
E�cient Generation of Counterexamples and Witnesses in Symbolic Model

Checking�

E. M. Clarke O. Grumberg K. L. McMillan X. Zhao
School of Computer Science Computer Science Dept. Cadence Berkeley Labs. School of Computer Science
Carnegie Mellon University The Technion 1919 Addison Street, Ste. 303 Carnegie Mellon University
Pittsburgh, PA 15213, USA Haifa, 32000 Isreal Berkeley, CA 94704-1144, USA Pittsburgh, PA 15213, USA

Abstract

Model checking is an automatic technique for verify-

ing sequential circuit designs and protocols. An e�-

cient search procedure is used to determine whether

or not the speci�cation is satis�ed. If it is not sat-

is�ed, our technique will produce a counterexample

execution trace that shows the cause of the prob-

lem. We describe an e�cient algorithm to produce

counterexamples and witnesses for symbolic model

checking algorithms. This algorithm is used in the

SMV model checker and works quite well in prac-

tice. We also discuss how to extend our technique

to more complicated speci�cations.

1 Introduction

Complex state-transition systems occur frequently in the de-
sign of sequential circuits and protocols. During the past ten
years, researchers at Carnegie Mellon University have devel-
oped an alternative approach to veri�cation called temporal

logic model checking [4, 5]. In this approach speci�cations
are expressed in a propositional temporal logic, and circuit
designs and protocols are modeled as state-transition sys-
tems. An e�cient search procedure is used to determine
automatically if the speci�cations are satis�ed by the tran-
sition systems.

One of the most important advantages of model check-
ing over mechanical theorem provers or proof checkers for
veri�cation of circuits and protocols is its counterexample

facility. Typically, the user provides a high level representa-
tion of the model and the speci�cation to be checked. The

model checking algorithm either terminates with the answer
true, indicating that the model satis�es the speci�cation, or

�This research was sponsored in part by the National Science Foun-
dation under Grant No. CCR-9217549, by the Semiconductor Re-
search Corporation under Contract No. 94-DJ-294, and by the Wright
Laboratory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and the Advanced Research Projects Agency (ARPA)
under Grant No. F33615-93-1-1330.

gives a counterexample execution that shows why the for-
mula is not satis�ed. The counterexamples can be essential
in �nding subtle errors in complex designs.

Recently, the capability of model checking techniques has
increased dramatically after the introduction of ordered bi-

nary decision diagrams (OBDDs) [1, 2, 12]. However, �nding
counterexamples is signi�cantly more di�cult when OBDDs
are used in model checking instead of explicit state enumer-
ation techniques, especially when fairness constraints are in-
volved.

In this paper, we describe an e�cient algorithm to pro-
duce counterexamples and witnesses for symbolic model
checking algorithms. The algorithm is, in fact, the one that
is used in the SMV model checker developed at Carnegie
Mellon [12] and works quite well in practice. We show how
the counterexample facility can be used to debug a subtle
asynchronous circuit design. We also discuss how to extend
our technique to more complicated temporal formulas.

A previous paper on debugging under the fairness con-
straints of the type considered in this paper appeared in [9].
They also gave a proof of the NP-completeness of this prob-
lem. However their algorithm is considerably di�erent from
ours and di�erent trade-o�s have been taken. In [9, 10], a
set Fair+- is computed which is a better approximation to
Fair than Fair+, the set used in the present paper. Then the
algorithm �nds the a state q in Fair+- which is nearest to
the initial states and computes SCC(q). It checks to see if
this is fair, i.e satis�es the fairness constraints;if so it builds
a short cycle through q. If not, SCC(q) is eliminated from
Fair+- and the computation is continued. Note that this
algorithm guarantees a shortest path to a fair cycle is found.

On the other hand, our algorithm chooses some state s in
Fair+ and then attempts to build a cycle satisfying all fair-
ness constraints. This algorithm may actually leave the SCC

of s, making the error trace unnecessarily long because a cy-
cle through the �rst state s was missed. In general, in the
method of Hojati/Brayton et al, more computation time is
possible for �nding a short error trace. They in fact guaran-
tee that a shortest path to a fair cycle is found, but at the ex-

pense of computing strongly connected components(SCCs)
for a number of states. The algorithm in the present paper
is possibly faster since no SCC's are computed, but longer
error traces may result. It remains to be determined if these
speed-length trade-o�s are actually seen in practice, since no

comparisons have as yet been done.

Page 1

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

2 The temporal logic CTL

The logic that we use to specify circuits is a propositional
temporal logic of branching time, called CTL or Computa-
tion Tree Logic [5]. Let P be the set of atomic propositions,
then:

1. Every atomic proposition p in P is a formula in CTL.

2. If f and g are CTL formulas, then so are :f , f _ g,
EX f, E[f U g] and EG f .

The semantics of a CTL formula is de�ned with respect
to a labeled state-transition graph. A labeled state-transition
graph is a 5-tuple M = (AP;S;L;N;S0) where AP is a set
of atomic propositions, S is a �nite set of states, L is a
function labeling each state with a set of atomic propositions,
N � S � S is a transition relation, and S0 is a set of initial
states. A computation path is an in�nite sequence of states
s0; s1; s2; . . . such that N(si; si+1) is true for every i.
The propositional connectives : and _ have their usual

meanings of negation and disjunction. The other proposi-
tional operators can be de�ned in terms of these. X is the
nexttime operator: EX f will be true in a state s of M if
and only if s has a successor s0 such that f is true at s0. U
is the until operator: E[f U g] will be true in a state s of
M if and only if there exists a computation path starting in
s and an initial pre�x of the path such that g holds at the
last state of the pre�x and f holds at all other states along
the pre�x. The operator G is used to express the invariance
of some property over time: EG f will be true at a state
s if there is a path starting at s such that f holds at each
state on the path. If f is true in state s of structure M, we
write M; s j= f . A CTL formula f is identi�ed with the
set fsjM; s j= fg of states that make f true. We use the
following syntactic abbreviations for CTL formulas:

� AX f � :EX:f which means that f holds at all suc-
cessor states of the current state.

� EF f � E[true U f] which means that for some path,
there exists a state on the path at which f holds.

� AF f � :EG:f which means that for every path,
there exists a state on the path at which f holds.

� AG f � :EF:f which means that for every path, f
holds in each state on the path.

� A[fU g] � :E[:gU:f ^:g]^:EG:g which means
that for every path, there exists an initial pre�x of the
path such that g holds at the last state of the pre�x

and f holds at all other states along the pre�x.

3 Symbolic Model Checking

Model checking is the problem of �nding the set of states in

a state-transition graph where a given CTL formula is true.
There is a program called EMC (Extended Model Checker)
that solves this problem using e�cient graph-traversal tech-

niques. If the model is represented as a state-transition
graph, the complexity of the algorithm is linear in the size of
the graph and in the length of the formula. The algorithm
is quite fast in practice [4, 5]. However, an explosion in the
size of the model may occur when the state-transition graph

is extracted from a �nite state concurrent system that has
many processes or components.

Ordered binary decision diagrams (OBDDs) are a canon-
ical form representation for boolean formulas [1]. They are
often substantially more compact than traditional normal
forms such as conjunctive normal form and disjunctive nor-
mal form, and they can be manipulated very e�ciently.

In this section, we describe a symbolic model checking al-
gorithm for CTL which uses OBDDs to represent the state-
transition graph. Assume that the behavior of the con-
current system is determined by n boolean state variables
v1; v2; . . . ; vn. The transition relation R(�v; �v0) for the con-
current system is given as a boolean formula in terms of two
copies of the state variables: �v = (v1; . . . ; vn) which repre-
sents the current state and �v0 = (v01; . . . ; v

0

n) which represents
the next state. The formula R(�v; �v0) is now converted to an
OBDD. This usually results in a very concise representation
of the transition relation.

Our model checking algorithm is based on the standard
�xpoint characterizations of the basic CTL operators. A
�xpoint of � : 2S ! 2S is a set S 0 � S such that � (S0) = S 0.
If � is monotonic, it has a �xpoint S0 that is a subset of
every other �xpoint of � . S0 is called the least �xpoint of
� and is denoted by lfpf

�
�(f)

�
. The greatest �xpoint of

� , gfpf
�
�(f)

�
, can be de�ned similarly as the �xpoint of �

that is a superset of all other �xpoints. It can be shown that
the least �xpoint lfpf

�
�(f)

�
is the limit of the sequence of

approximations

False; �(False); �2(False); . . . ; � i(False); . . .

and the greatest �xpoint gfp f
�
�(f)

�
is the limit of the se-

quence of approximations

True; �(True); �2(True); . . . ; � i(True); . . .

When the state-transition graph is �nite, both of these se-
quences are guaranteed to converge in a �nite number of
steps.

Each of the basic CTL operators can be characterized as
a least or greatest �xpoint of some functional � : 2S ! 2S.
In particular, it is shown in [4] that

� E[f U g] = lfpZ
�
g _

�
f ^EXZ

��
, and

� EG f = gfpZ
�
f ^EXZ

�
.

The symbolic model checking algorithm is implemented
by a procedure Check that takes the CTL formula to be
checked as its argument and returns an OBDD that rep-

resents exactly those states of the system that satisfy the
formula. Of course, the output of Check depends on the
system being checked; this parameter is implicit in the dis-
cussion below. We de�ne Check inductively over the struc-
ture of CTL formulas. If f is an atomic proposition vi, then

Check(f) is simply the OBDD for vi. Formulas of the form
EX f , E[f U g], and EG f are handled by the procedures:

Check(EX f) = CheckEX (Check(f));
Check(E[f U g]) = CheckEU(Check(f);Check(g));
Check(EG f) = CheckEG(Check(f)):

Notice that these intermediate procedures take boolean for-
mulas as their arguments, while Check takes a CTL formula

Page 2

as its argument. CTL formulas of the form f _ g or :f
are handled using the standard algorithms for computing
boolean connectives with OBDDs. Since AX f , A[f U g]
and AG f can all be rewritten using just the above opera-
tors, this de�nition of Check covers all CTL formulas.
The procedure for CheckEX is straightforward since the

formula EX f is true in a state if the state has a successor
in which f is true.

CheckEX(f(�v)) = 9�v0
�
f(�v0) ^R(�v; �v0)

�
:

If we have OBDDs for f and R, then we can compute an
OBDD for

9�v0
�
f(�v0) ^R(�v; �v0)

�
:

The procedure for CheckEU is based on the least �xpoint
characterization for the CTL operator EU.

CheckEU (f(�v); g(�v)) = lfpZ(�v)
�
g(�v)_

�
f(�v)^CheckEX (Z(�v))

��
:

In this case we can compute the sequence of approximations

Q0;Q1; . . . ;Qi; . . .

for the least �xpoint as described above. If we have OBDDs
for f , g, and the current approximation Qi, then we can
compute an OBDD for the next approximation Qi+1. Since
OBDDs provide a canonical form of boolean functions, it is
easy to test for convergence by comparing consecutive ap-
proximations. When Qi = Qi+1, this process terminates.
The set of states corresponding to E[f U g] will be repre-
sented by the OBDD for Qi.
CheckEG is similar. In this case the procedure is based on

the greatest �xpont characterization for the CTL operator
EG

CheckEG(f(�v)) = gfpZ(�v)
�
f(�v) ^CheckEX(Z(�v))

�
:

If the OBDD for f is given, then the sequence of approxima-
tions for the greatest �xpoint can be used to compute the
OBDD representation for the set of states that satisfy EG f .

4 Fairness Constraints

Next, we consider the issue of fairness. In many cases, we
are only interested in the correctness along fair computation

paths. For example, if we are verifying an asynchronous cir-
cuit with an arbiter, we may wish to consider only those
executions in which the arbiter does not ignore one of its
request inputs forever. This type of property cannot be
expressed directly in CTL. In order to handle such prop-

erties we must modify the semantics of CTL slightly. A
fairness constraint can be an arbitrary set of states, usually
described by a formula of the logic. A path is said to be fair
with respect to a set of fairness constraints if each constraint
holds in�nitely often along the path. The path quanti�ers

in CTL formulas are then restricted to fair paths. In the
remainder of this section we describe how to modify the al-
gorithm above to handle fairness constraints. We assume
the fairness constraints are given by a set of CTL formulas
H = fh1; . . . ; hng. We de�ne a new procedure CheckFair for

checking CTL formulas relative to the fairness constraints
in H. We do this by giving de�nitions for new intermediate

procedures CheckFairEX , CheckFairEU , and CheckFairEG

which correspond to the intermediate procedures used to de-
�ne Check.

Consider the formula EG f given fairness constraints H.
The formula means that there exists a path beginning with
the current state on which f holds globally (invariantly) and
each formula in H holds in�nitely often on the path. The
set of such states S is the largest set with the following two
properties:

1. all of the states in S satisfy f, and

2. for all fairness constraints hk 2 H and all states s 2 S,
there is a sequence of states of length one or greater
from s to a state in S satisfying hk such that all states
on the path satisfy f .

It is easy to show that if these conditions hold, each
state in the set is the beginning of an in�nite computa-
tion path on which f is always true, and for which every
formula in H holds in�nitely often. Thus, the procedure
CheckFairEG(f(�v)) will compute the greatest �xpoint

gfpZ(�v)
�
f(�v)^

n^

k=1

CheckEX (CheckEU (f(�v);Z(�v)^Check(hk)))
�
:

The �xed point can be evaluated in the same manner as
before. The main di�erence is that each time the above
expression is evaluated, several nested �xed point computa-
tions are done (inside CheckEU).

Checking EX f and E[fU g] under fairness constraints is
simpler. The set of all states which are the start of some fair
computation is

fair(�v) = CheckFair(EGT rue):

The formula EX f is true under fairness constraints in a
state s if and only if there is a successor state s0 such that s0

satis�es f and s0 is at the beginning of some fair computation
path. It follows that the formula EX f (under fairness con-
straints) is equivalent to the formula EX(f ^fair) (without
fairness constraints). Therefore, we de�ne

CheckFairEX (f(�v)) = CheckEX (f(�v) ^ fair(�v)):

Similarly, the formula E[fUg] (under fairness constraints) is
equivalent to the formula E[fU (g^fair)] (without fairness
constraints). Hence, we de�ne

CheckFairEU (f(�v); g(�v)) = CheckEU (f(�v); g(�v) ^ fair(�v)):

5 Counterexamples and Witnesses

One of the most important features of CTL model checking
algorithms is the ability to �nd counterexamples and wit-

nesses. When this feature is enabled and the model checker

determines that a formula with a universal path quanti�er
is false, it will �nd a computation path which demonstrates
that the negation of the formula is true. Likewise, when the
model checker determines that a formula with an existential
path quanti�er is true, it will �nd a computation path that
demonstrates why the formula is true. For example, if the
model checker discovers that the formula AG f is false, it
will produce a path to a state in which :f holds. Similarly,

Page 3

if it discovers that the formula EF f is true, it will produce
a path to a state in which f holds. Note that the counterex-
ample for a universally quanti�ed formula is the witness for
the dual existentially quanti�ed formula. By exploiting this
observation we can restrict our discussion of this feature to
�nding witnesses for the three basic CTL operators EX, EG,
and EU.

We start by considering the complexity of �nding a good
witness for the formula EG f under the set of fairness con-
straints H = fh1; . . . ; hng. We will identify each hi with the
set of states that make it true. Given a state s satisfying
EG f , we must exhibit a path � starting with s, such that
f holds at each state, and every fairness constraint h 2 H is
satis�ed in�nitely often along the path �. Since the witness
is an in�nite path, we must �nd a �nite representation for
it. It is easy to see that a witness can always be found that
consists of a �nite pre�x followed by a repeating cycle. Each
fairness constraint hi is satis�ed at least once on the cycle.
Such a path is called a �nite witness. The length of a �nite
witness is de�ned as the total length of the pre�x and the
cycle. It is desirable to �nd a �nite witness with minimal
length; however, this problem is NP-complete.

Theorem:If fairness constraints are permitted, �nding a
�nite witness with minimal length for the formula EGTrue
is NP-complete.

Proof: It is relatively easy to see that this problem in NP.
Finding a Hamiltonian cycle for a directed graph is known
to be an NP-complete problem. Thus, it is su�cient to
prove that the Hamiltonian cycle problem can be reduced
to the minimal �nite witness problem. Consider an instance
of the Hamiltonian cycle problem for a directed graph with n
nodes. This graph is treated as a state-transition graph and
the set of fairness constraints H = fh1; . . . ; hng is selected
so that each state satis�es a distinct fairness constraint. On
any �nite witness, each state must appear at least once on
the cycle; hence, the length of the �nite witness must be
at least n. The length of the minimal �nite witness is n

if and only if the n states on the path form a Hamiltonian
cycle. Thus, the Hamiltonian cycle problem reduces to �nd-
ing a minimal �nite witness and checking if this path has

length n. This reduction can be performed in polynomial
time. Consequently, the minimal �nite witness problem is

also NP-complete. 2

Although we are unable to �nd the minimal �nite wit-
ness easily, we still want to obtain a �nite witness that is as
short as possible. In order to accomplish this task, we will
need to examine the strongly connected components of the
transition graph determined by the Kripke structure. We

will say that two states s1 and s2 are equivalent if there is a
path from s1 to s2 and also from s2 to s1. We will call the
equivalence classes of this relation strongly connected compo-

nents(SCCs). We can form a new graph in which the nodes
are the SCCs and there is an edge from one SCC to another

if and only if there is an edge from a state in one to a state
in the other. It is easy to see that the new graph does not
contain any proper cycles, i.e., each cycle in the graph is con-
tained in one of the SCCs. Moreover, since we only consider
�nite Kripke structures, each in�nite path must have a suf-

�x that is entirely contained within a SCC of the transition
graph.

Recall that the set of states that satisfy the formula EG f

with the fairness constraints H is given by the formula

gfpZ
�
f ^

n^

k=1

EX(E[f U Z ^ hk])
�

(1)

For brevity, we will use EG f to denote the set of states that
satisfy EG f under the fairness constraints H. We construct
the witness path incrementally by giving a sequence of pre-
�xes of the path of increasing length until a cycle is found.
At each step in the construction we must ensure that the
current pre�x can be extended to a fair path along which
each state satis�es f. This invariant is guaranteed by mak-
ing sure that each time we add a state to the current pre�x,
the state satis�es EG f .

First, we evaluate the above �xpoint formula. In every
iteration of the outer �xpoint computation, we compute
a collection of least �xpoints associated with the formulas
E[f U Z ^ h], for each fairness constraint h 2 H. For every
constraint h, we obtain an increasing sequence of approxi-
mations Qh

0 ;Q
h
1 ;Q

h
2 ; . . ., where Q

h
i is the set of states from

which a state in Z ^ h can be reached in i or fewer steps,
while satisfying f . In the last iteration of the outer �xpoint
when Z = EG f , we save the sequence of approximations
Qh for each h in H.

Now, suppose we are given an initial state s satisfying
EG f . Then s belongs to the set of states computed in
equation (1), so it must have a successor in E[fU(EG f)^h]
for each h 2 H. In order to minimize the length of the
witness path, we choose the �rst fairness constraint that
can be reached from s. This is accomplished by testing the
saved sets Qh

i for increasing values of i until one is found that
contains some successor t of s. Note that since t 2 Qh

i , it has
a path to a state in (EG f) ^ h and therefore t is in EG f .
If i > 0, we �nd a successor of t in Qh

i�1. This is done by
�nding the set of successors of t, intersecting it with Qh

i�1,
and then choosing an arbitrary element of the resulting set.
Continuing until i = 0, we obtain a path from the initial
state s to some state in (EG f) ^ h. We then eliminate h

from further consideration, and repeat the above procedure

until all of the fairness constraints have been visited. Let s0

be the �nal state of the path obtained thus far.
To complete a cycle, we need a non-trivial path from s0 to

the state t along which each state satis�es f . In other words,
we need a witness for the formula fs0g ^ EXE[f U ftg]. If
this formula is true, we have found the witness path for s.
If the formula is false, there are several possible strategies.
The simplest is to restart the procedure from the �nal state

s0. Since fs0g^EXE[fUftg] is false, we know that s0 is not
in the SCC of f containing t, however s0 is in EG f . Thus,
if we continue this strategy, we must descend in the directed
acyclic graph of SCCs, eventually either �nding a cycle �,
or reaching a terminal SCC of f . In the latter case, we are
guaranteed to �nd a cycle, since we cannot exit a terminal
SCC.

A slightly more sophisticated approach would be to pre-
compute E[(EGf)U ftg]. The �rst time we exit this set,
we know the cycle cannot be completed, so we restart from

that state. Heuristically, these approaches tend to �nd short
counterexamples (probably because the number of SCCs

Page 4

C2

C1

C3

C4

OR3ME

UA1

UR1

UR2

UA2

SA

SA

MEO1

MEO2 UR2

UR1
SR

TR1 TA1

TR2 TA2

MEI1

MEI2

AND1

AND2

OR2

OR1

Figure 1: An asynchronous arbiter

tends to be small), so no attempt is made to �nd the shortest
cycle.

The witness procedure forEG f under fairness constraints
H can be used to extend witnesses for E[fUg] and EX f to
in�nite fair paths. Let fair be the set of states that satisfy
EGT rue under the fairness constraints H. We can compute
E[fUg] under H by using the standard CTL model checking
algorithm (without fairness constraints) to compute E[f U
(g ^ fair)]. Similarly, We can compute EX f by using the
standard CTL model checking algorithm to compute EX(f^
fair).

In order to test the procedure for �nding counterexamples
when fairness constraints are used, we have examined an er-
ror in an arbiter design originally developed by Seitz [13].
The circuit is shown in Figure 1; it is designed to be speed in-
dependent, which means that each gate can take an arbitrar-
ily long time to respond to its inputs. Fairness constraints
are used to ensure that every gate eventually responds.

An attempt was made to verify the circuit using an ex-
plicit state model checker [6]. However, the attempt failed
because the number of states was too large. In order to
complete the veri�cation, one of the input devices had to be
disabled. By using symbolic model checking techniques, we

are able to verify the original circuit without using any sim-
plifying assumptions. The model contains 33,633 reachable
states, and the entire veri�cation takes only a few minutes.

We have veri�ed several liveness properties which re-
quire that each request signal inevitably leads to an ac-
knowledgement signal. Such properties can be easily rep-

resented by CTL formulas with the form AG(r ! AFa),
where r represents a request and a represents an acknowl-

edgment. An error was discovered when the speci�cation

AG(tr1 ! AF ta1) was checked. The algorithm given ear-
lier in this section found a counterexample that was sev-

enty eight states long and had a cycle with length thirty.
The counterexample showed that the following execution se-
quence was possible. The circuit could reach a state where

every node was low except meo1 if the ME element took a
long time to respond. When ur1 was issued, tr1, ta1, sr,
sa and ua1 became true consecutively. Because of the long
delay of the OR1 gate, mei1 remained low. Eventually, the
ME element responded to its inputs and set meo1 low. This

caused tr1 and ta1 to become low. Next, OR1 responded and
mei1 became high. Then, the ME element and the AND1

gate caused tr1 to become high again while ta1 continued to
be low. In this state, the formula tr1 ! AF ta1 was false.
Since ua1 was already high, ur1 could become low. This
caused tr1 to become low. The counterexample showed that
ur1 was always low. Therefore, ta1 remained low as well. A
correction for the error was proposed in [6], but will not be
discussed here.

6 Counterexamples and Witnesses for

CTL* Formulas

In the previous sections, we described how to perform model
checking and �nd counterexamples or witnesses for CTL for-
mulas. However, some temporal properties that are impor-
tant for reasoning about sequential circuit designs and pro-
tocols cannot be expressed by CTL formulas. In these cases,
an extension of CTL, called CTL*, is often used. There are
two types of formulas in CTL*: state formulas (which are
true in a speci�c state) and path formulas (which are true
along a speci�c path). As before, let AP be the set of atomic
propositions. The syntax of state formulas is given by the
following rules:

� If p 2 AP , then p is a state formula.

� If f and g are state formulas, then :f and f _ g are
state formulas.

� If f is a path formula, then E(f) is a state formula.

Two additional rules are needed to specify the syntax of path
formulas:

� If f is a state formula, then f is also a path formula.

� If f and g are path formulas, then :f, f _ g, X f, and
f U g are path formulas.

CTL� is the set of state formulas generated by the above
rules. The logical connectives : and _ have their usual
meaning. The formula E(f) is true in a state when there

exists a path from the state such that f holds along the
path. Let � = s0; s1; . . . be a path. We use �i to denote

the su�x of � starting at si. A state formula holds along
� when it is true in the �rst state s0. X f holds along �

when f holds along �1. Finally, the formula f U g holds
along � when there exists a k � 0 such that g holds on �k

and f holds along every �j where 0 � j < k. The following

abbreviations are used in writing CTL� formulas:

� f ^ g � :(:f _ :g) � F f � trueU f

� A(f) � :E(:f) � G f � :F:f

In general, model checking is very expensive for CTL* for-
mulas. However, for a large class of formulas which have the
form E

Wn

i=1

Vni

j=1
(GF pij_FG qij), e�cient model checking

algorithms exist [7]. Because

E

n_

i=1

ni^

j=1

(GF pij _FG qij) =

n_

i=1

E

ni^

j=1

(GF pij _FG qij);

Page 5

it is su�cient to check formulas having the form
E
V

n

j=1
(GFpj _ FG qj). A �xed point characterization for

these formulas is given in [7]

E

n^

j=1

(GF pj _FG qj)

= EFgfpY
� n^

j=0

((qj ^EX Y) _EXE[Y U (pj ^ Y)])
�
:

By performing a computation that is similar to the one de-
scribed in Section 4, we are able to check the restricted class
of CTL* formulas mentioned above. The problem of �nding
witnesses for these formulas is more complicated. Suppose
that we want �nd a witness for s0 j= E

V
n

j=1
(GF pj_FG qj).

It is easy to see that

E

n^

j=1

(GF pj _FG qj)

= E

n�1^

j=1

(GFpj _FG qj) ^GF pn

_E

n�1^

j=1

(GFpj _FG qj) ^FG qn:

Consequently, if s0 j= E
V

n�1

j=1
(GF pj _ FG qj) ^ FG qn, it

is su�cient to �nd a witness for this formula; otherwise,
a witness must exist for E

V
n�1

j=1
(GF pj _ FG qj) ^GF pn.

If we continue this process for the remainder of the for-
mula, we will eventually obtain a formula which has the form
EFG qi1 ^ . . .^FG qi

k
^GF pj1 ^ . . .^GF pj

n�k
. Because

E(FG qi1 ^ . . . ^FG qi
k
^GF pj1 ^ . . . ^GF pj

n�k
)

= EFEG(qi1 ^ . . . ^ qi
k
^F pj1 ^ . . . ^F pj

n�k
);

this formula is true if and only if the CTL formula EG(qi1 ^
. . .^qi

k
) is true under the fairness constraints pj1 ; . . . ; pjn�k .

A witness can be computed in exactly the same manner as
in the last section.

7 Directions for Future Research

In this paper, we have described an e�cient technique
for generating counterexamples and witnesses for symbolic
model checking algorithms. However, when the number of

reachable states is very large, the counterexample can still
be very long. Techniques for generating even shorter coun-
terexamples will make symbolic model checking more useful
in practice.
Finding a counterexample can sometimes take most of the

execution time required for model checking. Additional re-
search is needed to develop more e�cient algorithms. This
is particularly important because the model checking algo-
rithm may need to be invoked several times in order to �nd
the witness for a CTL* formula.

Another problem with the counterexample generated by
the model checker is that it is sometimes hard to read. A
more readable form will be helpful to engineers who are not
familiar with model checking.

References

[1] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transactions on Computers,
C-35(8), 1986.

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang. Symbolic model checking: 1020 states
and beyond. Information and Computation, 98(2):142{
170, June 1992.

[3] E. M. Clarke, I. A. Draghicescu, and R. P. Kurshan.
A uni�ed approach for showing language containment
and equivalence between various types of !-automata.
In A. Arnold and N. D. Jones, editors, Proceedings of
the 15th Colloquium on Trees in Algebra and Program-

ming, volume 407 of Lecture Notes in Computer Sci-

ence. Springer-Verlag, May 1990.

[4] E. M. Clarke and E. A. Emerson. Synthesis of synchro-
nization skeletons for branching time temporal logic. In
Logic of Programs: Workshop, Yorktown Heights, NY,

May 1981, volume 131 of Lecture Notes in Computer

Science. Springer-Verlag, 1981.

[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Au-
tomatic veri�cation of �nite-state concurrent systems
using temporal logic speci�cations. ACM Transactions

on Programming Languages and Systems, 8(2):244{263,
1986.

[6] D. L. Dill and E. M. Clarke. Automatic veri�cation of
asynchronous circuits using temporal logic. IEE Pro-

ceedings, Part E 133(5), 1986.

[7] E. A. Emerson and C.-L. Lei. E�cient model check-
ing in fragments of the propositional mu-calculus. In
Proceedings of the First Annual Symposium on Logic in

Computer Science. IEEE Computer Society Press, June
1986.

[8] Z. Har'El and R. P. Kurshan. Software for analyti-
cal development of communications protocols. AT&T

Technical Journal, 69(1):45{59, Jan.{Feb. 1990.

[9] R. Hojati, R. K. Brayton, and R. P. Kurshan. BDD-
based debugging of designs using language containment
and fair CTL. Proceedings of the 5th international con-

ference on computer aided veri�cation, June, 1993.

[10] R. Hojati, V. Singhal, and R. K. Brayton, Edge-
Streett/Edge-Rabin Automata Environment for Formal

Veri�cation Using Language Containment. Memoran-

dum No. UCB/ERL M94/12, UC Berkeley, 1994.

[11] R. P. Kurshan. Analysis of discrete event coordination.
In J. W. de Bakker, W.-P. de Roever, and G. Rozen-
berg, editors, Proceedings of the REX Workshop on

Stepwise Re�nement of Distributed Systems, Models,

Formalisms, Correctness, volume 430 of Lecture Notes

in Computer Science. Springer-Verlag, May 1989.

[12] K. L. McMillan. Symbolic Model Checking: An Ap-

proach to the State Explosion Problem. PhD thesis,
Carnegie Mellon University, 1992.

[13] C. L. Seitz. Ideas about arbiters. Lambda, 10(4), 1980.

Page 6

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

