
E�cient OBDD-Based Boolean Manipulation in CAD

Beyond Current Limits

Jochen Bern Christoph Meinel Anna Slobodov�a�

FB IV { Informatik,
Universit�at Trier,

D{54 286 Trier, Germany

Abstract| We present the concept of TBDD's
which considerably enlarges the class of Boolean func-
tions that can be e�ciently manipulated in terms of
OBDD's. It extends the idea of using domain trans-
formations, which is well-known in many areas of
mathematics, physics, and technical sciences, to the
context of OBDD{based Boolean function manipula-
tion in CAD: Instead of working with the OBDD-
representation of a function f , TBDD's allow working
with an OBDD-representation of a suited cube trans-
formed version of f .
Besides of giving some theoretical insights into the

new concept, we investigate in some detail cube trans-
formations which are based on complete types. We

� show that such TBDD{representations can be de-
rived similarly as OBDD{representations,

� give evidence of the practical importance of such
TBDD's by presenting very small-size TBDD-
representations of the hidden weighted bit functions
HWBn which were proved to have only very large
OBDD-representations, and

� report some promising experimental results with
some ISCAS benchmark circuits including the
multiplier circuit C6288.

I. Introduction

One of the fundamental problems in computer-aided cir-
cuit design and other areas of practical and theoretical
computer science is the task of representing and manip-
ulating Boolean functions. Although, in principle, any
valid representation is allowed, some representations may
be preferred because they are more e�cient in memory,
or more e�cient to manipulate, or more indicative of
the complexity of the �nal implementations. Hence, the

�Granted by DFG Me 1077/2-1

search for good trade-o�s between these competing ob-
jectives { space-e�cient representation of the considered
functions and time-e�cient manipulation algorithms { is
a central theme of research [e.g. Bry86, Kar89, BCMD90,
JBAF92, GM93, BGMS94].
Developing the concept of TBDD's, we show that

the use of domain transformation, well-known in many
areas of mathematics, physics, and technical sciences
(e.g., Fourier transformation, Laplace transformation, Z-
transformation), can be applied successfully in the con-
text of Boolean function manipulation in CAD, too. The
idea behind is to work with the OBDD-representation of
a suited cube transformed version of a function instead
of working with the OBDD{representation of the original
function itself.
There are two main advantages of such TBDD{

representations. First, TBDD's allow Boolean func-
tion manipulation in terms of the well{known and well{
comprehended data structure of OBDD's with all its nice
features (see e.g. [Bry92]). Second, TBDD's can lead to
function representations which are often much more com-
pressed than OBDD{representations. Hence, the main
disadvantage of Boolean function manipulation in terms
of OBDD's { which consists in the often very extensive
space requirements of OBDD's { is considerably reduced.
Besides of giving some theoretical insights into the new

concept, we investigate cube transformations which are
based on complete types [BGMS94]. In detail, we show
that TBDD{representations can be derived similarly as
OBDD{representations. Then we give evidence of the im-
portance of the TBDD concept by presenting constant{
size TBDD-representations of the hidden weighted bit
functions HWBn; n 2 IN; which were proved to have
only exponential size OBDD-representations. Finally, we
report some promising experimental results with some IS-
CAS benchmark circuits including the multiplier circuit
C6288.

II. Preliminaries

As usual let IBn = ff : f0; 1gn ! f0; 1gg denote the
Boolean algebra of all single output functions over the
cube f0; 1gn.

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

De�nition. A cube transformation � is a bijective
mapping � : f0; 1gn! f0; 1gn.

A cube transformation � induces a mapping �� : IBn !

IBn onto the Boolean algebra with �� (f)(a) = f �� (a) for
each a = (a1; : : : ; an) 2 f0; 1gn.

Fact 1. If � is a cube transformation, then �� de�nes
an automorphism on IBn.
I.e., we have

1. f = g if and only if �� (f) = �� (g), for each f; g 2
IBn.

2. Let � be any binary operation on IBn. If f = f1 � f2
for any f1; f2 2 IBn then �� (f) = �� (f1) ��� (f2). 2

To make notations as simple as possible, we shortly
write � (f) instead of �� (f).
We use cube transformations in order to obtain func-

tions that can be represented much more succinct than
the original one. The function representations we work
with are the well-known OBDD's. OBDD's, introduced
by Bryant [Bry86] as data structure for Boolean func-
tion manipulation, have obtained great importance. Due
to their nice algorithmic properties, they provide nowa-
days the state-of-the-art data structure in many areas of
computed-aided circuit design. (For a survey, we refer to
[Bry92].) We will consider OBDD's that test variables in
the natural order.

De�nition. A binary decision diagram (BDD) over a
set Xn = fx1; : : : ; xng of Boolean variables is a directed
acyclic graph with one source and at most two sinks la-
belled 0 and 1. Each non-sink node v is labelled with a
Boolean variable from Xn and has two outgoing edges, one
labelled with 0 and the other with 1. The then{son of v is
reached via the 1{edge, the else{son is reached via the 0{
edge. (In pictural representations, we do not indicate the
edge labels if the 0-edge is drawn left of the 1-edge.) The
computation path for an input a = (a1; : : : ; an) starts at
the source. At an inner node with label xi, the outgoing
edge with label ai is chosen. size(P) denotes the number of
non-sink nodes of P . A BDD P represents a Boolean func-
tion f 2 IBn if the computation path for each input a leads
to the sink labelled f(a). f is sometimes denoted by fP . A
BDD is called ordered binary decision diagram (OBDD)
if, on each path, the variables are tested consistently with
the natural order of variables, i.e., x1 < x2 < : : : ; < xn.

Fact 2 [Bry86].

1. Each Boolean function f over Xn can be represented
by means of an OBDD, i.e., OBDD's provide a uni-
versal representation scheme.

2. The reduced OBDD for f is uniquely determined, i.e.,
it provides a canonical representation.

3. Let f1; f2 be Boolean functions represented by the
OBDDs P1; P2, respectively. For every binary opera-
tion �, the reduced OBDD P for f = f1 � f2 can be
constructed in time O(size(P1) � size(P2)): 2

III. The TBDD{Concept

Combining appropriate cube transformations with the
OBDD's, we simultaneously are able to exploit the nice
features of OBDD's as summarized in Fact 2 and to in-
crease the succinctness of the representation. The result-
ing data structure is called TBDD.

De�nition. Let f 2 IBn be a Boolean function, and
let � be a cube transformation � : f0; 1gn ! f0; 1gn. A
�TBDD{representation of f (shortly called a �TBDD or,
simply, TBDD) is an OBDD-representation P of � (f).
(I.e. fP (a) = � (f)(a) = f � � (a) for each a 2 f0; 1gn.)

x f(x) � (x) � (f)(x)

(0; 0; 0) 0 (0; 0; 0) 0
(0; 0; 1) 0 (0; 0; 1) 0
(0; 1; 0) 1 (0; 1; 0) 1
(0; 1; 1) 1 (0; 1; 1) 1
(1; 0; 0) 0 (1; 0; 0) 0
(1; 0; 1) 1 (1; 1; 0) 0
(1; 1; 0) 0 (1; 0; 1) 1
(1; 1; 1) 1 (1; 1; 1) 1

? ?
�

��=
Z
ZZ~

�
�/

J
Ĵ

�

J
Ĵ

f � (f)

x1

x2 x3

0 1

y2

0 1

(a) (b)

Figure 1. A cube transformation � on f0; 1g3 to-
gether with an OBDD{representation (a) and a �TBDD{
representation (b) of f = x1x2 + x1x3.

The properties of OBDD's (Fact 2) together with the
fact that cube transformations induce automorphisms of
IBn (Fact 1) provide the following properties of TBDD's.

Theorem 3. Let f; f1; f2 2 IBn be Boolean functions,
and let � be a cube transformation onto f0; 1gn.

1. Universality of TBDD{representation.
Each Boolean function f 2 IBn can be represented by
means of a (reduced) �TBDD.

2. Canonicity of TBDD{representation.
Each Boolean function f 2 IBn has exactly one re-
duced �TBDD{representation, i.e., TBDD's provide
a canonical representation scheme.

3. E�cient synthesis of TBDD's.
Let T1; T2 be �TBDD{representations of f1; f2. Then,
for any binary operation �, the (reduced) �TBDD-
representation T of f = f1 �f2 corresponds to T1 �T2
and, therefore, can be constructed in time O(size(T1)�
size(T2)).

4. E�cient equivalence test for TBDD's.
Let T1; T2 be �TBDD's for f1; f2. The equivalence
of the functions f1 and f2 corresponds to the equiv-
alence of � (f1) and � (f2), which in turn corresponds
to the functional equivalence of the OBDD's T1 and
T2. Therefore, it can be tested in linear time.

The universality of TBDDs, i.e., their ability to repre-
sent any Boolean function, is an important property. How-
ever, it remains still insu�cient if the representations are
too large. The power of the cube transformation approach
comes { at least theoretically { to a full expression by the
statement that each function over Xn can be transformed
into a function (de�ned in the same number of variables)
whose OBDD{representation is of size n.

Proposition 4. For any Boolean function f 2 IBn,
there exists a TBDD-representation of size n.
Proof. Let k =]on(f), and consider the inputs

a 2 f0; 1gn as binary representations of the numbers
0; : : : ; 2n�1. Let � be the bijection that maps the strings
representing the numbers 0; : : : ; k � 1 to the inputs of
on(f). Then � (f) can be represented by an OBDD that
merely has to test whether the input is smaller than k (in
this case � (f) computes 1) or not (in this case � (f) com-
putes 0). Since such a test can be performed by an OBDD
of size n we are done. 2

However, we should not carelessly overestimate the
practical consequences of this result. It can be di�cult to
�nd, and even to store and manipulate an optimal cube
transformation for a given f . Nevertheless, our experi-
ments show a great advantage of TBDD's even if we work
with non-optimal cube transformations.
We conclude this section by giving a rough sketch

how to make use of the TBDD{concept in practical ap-
plications. In order to do this, let us remember how
OBDD's are used in one of their favorite applications,
namely in combinational circuit veri�cation. Starting
with a net-list description of two (single output) circuits
C and C0, we (try to) show that C and C0 compute
the same function (i.e. fC = fC0) by comparing their
OBDD{representations PC and PC0 . The canonicity of
the OBDD{representation implies fC = fC0 i� PC = PC0 .
The OBDD{representation of a circuit C (more exactly of
the function fC computed by C) is constructed by \sym-
bolic simulation" of C: Starting with the (trivial) OBDD{
representations of the input variables x1; : : : ; xn, one suc-
cessively constructs OBDD's for each gate g of C from
the OBDD's of the predecessor gates of g by applying
the operation associated with g. Unfortunately, for many
even relatively simple circuits, it is practically impossible
to construct OBDD{representations because of their huge
sizes.
Due to Fact 1 and Theorem 3, we can work with the

transformed functions in a similar way as with the orig-
inal ones: In order to prove that two circuits C and C 0

are functionally equivalent, it su�ces to show that the
reduced TBDD{representations TC and TC0 of fC and
fC0 (i.e., the OBDD{representations of � (fC) and � (fC0))

are functionally equivalent (Fact 1.1). Since the map-
ping on IBn induced by a cube transformation � is an
automorphism (Fact 1.2), due to Theorem 3, the desired
TBDD{representations (i.e., the OBDD's of the trans-
formed functions) can be computed exactly in the same
way as described above: One generates �TBDD's for the
variables x1; : : : ; xn and derives (now within an OBDD{
environment) the �TBDD's of fC and fC0 by symbolic
simulation of C and C0, respectively. Indeed, with excep-
tion of the �rst step this can be done by means of any
available OBDD package.

IV. Type{based TBDD's

To give an example of the practicability and importance
of the TBDD{concept, we now consider a class of cube
transformations that can be handled quite easily { the
cube transformations de�ned via complete types.

A. Cube Transformations De�ned by Complete Types

De�nition. A complete type � over Xn is de�ned like
a BDD with two exceptions. First, it has only one sink.
Second, on each source-to-sink path, each variable of Xn

occurs exactly once.

We note that linear orderings provide special, and very
simple structured complete types. A more interesting ex-
ample is shown in Figure 2. For n = 7, it shows a type
�n.
With the help of complete types, we may de�ne cube

transformations: Let � be a complete type. Then each
assignment a = (a1; : : : ; an) 2 f0; 1gn of Xn de�nes a
uniquely determined source-to-sink path p�(a). �a(i) de-
notes the index of the variable tested on p�(a) in the i-th
position. The cube transformation �� : f0; 1gn ! f0; 1gn

is de�ned by

��(a1; : : : ; an) = (a�a(1); : : : ; a�a(n)):

Proposition 5. Let � be a complete type over Xn.
Then �� de�nes a cube transformation of f0; 1gn.
Proof. Since � is a complete type, the mapping �� is

fully de�ned. In order to show that �� is a cube transfor-
mation, it su�ces to show that �� is injective. Let a; b 2
f0; 1gn with ��(a) = ��(b), and, hence, a�a(i) = b�b(i) for
all i; 1 � i � n. In order to prove that �� is injective
it su�ces to prove �a(i) = �b(i) for all i. Since, due to
the de�nition, �c(1) = �d(1) for any c; d 2 f0; 1gn from
a�a(1) = b�b(1) we get �a(2) = �b(2). Next, a�a(2) = b�b(2)
implies �a(3) = �b(3). The assertion now follows by in-
duction. 2

Note that any ordering of the variables de�nes a cube
transformation that merely permutes the set of variables.
However, in general, complete types de�ne much more
sophisticated cube transformations which permute argu-
ments according to their values.

B. Circuit Veri�cation with Type-based TBDDs

The usability of TBDD's as a tool for circuit veri�cation
was already mentioned in the previous section, where the
general approach of symbolic simulation was discussed,
too. Now we describe the �rst phase of this procedure
{ the transformation of the variables { in the case where
the cube transformation is de�ned by a complete type:
Let C be a circuit, and let � be a complete type over Xn

chosen to represent C as a ��TBDD. The idea behind the
construction of the (reduced) ��TBDD's for the variables
xi 2 Xn (i.e., OBDD's for the transformed variables) is
the following: All nodes below the nodes labeled with xi
are redundant and can be removed. We add a 1-sink as the
right and a 0-sink as the left successor of the leaves. Then
we relabel the remaining variables with new variables in-
dexed by the respective level number, which is de�ned as
the distance from the source, incremented by 1. Finally,
by means of the usual reduction rules, we reduce nodes
that have become redundant or equivalent in the course
of the construction.
Algorithm 1 presents a pseudocode which implements

this idea.

Algorithm 1.
input:

i; 1 � i � n,
� { a complete type over Xn

output:

��TBDD(xi) over Yn = fy1; :::; yng,
where � is a cube transformation
induced by �.
begin

xi := transform step(i; 1; X;�);
clear mark below(�);

end

transform step(i; r;M; t);
/* a node of a TBDD or a type is represented by a
triple (label, then son, else son) */
begin

if M = ; return UNDEFINED;
if marked(t) then return result(t);
set mark(t);
let t = (x; t1; t0);
if xi 2M n fxg then

f1 := transform step(i; r + 1;M n fxg; t1);
f0 := transform step(i; r + 1;M n fxg; t0);
reduce and return(yr; f1; f0);

else if xi 6= x then return UNDEFINED;
else reduce and return(yr; 1; 0);

end

The complexity analysis of Algorithm 1 yields the fol-
lowing estimation:

Proposition 6. Let � be a complete type over Xn,
and let Pi; 1 � i � n; be the reduced ��TBDD's of the
variables. Each Pi has at most size size(�), and can
be constructed in linear time and space, with respect to
size(�). 2

The algorithm is implemented in TrusT{ an environ-
ment developed at the University of Trier for BDD{based
Boolean function manipulation. For the experiments, the
packages of Brace, Rudell, and Bryant [BRB90], and Long
were used.

C. Experiments with HWB-Functions

The hidden weighted bit functions HWBn 2 IBn; n 2 IN;
discussed by Bryant in [Bry91] provide classical exam-
ples of those functions which need necessarily exponential
size OBDD's. Let a = (a1; a2; : : : ; an) 2 f0; 1gn, and let
wt(a) =

P
n

i=1 ai be the weight of a. Then, HWBn(a) is
de�ned by

HWBn(a) =

�
awt(a) if wt(a) > 0
0 otherwise.

Fact 6. [Bry91] The OBDD{representation of HWBn

is of exponential size even if we allow any variable order-
ing. 2

While, due to Fact 6, it is impossible to represent
HWBn in terms of small OBDD's, we experimentally
show that there are very small type{based TBDD{
representations of HWBn: In order to do this we start
with the complete types �n, whose construction is shown
in Figure 2, and consider the cube transformation ��n
de�ned by this type. Then, by means of Algorithm
1, we compute the reduced ��nTBDD's of the variables
xi; 1 � i � n (i.e., the OBDD's of the transformed vari-
ables yi). Now the TBDD-representation of HWBn can
be derived by symbolic simulation of any circuit that com-
putes HWBn. In our experiments, we have used a circuit
that was designed in accordance with that one proposed
by Bryant in [Bry91].
Table 1 summarizes the results of a comparison between

the sizes of the ��nTBDD-representations of HWBn; n =
2k; 2 � k � 5; and the sizes of the OBDD{representations
obtained with SIS, which gives overwhelming evidence of
the computational advantages of TBDD's in comparison
with OBDD's. For the sake of completeness, we also give
the sizes of the types which play a crucial role in Algorithm
1. (Note that the types have to be present in the memory
merely in the phase of constructing the TBDD's for the
variables.)

D. Experiments with Some ISCAS85 Benchmark Cir-
cuits

Table 2 summarizes some experiments with ISCAS bench-
mark circuits. We compared the sizes of OBDD{
representations (generated with respect to the order
heuristic used in SIS) and the time needed to generate
these OBDD's with the sizes of TBDD-representations

TABLE 1

Comparison of the TBDD{sizes and the OBDD{sizes of

the HWBn function. For sake of completeness, the

sizes of the corresponding types �n are also shown.

n = 2k 22 23 24 25

Size of OBDD (SIS) 4 31 536 58,260
Max. Universe 13 75 701 126,246
Time (s) 0 0 0.4 55.3

Size of Type �n 10 50 226 962

Size of �nTBDD 1 1 1 1
Max. Universe 21 287 4,739 61,586
Time 0 0 0.3 12.4

TABLE 2

Comparing resources needed for OBDD-representa-

tions and for TBDD-representations, respectively, of

some ISCAS{benchmark circuits

Circuit OBDD (SIS) TBDD (Types of [BGMS94])
Size Univ. Time Size M. Univ. Time

c1908 23,854 45,159 9.3 11,967 22,244 4.1
c2670 | | | 1,013,035 1,177,519 474.4
c3540 | | | 107,773 243,265 53.4

115,764 239,355 60.0
c432 31,291 124,587 11.2 15,753 39,807 3.9
c5315 64,539 85,238 20.0 17,365 19,475 10.6
c6288:
5672gat | | | 106,937 616,922 245.8
5971gat | | | 269,481 1,597,388 601.4
lower13 | | | 381,804 324,067 92.3

c880 24,893 26,172 3.1 8,026 12,404 1.6
s35932 | | | 5,708 14,645 203.5

6,193 11,851 201
s5378 5,487 7,535 9.5 4,144 62,594 15.8
s838.1 15,990 31,538 2.7 893 5,997 0.9

959 3,731 0.7
s9234.1 | | | 20,936 76,155 17.2

(generated with respect to certain type heuristics de-
scribed in [BGMS94]1) and the time needed to generate
these TBDD's.

E. Experiments with the ISCAS85 Multiplier C6288

As a further practical test for the capabilities of type{
based TBDD's, we addressed the problem of represent-
ing the multiplier C6288 from the ISCAS85 benchmark
circuits in a computer with relatively tight memory and
CPU limits. We considered n�n multipliers, 8 � n � 13;
derived from the 16 � 16 Multiplier C6288 by �xing the
most signi�cant inputs to 0.
Table 3 shows the results we have obtained experiment-

ing with a very simple complete type �c. Since this type
was almost a linear type, the obtained improvements were
merely moderate. Nevertheless, they show that it is use-

1Note that the TBDD's generated with the types of [BGMS94]
are generally di�erent from the FBDD's generated by means of these
types.

TABLE 3

Comparing resources needed for OBDD-representa-

tions and for TBDD-representations for some n � n

multipliers obtained from ISCAS85{benchmark circuit

C6288

Multiplier OBDD (SIS) TBDD
Size Size Time Size Time
8x8 16,696 10.4 11,957 12.7
9x9 51,878 37.6 35,262 44.2
10x10 159,277 131.1 97,518 139.2
11x11 492,740 435.9 287,459 447.9
12x12 1,513,078 1495.3 869,292 1635.1
13x13 | | 2,652,972 * a

aRun on di�erent hardware.

ful in this case, too, to work with TBDD{representations
instead of OBDD{representations.

Conclusions

We introduce the concept of TBDD's which consider-
ably enlarges the class of Boolean functions that can be
e�ciently manipulated in terms of small size OBDD's.
Instead of working with the OBDD-representation of
a function f , TBDD's allow to work with an OBDD-
representation of a suited cube transformed version of
f . Besides of giving some theoretical insight into the
computational power of the TBDD{concept, we investi-
gate in this paper cube transformations which are based
on complete types. First, we show that circuits can be
symbolically simulated in terms of such TBDD's simi-
larly as in terms of OBDD's. Second, we give some evi-
dence of the practical importance of such TBDD's by pre-
senting constant-size TBDD-representations of the hidden
weighted bit functions HWBn which were proved to have
no small OBDD-representations. Finally, we report some
promising experimental results with ISCAS85 benchmark
circuits including the multiplier circuit C6288. However,
in order to be able to make full use of the computational
capabilities of type-based TBDD's, more insight into the
problem of constructing suited complete types is needed.

Acknowledgments

We would like to thank Jordan Gergov for his very moti-
vating remarks in our seminal discussions about the pos-
sibility to compress FBDD's by means of their transfor-
mation into OBDD's, where the �rst ideas of the TBDD{
concept arose.

References

[BGMS94] J. Bern, J. Gergov, Ch. Meinel, A. Slobodov�a:
Boolean Manipulation with Free BDDs. First Experimen-
tal Results, Proc. of European Design and Test Conference
1994, IEEE Computer Society Press, 200{207, 1994.

[BCMD90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.
Dill: Symbolic Model Checking: 1020 states and beyond,
Proc. of 5th IEEE Symposium on Logic in Computer Sci-
ence, 46{51, 1990.

[BRB90] K.S. Brace, R.L. Rudell, R.E. Bryant: E�cient Im-
plementation of a BDD{Package, Proc. 27th ACM/IEEE
Design Automation Conference, 40{45, 1990.

[Bry86] R. E. Bryant: Graph-Based Algorithms for Boolean
Function Manipulation, IEEE Trans. Comput. C-35, 6
(Aug.), 677{691, 1986.

[Bry91] R. E. Bryant: On the Complexity of VLSI Imple-
mentations and Graph Representations of Boolean Functions
with Applications to Integer Multiplication, IEEE Trans.
Comput. 40, 2 (Feb.), 205{213, 1991.

[Bry92] R. E. Bryant: Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams, ACM Computing Sur-
veys, Vol. 24, No. 3 (Sep.), 293{318, 1992.

[GM93] J. Gergov, Ch. Meinel: Frontiers of Feasible and
Probabilistic Feasible Boolean Manipulation with Branching
Programs, Proc. of 10th Annual Symposium on Theoretical
Aspects of Computer Science (Feb.), Lecture Notes in Com-
puter Science 665, 576{585, 1993.

[JBFA92] J. Jain, J. Bitner, D. S. Fussel, J. Abraham: Prob-
abilistic Veri�cation of Boolean Functions, Formal Methods
in System Design, 1: 63{117, 1992.

[Kar89] K. Karplus: Using if-then-else DAGs for Multi-Level
Logic Minimization, Proc. Advanced Research in VLSI, C.
Seitz Ed., MIT Press, Cambridge, Mass., 101{118, 1989.

[MWBS88] S. Malik, A. Wang, R. K. Brayton, A. Sangio-
vanni{Vincentelli: Logic Veri�cation Using Binary Decision
Diagrams in a Logic Synthesis Environment, Proc. of the
IEEE International Conference on Computer-Aided Design
(Santa Clara, Calif., Nov.), 6{9, 1988.

�
�@
@

!!aa

!!

��	

��	

��	

��	

@@R

@@R

@@R

@@R

JĴ

?

?

�

? ?
PPPq

���)

�@@R ��	

?

??

????

??

???

??

PPPPPPPPPq

���������)

��=

��

��??

�JĴJĴ

?

��	@@R

�JĴ

PPPPq

ZZ~

BBN

CCW ?

�������

HHHHHHj

HHHHHHj

PPPPPPPPPq

���������)

�������

��) PPq

��)

x6

x5

x4

x3

x1

x2

x1

x2

x3

x4

x5

x6

x1 x6

x1 x5 x2 x6

x1 x4 x2 x5 x3 x6

x2 x3 x4

x3 x4 x5

t

x7

Figure 2. The complete type �n for n = 7.

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

