Performance Analysis of Embedded Software Using
Implicit Path Enumeration

Yau-Tsun Steven Li

Sharad Malik

Department of Electrical Engineering,
Princeton University,
NJ 08544, USA.

Abstract — Embedded computer systems are characterized
by the presence of a processor running application specific soft-
ware. A large number of these systems must satisfy real-time con-
straints. This paper examines the problem of determining the
bound on the running time of a given program on a given proces-
sor. An important aspect of this problem is determining the ex-
treme case program paths. The state of the art solution herere-
lieson an explicit enumeration of program paths. Thisrunsout of
steam rather quickly sincethe number of feasible program paths
istypically exponential in the size of the program. We present a
solution for this problem, which considers all paths implicitly by
using integer linear programming. This solution isimplemented
intheprogram ci nder el | a1 which currently targetsa popular
embedded processor — the Intel i960. The preliminary results of
using thistool are presented here.

| INTRODUCTION

A Motivation

Embedded computer systems are characterized by the presence
of aprocessor running application specific dedicated software.
Recent years have seen alarge growth of such systems. This
paper examines the problem of determining the extreme (best
and worst) case bounds on the running time of agiven program
on agiven processor. It hasseveral applicationsin the design of
embedded systems. Inhard-real time systemstheresponsetime
of the system must be strictly bounded to ensure that it meets
its deadlines. These bounds are also required by schedulersin
real-time operating systems. Finaly, the selection of the parti-
tion between hardware and software, as well asthe selection of
the hardware componentsis strongly driven by thetiming anal-
ysis of software.

B Problem Satement

A moreprecisestatement of the problem addressed in this paper
isasfollows. We need to bound (lower and upper) the running

LIn recognition of her hard real-time constraint — she had to be back home
a the stroke of midnight!

32nd ACM/IEEE Design Automation Conference O
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright noticeand the title of the publication and its date appear,
and notice is giventhat copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requiresafee
and/or specific permission. [J 1995 ACM 0-89791-756-1/95/0006 $3.50

time of a given program on a given processor assuming unin-
terrupted execution. Theterm “program” hererefersto any se-
guence of code, and does not have to include a logical begin-
ning and an end. The term “processor” here includes the com-
plete processor and the memory system.

The running time of a program may vary according to dif-
ferent input data and initial machine state. Suppose that, of
all the possible running times, Trin and Tyax are the minimum
and maximum of these times respectively. We define the ac-
tual bound of the program asthetimeinterval [Trin, Trmax]. Our
objective is to find out a correct estimate of this without in-
troducing undue pessimism. Thus, the estimated time interval
[tmin, tmax], defined asthe estimated bound, must enclose the ac-
tual bound. Thisisillustrated in Fig. 1.

There are two componentsto the prediction of extreme case
performance:

1. program path analysis, which determineswhat sequence
of instructionswill execute in the extreme case, and

2. micro-architectural modeling, which models the host
processor system and computeshow muchtimeit will take
for the system to execute that sequence.

Both these aspectsneed to be studied well in order to provide
a solution to this problem. In our research we have attempted
toisolatethese aspectsasfar aspossiblein an attempt to clearly
understand each problem. Thefocusof thispaper ison program
path analysis.

Il PREVIOUS WORK

A static analysis of the code is needed to see what the pos-
sible extreme case paths through the code are. It is well ac-
cepted that this problem is undecidablein general and equiva-
lent tothehalting problem. Kligerman and Stoyenko[1] aswell
as Puschner and Koza [2] have suggested restrictions on pro-
grams that make this problem decidable. These are: absence

pm'i Actual bound pessi miin

| | | |
I I I I

t . T T t time
min min . max max

L Estimated bound .

= =]

Fig. 1: Estimated bound [tmin, tmax] and Actua bound [Tin, Tmax]

of dynamic data structures, such as pointers and dynamic ar-
rays, the absence of recursion; and bounded loops. These re-
strictions may beimposed either through specific language con-
structs, or programmer annotations on conventional programs.
While specific language constructs, such as those provided in
Real-Time Euclid [1], are useful in as much as they provide
checks for the programs, they come with the usual high costs
associated with anew programming language. Mok and his co-
workers [3], Puschner and Koza [2], and Park and Shaw [4],
adopt the latter approach. They all use annotationsto existing
programs to fix the bounds on loops. We believe that this ap-
proach is more practical, since it involves only minimal addi-
tional programming tools.

The timing analysis can be done at either the programming
language level, or the assembly language level. Mok and his
co-workers [3] use the high-level program description to pro-
videfunctional information about the program through annota-
tions which are then passed on to the assembly language pro-
gram. We believe that this is the correct approach, the high-
level language program is the right place to provide useful
annotations, since that is what the programmer directly sees.
However, thefinal analysis must be performed on the assembly
language program so asto captureall the effectsof the compiler
optimizations and the micro-architectural implementation.

Thefunctionality of the program determinesthe actual paths
taken during its execution. Any information regarding this
helps in deciding which program paths are feasible and which
are not. While some of this information can be automatically
inferred from the program, it iswidely felt that thisisadifficult
task in general. In contrast, it is relatively easier for the pro-
grammer to provide such information since he/she is familiar
with what the program is supposed to do 2. Initial efforts[2, 3]
to include thisinformation were restricted to providing annota-
tions about loop bounds and the maximum execution counts of
a given statement within a given scope. This information, al-
beit useful, isvery limited. It does not capture any information
about the functional interactions between different parts of the
program. Subsequent work by Park and Shaw [4] in this area
attempts to overcome this limitation. They recognize that the
set of statically feasible program paths and other path informa-
tion can be expressed by regular expressions. The intersection
of these regular expressions represents all the feasible paths,
which can then be examined explicitly to determinethe best and
the worst case paths. Although the regular expression is pow-
erful in describing all possible paths, it has several drawbacks.
First, as the authors admit, these are not amenable for specifi-
cation by programmers. The IDL language interface provided
to the programmer is an exercise in compromise, giving up full
generality for ease of use and analysis. Even so, the compl exity
of intersecting regular expressions and the need to examine ex-
plicitly a potentially exponential number of pathsis still very
prohibitive. In many cases, this results in the use of approxi-
mate solutions.

The main contribution of this paper is to provide a method
that does not explicitly enumerate program paths, but rather im-
plicitly considers them in its solution. This is accomplished

2Thereisan analog of thisin the domain of digital circuits. There, designer
annotations were commonly used to mark paths in the digital circuit that were
never exercised [5]. These paths were then eliminated from consideration in
the timing analysis of the circuit.

by converting the problem of determining the bounds to one
of solving a set of integer linear programming (ILP) problems.
While each ILP problem can in the worst case take exponen-
tial time, in practice exponential blowup never occurred in our
experiments. In fact, we observed that in practice, the actual
computation done by the ILP solver is solving a single linear
program. The reasons for thiswill be briefly examined in Sec-
tion 111, and practical data supporting this will be presented in
Section VI.

Il ILP FORMULATION

A Objective Function

Our objective is to determine the extreme case running times
and not necessarily actualy identify the extreme case paths.
This observation led to the following formulation of the prob-
lem. For therest of this section, thefocuswill betheworst case
timing, the best case can be obtained analogously. Let x; be the
number of times the basic block B; is executed when the pro-
gram takes the maximum time to complete. A basic block of
code is a maximal sequence of instructions for which the only
entry point is the first instruction and the only exit point is the
last instruction. Let ¢; betherunningtime (or cost) of thisbasic
block intheworst case. For now let usassumethat ¢; isconstant
over al possible times this basic block is executed. Thisissue
will be examined in more detail in Section IV. Thus, if there
are N basic blocksin the program, theworst case timing for the
program is given by the maximum value of the expression:

CiX;. D

M3z

Clearly, x;'s cannot be any value. They are constrained by the
program structure and the program functionality, which deals
with what the program is computing and depends on the data
variables. What we need to do is to maximize (1) while tak-
ing into account the restrictionsimposed by the program struc-
tureand functionality. Since (1) isalinear expression, if wecan
state these restrictions in the form of linear constraints, it will
enable us to use ILP to determine the maximum value of the
expression. In the following subsections we will demonstrate
how this can be done.

B Program Sructural Constraints

The structural constraints are extracted automatically from the
program’s control flow graph (CFG) [6]. Thisisillustrated in
Fig. 2, which containsani f - t hen- el se statement and its
CFG. In the CFG, we label the edges and the basic blocks by
variables di’s and x;’s respectively. These variables represent
the number of times that the control is passing through those
edges and basic blocks when the code is executed. The con-
straints can be deduced from the CFG asfollows: At each node,
the execution count of the basic block is equal to both the sum
of the control flow goinginto it, and the sum of the control flow
going out fromit. Thus, from the graph, we have the following
congtraints:

Xy = dy=dy+ds 2

po
%

if (p) o d
q=1

el se |BZq:1;|X2|B3q:2;|X3
q=2

ro=aq;

(i) Code (ii) CFG

Fig. 22 Anexample of thei f - t hen- el se statement and its CFG.

X2 = Oo=04 ©)
X3 = O3=ds 4)
X4 = di+ds=0ds ©)

Fig. 3showsawhi | e-loop statement and its CFG. The con-
straints are:

X = di=d; (6)
X2 = d2 + d4 = d3 + d5 (7)
X3 = d3 = d4 (8)
Xg = O5=dg)

Note that the above constraints do not contain any loop count
information. This is because the loop count information de-
pendsonthevaluesof thevariables, which arenot trackedin the
CFG. However, theloops can be detected and marked. After all
thestructural constraintshave been constructed, the user will be
asked to provide the loop bound information as part of specify-
ing the program functionality constraints (see Section C).

The function calls are represented by using f-edges in the
CFG as shown in Fig. 4. An f-variable is similar to a d-
variable, except that its edge contains a pointer pointing to the
CFG of the function being called. The construction of struc-
tural constraintsin the caller function remains the same. They
are;

d="f
fi="1

X1 =
X =

(10)
(11)

The number of times that the function is executed can be
tracked by knowing the f-edges pointing toit. In our example,

td

By q=p; X1
d
2‘ ds

B2 whi | e(q<10)

[* p >=0 */

q =p;
whi | e(g<10)

q++;
r=aq; ds
Bir = q; | %
ds
(i) Code (i) CFG

Fig. 3: An example of thewhi | e-loop statement and its CFG.

i = 10; ldl
store(i); Bij = 10
n = 2%, X store(i); / dz
store(n); 1’7/
1
void store(int i) 5
o 2n = 2% ;
store(n);

yo l@ %

(i) Code (i) CFG
Fig. 4: An example showing how function calls are represented.

thisinformation is represented by:

bh="1f+1 (12

whered, isthefirst edge of thefunctionst or e() 'sCFG. For
the main function, which hasd, asitsfirst edgein the CFG, the
following constraint is constructed.

di=1 (13)

C Program Functionality Constraints

These constraints are provided by the user to denote loop
bounds and other path information that depend on the func-
tionality of the program. We illustrate the use of these con-
straints to capture conditions on feasible program paths with
the example (Fig. 5) taken from Park’s thesis [4]. The func-
tioncheck_dat a() checksthevaluesof thedat a[] array.
If any of them islessthan zero, the function will stop checking
and return O, otherwiseit will return 1.

The while-loop in the function will be executed between 1
and DATASI ZE times. Supposethat DATASI ZE ispreviously
defined as a constant value 10, then the following constraints
are used to specify thisloop bound information.

I < X%
Xo < 10x

(14)
(15)

Here, X, isthe count for the basic block just before entering the
loop and X, isthe count for the first basic block inside the loop.

1 check_dat a()

2: { int i, norecheck, w ongone;

3 X1 norecheck = 1; i = 0; wongone = -1;
4: whi | e (morecheck) {

5: X2 if (data[i] < 0) {

6: X3 wrongone = i; norecheck = 0;
7

8 el se

9: X4 if (++i >= DATASI ZE)

10: xs nmor echeck = O;

11 % }

12: x; if (wongone >= 0)

13. xg return O;

14: el se

15. Xg return 1;

16:

Fig. 5: check_dat a example from Park’s thesis. The x; variables
denote the execution counts of their corresponding basic blocks.

Sinceall theloopsare marked, these two variables can be deter-
mined automatically. All the user hasto provide are the values
1and10.

The minimum user information required to perform timing
analysis is the loop bound information. After that, the user
can provide addition information so as to tighten the estimated
bound. For example, we seethat insidetheloop, line6 and line
10 aremutually exclusiveand either of themis executed at most
once. Thisinformation can be represented by:

(x3=0&x5=1)|(x3=1& X5 =0) (16)
Thesymbols‘&’ and ‘|’ represent conjunction and diunction
respectively. Note that this constraint is not alinear constraint
by itself, but a disjunction of linear constraint sets. Thiscan be
viewed as a set of constraint sets, where at least one constraint
set member must be satisfied.

As an another example, line 6 and line 13 are always exe-
cuted together for the same number of times. This can be rep-
resented by:

X3 = Xg (17)

The path information is not limited to within a function.
The user may also specify the path relationship between the
caller and the callee function. Thisisillustrated in the exam-
pleshownin Fig. 6. We seethat thefunctioncl ear _dat a()
will only be executed if the return value from the function
check_dat a() is0. Thisinformation can be represented by
the constraint:

X12 = Xg.f1 (18)

Here, the dot symbol *." in xg. f; means that the count of basic
block Bg in function check dat a() when called at location
f1. If thefunctioncheck _dat a() iscalled from other places,
the value of xg will not affect that of x;,. For purpose of analy-
sis, aseparate set of x; variablesis used for thisinstance of the
call tofunctioncheck _dat a() .

Since the functionality constraints are serving the same pur-
pose as constructsin the IDL language provided by Park in his
work [4], it isinstructive to compare their relative expressive
powers. We have been ableto demonstrate that every construct
in IDL can be trandated to a digunctive form constraint. In
addition, we can provide digjunctive constraints for practically
useful annotations that are beyond the capabilities of IDL. A
complete proof of thisclaim is beyond the scope of this paper.

check_dat a()

X7 illl‘.(wrongone >= 0)
Xg return O;
el se

Xg return 1;

}

task()

{ ...
X10, T1 status = check_data();

X11 if (!status)
X12, f2 cl ear_data();

.

Fig. 6: An example showing how the path relationship between the
caller and the callee function can be specified.

D Solving the Constraints

The program structural constraint set isa set of constraintsthat
are conjunctive, i.e., they must all be satisfied simultaneoudly.
Because of the disiunction ‘|" and conjunction ‘&’ operators,
the program functionality constraints may, in general, be adis-
junction of conjunctive constraint sets. Giving us a set of con-
straint sets, at |east one of whichis satisfied for any assignment
to the x;'s. For example, by intersecting all the functionality
congtraints((14) through (17)), wewill obtaintwo functionality
constraint sets:

First set Second set
X]_*XzSO X]_*Xzso
10%; — X% >0 10%; — X >0
X3 =0 X3 =
X3 —Xg =0 X3 —Xg =0
X5 =1 x5 =0

To estimate the running time, each set of the functionality
constraint setsis combined (the conjunction taken) with the set
of structural constraints. Thiscombined constraint set is passed
to the ILP solver with (1) to be maximized. The ILP solver re-
turns the maximum value of the expression, as well as basic
block counts (x; values) that result in thismaximumvalue. The
above procedureis repeated for every set of functionality con-
gtraint sets. The maximum over al these running times is the
maximum running time of the program. Notethat asinglevalue
of thebasic block countsfor theworst caseis providedinthe so-
lution even if there are alarge number of solutionsall of which
result in the same worst case timing. The ILP solver in effect
hasimplicitly considered al paths (different assignmentsto the
X; variables) in determining the worst case.

Thetotal time required to solve the problem depends on the
number of functionality constraint sets, and the time required
to solve each constraint set. The size of the constraint sets is
doubled every time a functionality constraint with disunction
operator ‘|" isadded. Whilenotheoretical boundsonthiscan be
derived, our observationshave been that in practicethisisnot a
problem. Wefound the sizeto be small at the beginning, and as
more constraints are added, some of the constraint setswill be-
comeanull set (e.g. x; > 1intersected with x; = 0). Thesetriv-
ial null sets, if detected, will be pruned before being passed to
ILP solver. The second issueisthe complexity of solving each
ILP prablem, which is, in general, an NP-complete problem.
Wewere ableto demonstratethat if werestrict our functionality
constraintsto those that correspond to the constructsin the IDL
language, then the ILP problem is equivalent to a network flow
problem, which can be solved in polynomial time. However,
thefull generality of thefunctionality constraintscanresultinit
being ageneral ILP problem. In practice, thiswas never experi-
enced, i.e., in the branch and bound solution to the IL B, thefirst
call to the linear program package resulted in an integer valued
solution. More specific datawill be provided in Section V1.

IV MICRO-ARCHITECTURAL MODELING

Currently we are using a simple hardware model to determine
the bound of the running time (cost) of abasic block. For each
assembly instructionin the basic block, we analyzeits adjacent
instructions within the basic block, and determine the bound
on its effective execution time from the hardware manual. The

bound of the complete basic block is obtained by summing
up all the bounds of the instructions. This model can handle
pipelining reasonable well. However, it is very simplistic in
its approach to modeling cache memory. Since the costs must
be constants, for best case running time, we assume the exe-
cution always has cache-hits, whereas, for worst case running
time, we assume that the execution will alwaysresult in cache-
misses. Althoughthisstill givesavalid estimated bound on the
program’s execution time, it is clearly a conservative approxi-
mation and needs to be tightened. In particular, it may happen
that thefirst iteration of aloop resultsin cache misses, whilethe
subsequent iterations will result in cache-hits. Assuming that
all iterationsresult in all cache misses can be very pessimistic.
Thispessimism can easily be avoided in the path analysis stage
by considering thefirst iteration of the loop as a separate basic
block, distinct from the other iterations, with its own x; and ¢;
variables. We are currently working on the modeling of cache
memory. Several other researchers are also looking into this
problem [7].

V IMPLEMENTATION

We have developed atool caled ci nder el | a that incorpo-
rates the ideas presented in this paper for timing analysis. It
contains approximately 8,000 lines of C++ code. Currently,
ci nder el | aisimplemented to estimate the running time of
programs running on an Intel i960KB processor. The proces-
sor is a 32 bit RISC processor that is being used in many em-
bedded systems (e.g. in laser printers). It contains a 4-stage
pipelined execution unit, a floating point unit and a 512-byte
direct-mapped instruction cache [8].

Ci nder el | a first reads the executable code for the pro-
gram. It then constructsthe CFG and derivesthe program struc-
tural constraints. Next, it reads the source files and outputs the
annotated source files, where all the x; and f; variables are la-
belled alongside with the source code (Fig. 5). Then, for all
loopsinthe programit asksthe user to providetheloop bounds.
Thisisall theinformation that is mandatory to providethetim-
ing bounds, and an initial estimate of these bounds can be ob-
tained at this point. To tighten the estimated bound, the user
can provide additional functionality constraintsand re-estimate
the bounds again. After each estimation, ci nder el | a out-
puts the estimated bound (in units of clock cycles), the basic
blocks' costs and their counts.

VI EXPERIMENTAL RESULTS

Our solution is not guaranteed to give the exact bounds, and in
general some pessimism will be introduced in the estimation.
There are two sources for the pessimism in (1): the pessimism
in ¢’sand the pessmismin x’s. The former pessimism results
from the inaccuracies of the micro-architectural modeling. It
can be reduced by improving the modeling. The latter is due
to insufficient path information, so that some infeasible paths
are considered to be feasible. This can hopefully be reduced
by providing more functionality constraints.

Since our current work focuses on the path analysis problem,
we would like to evaluate the efficacy of our methodology in
determining the worst and best case paths. Experiment 1 de-
scribed below is directed towards evaluating the pessimism in

path analysis. In addition to this, we also conducted Experi-
ment 2, with the goal of measuring theinadequaciesin our cur-
rent micro-architectural modeling.

A Experiment 1. Evaluating the Path Analysis Accuracy

Since there are no established benchmarksfor this purpose, we
collected a set of example programs from a variety of sources
for this task. Some of them are from academic sources. from
Park’s thesis [4] on timing analysis of software and also from
Gupta's thesis [9] on the hardware-software co-design of em-
bedded systems. Others are from standard DSP applications,
aswell as software benchmarks used for evaluating optimizing
compilers. These routines, their sizes and the number of con-
straint sets being passed to the ILP solver are shownin Tablel.
Of the eight constraint sets of function dhr y, five of them are
detected as null sets and eliminated. For each routine, we ob-
tain the estimated bound by using ci nder el | a and calculate
the cal culated bound, which is obtained by thefollowing steps:

1. Insert acounter into each basic block of the routine.

2. ldentify theinitial data set that correspondsto the longest
(shortest) running time of the routine.

3. Runtheroutinewith that data set and record the values of
all the counters.

4. Multiply each counter value with the slowest (fastest)
running time for that basic block as provided by
ci nderel | a.

5. Addupal these products. Thisisthe upper (lower) bound
of the calculated bound.

Note that in order to find the actual upper (lower) bound on
the execution time, we would have to run the routine for al
possibleinputs. Thisisclearly not feasible. Thus, we have re-
placed this step by actually trying to identify the best (worst)
case data set by a careful study of the program. Clearly if
we could rely on this identification of the best and the worst
case, we do not need to do the analysis at all. However, aswe
have no other mechanism to evaluate the result, we have to use
this method. We do know however, that if the analysis result
agreeswith our selection of the data set, thenit will betheworst
case data set and also our analysisis completely accurate. As
the results of Experiment 1 show (Table Il), the analysis pro-
vides results that are either in agreement with the selection of
the data set, or very close to it. The pessimism in the evalu-
ation measures the relative difference between the calculated
bound [C;,C,] and the estimated bound [E;, E,]. It isdefined as
P, Bl

Function Description Lines Sets
check_dat a Example from Park’s thesis 17 2
fft Fast Fourier Transform 56 1
pi ksrt Insertion Sort 15 1
des Data Encryption Standard 185 2
l'ine Line drawing routine in Gupta's thesis 143 1
circle Circle drawing routine in Gupta's thesis 88 1

j peg-fdct_islow | JPEG forward discrete cosine transform 150 1

j peg-i dct _i sl ow | JPEG inverse discrete cosine transform 246 1
recon MPEG?2 decoder reconstruction routine 137 1
full search MPEG2 encoder frame search routine 204 1
whet st one Whetstone benchmark 245 2
dhry Dhrystone benchmark 480 8=3
mat gen Matrix routine in Linpack benchmark 50 1

TABLE I: SET OF BENCHMARK EXAMPLES

Function Estimated Bound Calculated Bound Pessimism
check data [32,1,039] [32,1,039] 0.00, 0.00
fft [0.97€6, 3.35€6] [0.98¢e6, 3.31€6] 0.01, 0.01]
pi ksrt [146, 4,333] [146, 4,333] 0.00, 0.00
des [42,302, 604,169] | [43,254,592,559] 0.02, 0.02
line [336, 8,485] [336, 8,485] 0.00, 0.00
circle [502, 16,652] [502, 16,301] 0.00, 0.02]
j pegfdct.islow [4,583, 16,291] [4,583, 16,291 0.00, 0.00
] peg.i dct _i sl ow [1,541, 20,665] [1,541, 20,665 0.00, 0.00
recon [1,824, 9,319 [1,824, 9,319 0.00, 0.00
ful l search [43,082, 244,305] | [43,085, 244,025] 0.00, 0.00
whet st one [4.54€6, 13.7€6] [4.54€6, 13.7€6] 0.00, 0.00
dhry [0.22¢6, 1.26€6] [0.22¢6, 1.26€6] 0.00, 0.00
nmat gen [5,507, 13,933] [5,507, 13,933] 0.00, 0.00

TABLE II: PESSIMISM IN PATH ANALYSIS.

From these results, we see that when given enough informa-
tion, the path analysis can be very accurate. The CPU times
taken for each IL P problem were insignificant, less than 2 sec-
onds on an SGI Indigo Workstation. Thisislargely dueto the
fact that the branch-and-bound | L P solver findsthat the solution
of the very first linear program call it makesis integer valued.

B Experiment 2: Comparison with Actual Running Times

In this experiment, we measured the actual running time of the
program and compared it with the estimated bound. Each pro-
gram is compiled and then run on an Intel QT960 board [10],
which is a development board containing a 20MHz i960KB
processor, memory and some other peripherals. To measurethe
worst case running time, we initialize the routinewith its worst
case data set and then run it in aloop several hundred times
and measure the elapsed time. The cache memory is flushed
before each function call. Since thisvalue includesthetimeto
dotheloop iterationsand cache flushing, we run an empty loop
and measure its execution time again. The difference between
these two valuesis the actual running time of the routine. The
best case running timeis obtai ned anal ogously, but without the
cache flush.

Tablelll showstheresults of thisexperiment. The estimated
bound is the same as in Experiment 1. The measured values
described above are shown in the measured bound column. The
pessimismisdefined as [M'M—_lE', EgMu] where[M, My] denotes
the measured bound.

We observe that while the estimated bound does enclose the
measured bound, the pessimism in the estimationisrather high.
This is mainly due to the fact that a smple hardware model
is used. In particular, the pessimism is bigger when there are
many small basic blocks in the function. This is because all
the cost analysisis currently being done within the basic block.

Function Estimated Bound Measured Bound Pessimism
check_data [32,1,039] [38, 441] 0.16, 1.36
fft [0.97€6, 3.35€6] [1.93e6, 2.05€6] 0.50, 0.63
pi ksrt [146, 4,333] [338, 1,786] 0.57, 1.43
des [42,302, 604,169] [109,329, 242,295] 0.61, 1.49
l'ine [336, 8,485] [963, 4,845] 0.65, 0.75
circle [502, 16,652] [641, 14,506] 0.22, 0.15
j pegfdct_islow [4,583, 16,291] [7,809, 10,062] 0.41, 0.62
j peg.i dct _i sl ow [1,541, 20,665] [2,913, 13,591] 0.47, 0.52
recon [1,824, 9,319 [4,566, 4,614] 0.60, 1.02
full search [43,082, 244,305] [62,463, 62,468] 0.31,2.91
whet st one [4.54€6, 13.71e6] [6.83€6, 6.83€6] 0.34, 1.01
dhry [218,013, 1,264,430] | [551,460, 551,840] 0.60, 1.29
nmat gen [5,507, 13,933] [9,260, 9,280] 0.41, 0.50
TABLE Ill: DISCREPANCY BETWEEN THE ESTIMATED BOUND

AND THE MEASURED BOUND.

For blocks with only a few assembly instructions, the cache
and pipeline behavior is not being modeled very accurately be-
causethey depend alot on the surrounding instructions. Conse-
quently, the costs of these blocks areloose and these contribute
to the discrepancy between the estimated and the measured
bounds. A more sophisticated micro-architectural modeling
will certainly improve the accuracy of the estimated bound.

VIl CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an efficient method to estimate
the bounds of the running time of a program on a given proces-
sor. The method uses integer linear programming techniques
to perform the path analysiswithout explicit path enumeration.
It can accept a wide range of information on the functionality
of the program in the form of sets of linear constraints. A tool
caled ci nder el | a has been developed to perform this tim-
ing analysis. Experimental results on a set of examples show
the efficacy of this approach.

The future work includes improving the hardware model to
take into account the effects of cache memory and other fea-
tures of modern processors that tend to make the timing rel-
atively non-deterministic. We would also like to explore the
possibility of using symbolic analysis techniques to automat-
ically derive some of the functionality constraints. Finally, we
areworkingon portingci nder el | ato handleprogramsrun-
ning on other hardware platforms. In collaborationwith AT& T,
we have completed a port for the AT& T DSP3210 processor.
Thisisintendedfor usein the V COS operating system to bound
the running times of processes for use in scheduling.

REFERENCES

[1] Eugene Kligerman and Alexander D. Stoyenko, “Real-time Euclid: A
language for reliable real-time systems”, | EEE Transactions on Software
Engineering, vol. SE-12, no. 9, pp. 941-949, September 1986.

[2] P Puschner and Ch. Koza, “Calculating the maximum execution time of
real-time programs’, The Journal of Real-Time Systems, val. 1, no. 2, pp.
160176, September 1989.

[3] Aloysius K. Mok, Prasanna Amerasinghe, Moyer Chen, and Kamtron
Tantisirivat, “Evaluating tight execution time bounds of programs by an-
notations’, in Proceedings of the 6th |EEE Workshop on Real-Time Op-
erating Systems and Software, May 1989, pp. 74-80.

[4] Chang Yun Park, Predicting Deterministic Execution Times of Real-Time
Programs, PhD thesis, University of Washington, Seattle 98195, August
1992.

[5] R. B. Hitchcock, “Timing Verification and the Timing Analysis Pro-

gram”, in Proceedings of the 19t Design Automation Conference, June
1982, pp. 594-604.

[6] Alfred V. Aho, Ravi Sethi, and Jeffery D. Ullman, Compilers Principles,
Techniques, and Tools, Addison-Wesley, 1986, ISBN 0-201-10194-7.

[7] Byung-Do Rhee, Sang Lyul Min, Sung-Soo Lim, Heonshik Shin,
Chong Sang Kim, and Chang Yun Park, “Issues of advanced architectural
features in the design of atiming tool”, in Proceedings of the 11th IEEE
Workshop on Real-Time Operating Systems and Software May 1994, pp.
59-62, IEEE Computer Soc. Press, ISBN 0-8186-5710-3.

[8] Intel Corporation, i960KA/KB Microprocessor Programmers's Reference
Manual, 1991, ISBN 1-55512-137-3.

[9] Rajesh Kumar Gupta, Co-Synthesis of Hardwareand Software for Digital
Embedded Systems, PhD thesis, Stanford University, December 1993.

[10] Intel Corporation, QT960 User Manual, 1990, Order Number 270875-
001.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

