. Int.
Symp. on HLS, pp. 17–22, Niagara–on–the–Lake (Canada), May 1994.

[Liem94] C. Liem, T. May and P. Paulin, ”Instruction–Set Matching and Selec-
tion for DSP and ASIP Code Generation”, Proceedings ED&TC (EDAC–ETC–
EuroASIC) ’94, pp. 31–37, Paris (France), March 1994.

[Marw93] P. Marwedel, ”Tree–Based Mapping of Algorithms to Predefined
Structures”, Digest of Technical Papers of ICCAD–93, pp. 586–593, Nov. 1993.

[Nieu94] K. van Nieuwenhoven, J. de Moortel, D. Genin and S. Note, ”Mistral 2
a True Architectural SynthesisTM Tool: from a Behavioral Specification down
to a Register Transfer Level Description”, DSP Applications and Multimedia,
Oct. 1994.

[Paul92] P.G. Paulin, ”DSP Design Tool Requirements for the Nineties: An
Industrial Perspective”, 6th Int. HLS Workshop, Nov. 1992.

[Paul94] P.G. Paulin, C. Liem, T.C. May and S. Sutarwala, ”CodeSyn: A
Retargetable Code Synthesis System”, Int. Symp. on HLS, May 1994.

[Praet94] J. Van Praet, G. Goossens, D. Lanneer and H. De Man, ”Instruction
Set Definition and Instruction Selection for ASIPs”, Proc. Int. Symp. on HLS,
pp. 11–16, Niagara–on–the–Lake (Canada), May 1994.

[Strik95] M. Strik, J. Van Meerbergen, A. Timmer, J. Jess and S. Note,
”Efficient Code Generation for In–House DSP–Cores”, Proc. ED&TC
(EDAC–ETC–EuroASIC) ’95, Paris (France), March 1995.

[Timm93] A.H. Timmer and J.A.G. Jess, ”Execution Interval Analysis under
Resource Constraints”, Digest of Technical Papers of ICCAD–93, pp. 454–459,
Santa Clara (CA), Nov. 1993.

[Timm95a] A.H. Timmer and J.A.G. Jess, ”Exact Scheduling Strategies based
on Bipartite Graph Matching”, Proc. ED&TC (EDAC–ETC–EuroASIC), Paris
(France), March 1995.

[Timm95b] A.H. Timmer, Ph.D. Thesis (to appear in 1995).

Example

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

