A Methodology for HW-SW Codesign in ATM

Giovanni Mancini*, Dave Yurach

Bell-Northern Research

P.O. Box 3511, Station C
Ottawa, Ontario, Canada, K1Y-4H7

Abstract

This paper presents a methodology and
strategy used for hardware-software
codesign and coverification of a large ATM
switch whose functionality is largely
embodied in new ASICs. A strategy based
on software emulation is presented which
supports the concurrent development and
verification of the system software with
the hardware being designed prior to lab
samples being available. The goal s
reduced system integration times and
design iterations due to system errors.

1. Introductiovn

The verification of the embedded
control software (ECS) of large switching
systems is a very complex task. Today's
dynamic market environments and the
resulting short development cycles
require the concurrent engineering of
the ASIC's, boards and software which
make up the system. The goal is to have a
right first time prototype. This requires
the development of a methodology which
supports the design and verification of the

* Giovanni Mancini is presently with
Cadence Design Systems, San Jose, CA.

32nd ACM/{ll;ola‘.l‘.'f Auml‘l’l;glo'n Conference ® .
Permission to copy without fee all or mnlemhsgmnted vided
theeopnesmnotmadeotdim-imd ud‘\"m
theACM notice and ﬂuﬂthofthepublicationmditsdatenppur

venthatcopymgisbypemﬂmkm the Association for

Oomputmg Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission, © 1995 ACM 0-89791 ~756-1/95/0006 $3.50

Spiros Boucouris

Functionality Inc.

1062 Barwell Ave.
Ottawa, Ontario, Canada, K2B-8H5

ECS prlor to the availability of the
hardware it must interface to.

This paper discusses a methodology and
strategy used for the functional design
and verification of the ECS of an
Asynchronous Transfer Mode (ATM) [1]
switch whose functionality is largely
embodied within newly developed ASICs.
The goal was to enable the development of
system softwarec in parallel with the actual
hardware development.

The paper has two goals. The first is to
give the reader an appreciation of the
requirements and complexlty of the task at
hand. The second is to present a specific
mcthodology used to address the problem
in the design of a large ATM backbone
switch.

The complexity of the task is put into
perspective by providing a brief overview
of an ATM switching system. The goals of
the work along with details of the
methodology used are presented. The paper
concludes with comments on possible
future developments required.

2. The System

The system itself consists of three
major components (Figure 1), the
hardware, the embedded control software
(ECS) and the system control software
(SCS).

The SCS software provides control
functions for one or more switches and the
required network management functions.
The software may run on standard

computer platforms such as UNIX based
workstations. These processors are located
in the network control centers of the
operating companies or may be rack
mounted in a central office facility, in
close proximity to the actual hardware. The
SCS can be of the order of hundred of
thousands to millions of lines of code.

The Switching Element (SE) consists of
the ECS and a real time switched data path
implemented in hardware. The control
architecture of the entire SE is software
dominant. The ECS not only provides
control and interrupt processing for the
hardware, it also provides services to the
SCS. All accesses to the hardware by the
SCS are processed by the ECS.

Control

Datapath

Figure 1. A functional representation of an
ATM switch architecture.

The SE consists of proprietary
hardware, commercial components and
industry standard embedded

microprocessors. The ECS is of the order of
60K lines of C/C++ code running under a
commercially available real time
operating system (RTOS).

The SE hardware is considerable in size.
The exact component count depends on the
specifics of the transport layers
terminated. One SE can have well over 2
million design gates instantiated within its

Fda k|

custom ASICs, in addition to commercial
components,

The components of the SE hardware
consist of a front end processing function
which terminates the ATM cell streams
from the network and carries out all ATM
processing on the ingress and egress of
cells. The cells arc then relayed through a
time switch function which switches the
cells from the input port where they
arrived to the output port from which they
are to leave the switch. The ECS, which is
distributed over numerous
microprocessors, provides not only control
for the hardware but also carries out a
number of operations for the SCS.

3. Design Process

A typical system design process is
represented by the diagram in Figure 2.
The process starts with the initial
architecture team developing a system
architecture and specification. Using the
system design specification, the design is
partitioned ' into hardware and software
design flows. The hardware flow is
further divided into an ASIC design flow
and a PCB design flow. Each of these three
flows are tailored to the specific
requirements of software design, ASIC
design and PCB design. Once the hardware
components arc manufactured, the ASICs
are incorporated onto the PCB and verified

during hardware integration. Once base
hardware functionality is verified, the
software is added to the system during
system integration.
S/W Sys. '
Int.
H/W
Spec PCB Int.)3
ASIC

Figure 2. A typlcal system design flow.

Typically the EDA industry has focused
on tool sets which support the reduction of
the time required for the execution of
these three flows. One of the biggest delays
that can be encountered during product
design is that which results from a design
iteration. Major design iterations result
from problems detected as late as hardware
or system integration time. The individual
flows produce fully functional components
that when integrated into a system, either
do not function or implement the wrong
function. An iteration at this stage may
result in missing a market window.

It is significant to note that in the
development of such a new system as an
ATM switch, it is not sufficient to only
support the concurrent design and
development of software and hardware. A
detailed specification will allow this. It also

requires a capability to verify the
integrity and understanding of the
software specification, prior to system
integration.

We distinguish between codesign and
coverification. Codesign refers to the
process to create and/or verify the initial
system specification which encompasses
both hardware and software.
Coverification refers to the process by
which the software is verified against a
simulated representation of the hardware
prior to lab or system integration.

4. Goals

We had three main goals
* the eclimination of design iterations
due to ambiguous specifications
¢ the reduction of system integration
time
* the climination of major problems
discovered during lab integration.
Simulation is the technique usually
used to address these goals. In the design of
a large switching system, the verification
process is quite extensive. As designs get
larger, especially at the system level, brute
force techniques will result in a syndrome
we refer to as death by simulation. The
design team runs larger and larger
simulations in order to verify the system.

If they are uncertain as to the capability
of the verification system it is extremely
difficult for them to know when they have
completed the task. '

In order to overcome the death by
simulation syndrome, one must tailor the
strategy to take advantage of the
architecture of the system. In the case of
software dominant control systems such as
ours, only a very small part of the
hardware is actually relevant for the
verification of the software.

S. Strategy
Of the various options available we
chose a strategy based on - transaction

based modeling for codesign and software
emulation of the relevant hardware for
the coverification stage[3]. In order to
maximize the benefit derived from this
approach it was necessary to ensure that:

* Duplication of software was kept to a
minimum. ‘

* There was to be minimal impact on
the software development process.

* The strategy was to provide a simple
means of reconfiguration between
model and actual hardware.

* No performance penalty on final
ECS code would be introduced.

These restrictions were necessary
both to facilitate the acceptance of the
approach by software developers and to
ensurc that the maximum possible
software testing could be done using the
hardware models.

5.1. Modeling for HW-SW Codesign

Due to the complexity of the software, a
transaction based model of both the SCS
and ECS was developed using ObjecTime
(OT) (3]. The goal is similar to the use of
high level models in the design of
hardware. The ObjecTime models were
developed to verify a specification of the
system software, and its interaction with
the hardware, before it was designed. The
software development environment

provided by OT can also be used to evolve

the model into the real code.

In general, the performance of a full
function OT model of such a large
hardware system would render it useless.
Given the layered nature of the SE, only a
small part of the hardware functionality
was relevant to verifying the software
functionality. This significantly reduced
set of the hardware function can easily be
‘modeled in OT.

An OT model of the system can be used
not only to verify the hardware-software
operational model, but also for training.
During the course of a project additional
software developers will join the team. The
model provides a fast and accurate

mechanism for new members to learn
about the design. It can also be used to
resolve any uncertainties in the
specification.

5§.2. HW-SW Coverification

In addition to OT models to verify the
front end of design, a software emulator
for the hardware was developed to cnable
the concurrent development and
verification of the ECS.

The emulator is similar to the OT model,
except that it is implemented in C/C++ and
has significantly better performance than

a comparable ObjecTime model. The
emulator can run on a host UNIX
workstation or a microprocessor

development board and mimics only the
hardware functionality that is seen by
software.

To obtain a better understanding of the
applicability of a software emulator, we
need to take a more detailed look at the
system architecture (Figure 3). The ECS
exercises control of the hardware through
registers within the ASICs. The ASICs are

attached to the microprocessor bus
through a standard Software Interface
(SWIF) block contained within all the

ASICs. SWIF provides a uniform means of
communications between the ECS and all of
the ASICs. Each ASIC occupies a unique
range within the microprocessor's
~memory map. Within that range, each of
the ASIC's register occupies a unique

&Ny

memory address. The ASICs also generate
vectored interrupts with each device
assigned a unique vector value. Hence, all
the ASICs under the control of a

microprocessor appear to the ECS as an
address range within memory and a source
interrupts.

of vectored

Custom Asics
Figure 3. SE layered architecture.

Tasks within the ECS communicate with
the hardware through a software layer
referred to as the Hardware Adaptation
Layer (HAL). The HAL provides a logical
representation of the physical devices; a
higher level view of the detailed device
drivers; and fields interrupts generated by
the hardware.

In an emulated system (Figure 4), the
lower sections of the HAL are stubbed out
and replaced by a process which s
emulating the software relevant aspects of
the hardware. The challenge here is to
define a stubbing process which will not
replace the ECS layer of code which we are
attempting to verify; namely the HAL
layer.

These restrictions led us to define the
interface at the lowest possible level, the
hardware register level. This minimizes
the portion of application software
replaced by the emulator, resulting in
maximum real ECS code coverage.

Software Emulator

Figure 4. SE verlfication architecture with
software emulator.

This interface, along with the SWIF, is
defined quite early in the design process
because of their interdependence.
Consequently, emulator and model
development can begin before the
software or hardware design is complete
‘and can proceed independent of the
implementation process.

ASIC Representation:
corruption is a common problem in
languages that do not support structures.
A similar problem arises in real-time
systems that must interact with a large
number of hardware ASICs. This problem
is further aggravated if therc arc several
identical ASICs that must be controlled by
the same software. In order to contain this
problem, a structured representation was
used even at the lowest levels. Thus each
ASIC was represented by the equivalent of
a C structure:

Register Size Offset
Name (Bytes)
RESETS 2 0
RESETC 2 2
NTID 4 4

4 8

DATA

The register types (Regl6, Reg32 etc)
were implemented as C++ classes. All Reg
classes provided methods read for reading

Memory

the value of a register and (if the register
could be written) write for writing a
value into the register.

Each ASIC was represented by a C++
class that served as its device driver.

Instances of register classes provided
access to the ASIC registers. Additional
member functions, such as initialization

and mode configuration, were defined to
perform more complex operations on the
ASIC. These typically required one or more
register accesses.

The requirement for independent
evolution of the software interface and the
hardware model(s) led to the development
of two parallel representations for each
ASIC. One was the SW view of the ASIC

class asicX {
public:

Reglé RESETS;
Reglé RESETC;
Reg32 NTID;
Reg32 DATA;
// Driver methods

}

which éncapsulated all the software
drivers. The other was the HW view

class HWasicX {
public:

HWRegl6 RESETS;
HWRegl6 RESETC;
HWReg32 NTID;
HWReg32 DATA;

}s

which emulated the behavior of the

ASIC with various degrees of accuracy.

SW View: The exact implementation of
the "driver" portion of each ASIC is not of
interest - since it is entirely contained
within the ECS. What is important is that
cach ASIC definition includes all the
visible registers of the actual hardware. In
effect each Register object is a window to
the actual hardware register it represents.
During initialization each Register object

acquires the means of accessing the
corresponding actual hardware register.
The access methods provided by cach

register are limited to reading and writing
a value from/to the corresponding

hardware register, possibly with some
verification that the access was successful.

The hardware models are interfaced to
the application software by redefining the
Register classes so that they access the

hardware models rather than actual
hardware. This makes it possible to
provide maximum coverage of the

application software while the transition
from model to actual hardware can be
accomplished with a simple recompilation.
It is worth noting that no recompilation is
necessary, only relinking, if different
hardware models are used.

ASIC Models: ASIC models were required
to provide (as a bare minimum) all the
registers of the actual ASIC they
represented. Depending on the level of
detail required for each ASIC we defined a
graduated hierarchy of models. These
models are all interchangeable and it is
possible to have different models for
different instances of the same ASIC. The
different levels of models defined are:

Register Model: This model contained
only the registers of the actual ASIC.
In its most basic form it simply
retained the last value written. None
of the actual operation of the ASIC
was modeled. Instead, hooks were
provided so that ECS developers
could provide their own actions to
be executed whenever a register
was accessed. This level of modeling
makes it possible to test hardware

accesses and ' selected (isolated)
software responses.
Control Model: This model emulates

most of the internal control path
operation of the ASIC but none of
the data path. The data path can still
be emulated by supplying actions to
register accesses. The model
automatically handles inter-register
dependencies, interrupt generation
and hardware reset. This level tests
more complex or interdependent
software responses to changes of
the hardware state. With register
- models, most of the lower levels of
the application software can be

tested along with isolated data-

dependent responses.

Data Path Model: This model emulates
the entire behavior of the ASIC. As
such it includes the entire register
model and also the data path
operation of the ASIC. Ideally such
a model would be provided by the
hardware developers. Using data
path models, more of the higher,
data dependent, levels of the
application software can be tested.
Once again hooks are provided so
the user can emulate selected
interactions between ASICs.

HDL Model: This would be a Verilog or
VHDL model, at the RTL level or
above, of the actual ASIC. It would
run on a hardware simulator and
interfaced to the application
software through model stubs. Since
this level provides the full
functionality of the hardware it is
also possible to test sequence
dependent software responses,
without exact timing.

Emulator Control: Given the high level
of abstraction within the emulator, a
means is required to drive the emulator.
For this we chose a text interface based on
Tcl [4]. The purpose of this interface is to

e provide a means for configuring
the hardware (i.e. emulator) into a
particular state to enable the testing
of specific threads within the ECS

 emulate the asynchronous
generation of interrupts by the
hardware

« Bind command procedures to
registers, which would trigger on
accesses to the register. This is a
significant aid in the software
verification.

This provides the ECS developer with an
casy and flexible means to configure the
emulator for testing even the most

pathological scenarios. It also defines
standard methods and mechanism for
configuring the hardware.

.

6. Results

The implementation of the ASIC models
and the application software were donec in
C++. A set of Register classes were defined
that served as a replacement of the default
Register classes that will access the actual

hardware. These Registers were then
combined in the ECS into ASICs. Each
register was initialized with the base

address of the ASIC in which it resides and
its offset from the base address.

The model registers passed these
parameters to a resolution routine
provided by the modeling environment
which determines which hardware
register is to be bound and provides a
pointer to the proper model register. ASIC
models also contain models of all the
registers of the actual ASIC. ASIC models
are created dynamically on demand. This
approach makes it possible to employ the
actual application initialization code with
the models and also to ensure that the
model and application software have the
same concept of which ASICs are present
at what address.

The Control Model is a proper super set
of the Register Model. Similarly, the Data
Path Model is a proper super set of the
Control Model. This enabled us to
introduce models in a progressive manner
with simple models becoming available
very carly and more claborate models
developed as needed. Using C++
inheritance and polymorphism we were
able to maintain a consistent set of models
for each ASIC and to easily upgrade the
entire set in the case of hardware changes.
The Tcl interface made it possible to do a
number of application software tests using
the more simplistic models. Eventually,
the Tcl interface will also be used for
testing the application software.

The Tcl interface provided benefits
beyond its intended goals. It provided a
simply means by which the test cases used
to verify the ECS could be made
regressionable. Since it provided standard
-means for configuring the hardware into
a particular state, Tcl and scripts generated

were also used by the hardware systems ‘
designs for verifying the hardware during

hardware integration and as a platform for
running manufacturing tests. It was also
used to provide a means to provide an
interface into the SCS and still provide
maximum code coverage on the part of
both the SCS and ECS.

An HDL model interface- has not been -

developed yet. The additional gain would be
minimal given the architecture of this
system.. Such a capability would have
significant benefit in systems in which
the division between control and data path
is not as clearly aligned along the division
of software and hardware.

7. Conclusions

The paper has described the goals and a
methodology for hardware-software
codesign and coverification of a large ATM
switch whose functionality is largely
embodied within new ASICs. Brute force
techniques cannot be used. Rather the
strategies used must take advantage of the
system architecture to abstract out
hardware details.

The methodology not only provides a
solution to the problem but does it in a

manner which naturally interfaces into
the existing development environments of
both the software and hardware
developers. -

The methodology supports ecarly
development and testing of real-time
application software in parallel with

hardware development. A hierarchy of
models of increasing complexity was used
to support the evolving software needs.
The encapsulation of the ASIC models
makes it possible to provide ever more
complete models by redefining which ASIC
models get bound to the ASIC's access

method. The approach developed for the

representation of the hardware in the
application
compatibility with the models while also
climinating a source of errors in hardware
accesses.

The methodology is generic and can
easily be applied to systems of similar
architectures. The tool box nature of the

software provided maximum

ey

strategy used also cnables significant
recuse of the emulation software on new
systems.

The approach is limited to system
architectures in which have software
dominant control with hardware data
paths. In systems where the software
actually implements part of the data path,
an interface to actual HDL models, at the
RTL or higher level, is required. This can
readily be accomplished with the
architecture of the emulation strategy
provided.

8. References

[1] High Speed ATM Switching, IEEE
Communications Magazine, Feb. 1993.

[2] B. Selic, G. Gullekson, J. McGee, I.
Engelberg, " ROOM: An Object-Oriented
Methodology for Developing Real Time
Systems"”, Proc. of 5th Intl. Workshop
on CASE, 1992,

[3] J. Ousterhout,"Tcl: An Embeddable
Command Language", Proc. of 7 USENIX
Winter Conference, January 1990,
pp-133-146.

[4] G. Mancini,"HW-SW Co-Verification in
ATM", Proc. of 7th HLSS, 1994, pp.1-7.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

