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Abstract
Often, and certainly in the early stages of a design, the knowl-
edge about delays is imprecise. Stochastic programming is not
an adequate means to account for this imprecision. Not only
is a probability distribution seldom a correct translation of the
designer’s delay knowledge, it also leads to inefficient algo-
rithms. In this paper possibilistic programming is proposed
for handling the retiming problem where delays are modelled
as (triangular) possibilistic numbers. Beside the capability of
optimizing the most possible clock cycle time and generat-
ing its possibility distribution, it allows for trade-offs between
reducing clock cycle time and chances for obtaining worse
solutions. It is shown that the computational complexity is the
same as for retiming with exact circuit delays.

Introduction
Most synthesis methods use estimated values for the coeffi-
cients of the constraints and cost functions guiding the design.
Especially in the early design phases these estimates may be far
from the values ultimately realized. Effort devoted to obtain
globally optimal solutions with respect to these cost functions
is therefore of doubtful use. Yet wrong decisions made there
may cause the necessity of a complete redesign, longer times
to market, and thus reduced revenue.
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Figure 1: “Neuzel” before retiming.

Example 1 We want to minimize the clock cycle � of a circuit
called “neuzel”, given in figure 1. Initially � = 10ns, which
can be calculated by finding the longest path between flip-flops
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Figure 2: “Neuzel” after retiming.

or primary inputs/outputs. A faster circuit can be obtained by
shifting both latches backward (see figure 2). Now the circuit
should have � = 8ns. After applying logic synthesis tools
to the combinatorial parts of the circuit, and placement and
routing,� turns out to be 14ns. This is mainly due to the delay
of the combinatorial block c that came out at 10ns instead of
4ns. The original configuration would then have � = 12ns.

It may seem reasonable to assume parameters to be random
variables with an carefully derived probability distribution.
Stochastic programming [Sen72] can then be applied. Unfor-
tunately, stochastic programming methods are computation-
ally inefficient, and generating good probability distributions
of circuit parameters is difficult and in most cases not adequate
(see example 3).

The approach we propose here is based on possibilistic pro-
gramming [Zad78]. Methods belonging to this category have
their roots in the theory of fuzzy sets and solve optimiza-
tion problems on fuzzy numbers. These fuzzy numbers are
easy to generate for most design parameters. Whenever math-
ematical programming formulations of problems are practi-
cal a straight-forward transformation into a possibilistic pro-
gramming problem deserves consideration. Recently, such a
straightforward application of the possibilistic approach to the
high-level synthesis problem of simultaneous scheduling, se-
lection and allocation of functional units, a problem that can
be solved efficiently with general integer programming meth-
ods [GE90], was presented [Kar95]. Leiserson’s approach
to the retiming of very large networks [LS91] does not allow
such a straightforward transformation, although its kernel, the
feasibility check for cycle times, is often formulated as an in-
teger program. In this paper we will show how to extend their
algorithm to handle imprecise delays of combinatorial units.
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Figure 3: The triangular possibility distributionof fuzzy num-
ber x.

1 Possibilistic programming
1.1 Possibility distributions
To take uncertainty into account we use possibility
distributions1, as introduced by Zadeh [Zad78]. The inter-
pretation of such functions is that a higher measure is assigned
to more likely events. Among the various types of distribu-
tions, triangular and trapezoid are the most common ones in
solving possibilistic mathematical problems. We have chosen
for using fuzzy numbers with triangular possibility distribu-
tions �(:) only (see e.g. figure 3). Such a number is denoted
by X = (xm; xp; xo), where xm, the most possible value has
possibility measure 1 (�(xm) = 1), and is between the bound
values xp and xo (xp � xm � xo). These bound values
xp and xo can be interpreted as the most pessimistic and the
most optimistic values. Which one is pessimistic and which
optimistic depends on the context.

Example 2 The delay of unit “c” in example 1 was apparently
difficult to estimate. Therefore, instead of a poor approxima-
tion, we may represent the delay as the triangular fuzzy number
d̃(c) = (4; 3; 10). This means that the most possible delay of
the unit “c” is 4ns, we do not expect it to be smaller than
3ns, nor larger than 10ns. In this context xp = 3 is the most
optimistic value, xo = 10 the most pessimistic.

Values for xm, xo and xp can be derived from technology
parameters, experience with the synthesis methods used, and
information about the structure of the circuit.

The following example shows that fuzzy numbers often can
represent the meaning of a constraint better than probability
distributions.

Example 3 The timing specification for the phase rotator (fig-
ure 4) contains the following timing constraint:

The delay between arrival of the signal on the
“control” input and the time when the data becomes
available at the “MIr” output should not be shorter
than 5ns or longer than 15ns.

1in fuzzy mathematical programming we use membership functions
instead.
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Figure 4: The phase rotator.
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Figure 5: The strategy to solve “ min c̃x”. We prefer the
possibility distribution of D to that of E.

A straightforward application of the synthesis tools yields a
delay of 10ns. One way to express this is as the following fuzzy
constraint: delaycontrol;MIr � X = (10; 5; 15)

On the other hand if we were using stochastic programming,
the delay should be a random variable with a given probability
distribution. It is clear that such a model would not represent
the real meaning of our constraint.

Of course, this is not to imply that possibility theory can be
a substitute in all applications for probability theory.

1.2 Linear programming with imprecise objec-
tive coefficients

We define the following Possibilistic Linear Program (PLP):

min c̃x s:t: fAx � b; and x � 0g (1)

where c̃ may consist of imprecise numbers with possibilistic
distributions. Replacing A and b with a fuzzy matrix Ã, and
a fuzzy vector b̃ is tedious, but straightforward (see [LH92]).
For given x, the value of the fuzzy objective function (eq. 1) is
a fuzzy number defined by three corner points (cmx,1),(cpx,0)
and (cox,0). Thus, minimizing the fuzzy objective by pushing
these three points to the left may not yield a valid possibil-
ity distribution. Therefore, instead of minimizing these three
objectives independently, we rather simultaneously minimize
cmx, maximize [cmx � cpx] and minimize [cox� cmx] (see
figure 5). In this way we obtain the following Multiple Objec-
tive Linear Program (MOLP):

max z1 = (cm � cp)x (2)

min z2 = cmx

min z3 = (co � cm)x

s:t: x 2 X = fx : Ax � b ; x � 0g



This (MOLP) would be equivalent to minimizing the most
possible value of the imprecise cost (at the point of possi-
bility degree = 1), if we ignored the first and third objective
function. By including the other objectives we enable a trade-
off between this goal and reducing the “risk of paying higher
cost” (see region II in figure 5), and improving “the possibility
of the lower cost” (region I).

To solve problem of eq. 2 any MOLP technique can be used
(e.g. utility theory, goal programming, fuzzy programming or
interactive programming).

2 Retiming synchronous circuitry with
imprecise propagation delays

2.1 Preliminaries
Classical retiming applies to any edge-triggered, single-phase,
synchronous circuit. This can be modelled as a finite, directed
multigraph G =< V;E; d; w >. The vertices represent the
connected components of the circuit after removing all latch-
ing elements. These components are acyclic combinatorial
circuits, and their maximum input-output delay is added as a
weight d 2 R+ to each vertex. The weights w on the edges
represent the number of latching elements on the connection
between the corresponding combinatorial circuits. When the
combinatorial delays are not exactly known, applying the stan-
dard retiming algorithm of [LS91] may in the end lead to un-
necessary violation of timing constraints and cause expensive
redesigns. Instead of a single nonnegative number we assign
a fuzzy number to each vertex: d̃ 2 X, where X is the space
of triangular fuzzy numbers. Figure 6 shows an example. The
vertices still represent the combinatorial elements of the cir-
cuit, but each vertex v 2 V now has a triangular fuzzy number,
d̃(v), as its weight, modelling the nonnegative imprecise prop-
agation delay of the corresponding element. The extra vertex
vh represents interfaces with the external world, and it is given
zero propagation delay. The interpretation of the edges and
their weights is the same as in the classical model. How to
handle multiple fanout is described in [LS91].
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Figure 6: The graph model of the "neuzel" circuit.

The problem of finding a retiming r of the graph G̃ which
optimizes its fuzzy/imprecise clock-period �̃ can be formu-
lated as the general integer MOLP (analogous to the program
of eq. 2):

max z1 = �m � �p (3)

min z2 = �m

min z3 = �o � �m

s:t: �̃ = (�
m
; �

p
; �

o
) 2 Y;

where Y is the set of feasible imprecise clock periods. The
method described in section 1.2 can then be used to solve it.
However, integer programming is in the general case NP �
hard. If it was possible to extend the standard approach
while preserving its low computational complexity,an efficient
retiming method with reduced risk for redesign would become
available. We will show that this is possible. First however,
some definitions are in order:

DEFINITION 1 Let f : X 7! R+ be a linear mapping with
positive coefficients, G̃=<V,E,d̃,w> a retiming graph with im-
precise delays. Then the crisp graph of G̃ under f is a graph
Gf=<V,E,df ,w>, df 2 R+ obtained from G̃ by mapping all
fuzzy delays d̃ of G̃ into crisp values: df = f(d̃).

We can of course apply classical retiming to
Gf=<V,E,df ,w>. In particular, if f(x̃) = f(xm; xp; xo) =

xm the result will be the optimal clock period when all com-
binatorial delays are equal to the most possible value assigned
to their vertices. The imprecise delay of a path is defined
through the usual definition of the addition operation on trian-
gular fuzzy numbers:

DEFINITION 2 The imprecise delay of a path p in graph G̃ is:

d̃(p)=
X

vi2p

d̃(vi)=(
X

vi2p

dm(vi);
X

vi2p

dp(vi);
X

vi2p

do(vi)): (4)

To enable optimization we need a max-operator over triangular
fuzzy numbers:

DEFINITION 3 The maximum imprecise total propagation de-
lay on any critical path from u to v is:

D̃(u; v) = max
p2C

d̃(p) = (max
p2C

dm;max
p2C

dp;max
p2C

do): (5)

where C is the set of paths between u and v with the lowest
number total edge weight.

DEFINITION 4 The imprecise clock period �̃ of the circuit mod-
eled by G̃ is a triangular fuzzy number defined by the equation:

�̃= �̃(G̃)= max
p2W 0

d̃(p)=( max
p2W 0

dm; max
p2W 0

dp; max
p2W 0

do); (6)

where W 0 is the set of all paths that w(p) = 0.

LEMMA 1 Applying a linear mapping f (as in def. 1) to the
imprecise clock period of G̃ yields the same number as deter-
mining the clock period of the crisp graph of G̃ under f:

�f = �(Gf ) = f(�̃): (7)

PROOF. Consider all paths p in Gf for which w(p) = 0.
Because the structure and the edge weights of crisp graphs
are identical to those of G̃, this set is the same as in G̃.



For any such path in Gf we have d(p) =
P

vi2p
d(vi) =P

vi2p
f(d̃(vi)). Since f is linear and from definition 2 we

get
P

vi2p
f(d̃(vi)) = f(

P
vi2p

d̃(vi)) = f(d̃(p)). Thus,

�f = max d(p) = max f(d̃(p)) (?):

For G̃ we have by definition 4 that f(�̃) = f(max d̃(p)).
Again, the properties of f imply that f(max d̃(p)) =

max f(d̃(p)). Combining this with (?) we obtain
max f(d̃(p)) = �f . 2

THEOREM 1 Given a crisp graph Gf obtained from G̃ by use
of the mapping f (as defined in def. 1) the following holds:

min
�f2K

�f = min
�̃2Y

f(�̃): (8)

where K is the set of all feasible clock periods in Gf .

PROOF. From lemma 1 we know that applying the same legal
retiming r to G̃ and Gf yields f(�̃) = �f . From this follows
that the retiming for which �f = �fmin is also a retiming of
G̃ with f(�̃) = f(�̃)min. 2

2.2 The FORTM algorithm
Theorem 1 is the basis of the following algorithm:

ALGORITHM FORTM (fuzzy optimization retiming):

1. Map the fuzzy graph G̃ into the crisp graph Gf using a
mapping: f(x̃) = a1xp+a2xm+a3xo where a1; a2 and
a3 � 0.

2. Run the LS algorithm on the graph Gf .

3. Use the resulting configuration as optimal solution to the
retiming problem of G̃.

THEOREM 2 The algorithm FORTM solves exactly the pro-
gram of equation 3.

PROOF. We solve the program of equations 3 by mapping it
into intermediate retiming problem, which we solve using an
exact method. All our mappings are well defined in the sense
of the definition 1. Therefore, from theorem 1 we get that the
solution of the temporary problem represents exact solution to
the original problem. 2

2.3 Choice of the coefficients
We replace the three goal functions of the program 3 by a
single one:

min
�
��1(�

m � �p) + �2�
m + �3(�

o � �m)
�

(9)

where coefficients �i represent the relative importance of the
three subgoals. Without lost of generality we can assume that
�1 = 1. Then, we can rewrite the equation above as:

min
�
�p+(�2��3�1)�m+�3�

o
�
=min

�
a1�

p+a2�
m+a3�

o
�

(10)

To justify the application of the FORTM algorithm, we have
to make sure that all coefficients ai are positive. Consider
therefore the relative importance of the three subgoals of pro-
gram 3. It is easy to see that in practice every designer will
assign �i values in such a way that �1 � �3 � �2. Otherwise
we could obtain solutions with, for example, small risk of ob-
taining a longer clock period but relatively long most possible
clock period. Because of that and since�1 = 1 the coefficients
a1; a3 will be positive. Consider now two "symmetric" fuzzy
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Figure 7: Two fuzzy numbers

numbers as in figure 7. They have the same pessimistic and
optimistic values, but A’s most possible value is smaller than
B’s most possible value. If we are to prefer A over B in such
a case we should have

�p+(�2��3�1)(�p+∆)+�3�
o��p+(�2��3�1)(�o�∆)+�3�

o:

(11)
This implies that

(�2 � �3 � 1) � 0; (12)

which is equivalent to the requirement that a2 � 0. In this
way we have shown that for every practical choice of �i all
coefficients ai will be positive and therefore the function of
eq.10 will be a mapping function in the sense of definition 1,
and consequently theorem 2 applies.

2.4 Computational complexity
The complexity of step 1 isO(jV j). In step 2 we call the stan-
dard retiming algorithm LS2 of complexity O(jV jjEj lg jV j).
This complexity remains unchanged because the graph map-
ping operations do not change the structure of the graph. Also
the values of df remain well defined. Thus the total complexity
is O(jV jjEj lg jV j).

3 A numerical example
In this section we illustrate with a simple numerical example
how to use the obtained results to retime circuits with imprecise
delays.

Consider the circuit “neuzel” from figure 1. Its graph model
is presented in figure 6. The delay of every combinatorial
block of the circuit is a triangular fuzzy number (also shown
in figure 6). We use the following coefficients: �1 = 1;

2or O(jV j3 lg jV j) if we use Bellman-Ford instead of FEAS
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Figure 9: Gf after retiming if d(c) = (4; 3; 6).

�2 = 3:5;�3 = 2 : The mapping function for the graph Gf

thus becomes:

f(x̃) = f(xm; xp; xo) = xp + 0:5xm + 2xo:

The minimum clock-period retiming of the graphGf is shown
in figure 8. This is the same configuration as in the initial
circuit. As you recall from our discussion of example 1 this is
exactly the solution that we then had preferred. The reader can
easily check that if we had d(c) = (4; 3; 6) (the risk that the
delay of the unit “c” is larger would be smaller) then we would
get df (c) = 19 inGf (see figure 9). The same retiming results
as produced by the LS algorithm with exact delays equal to
xm.
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Figure 10: Two solutions to the retiming problem of the
“neuzel” circuit.

In figure 10 two triangular fuzzy numbers are depicted. The
fuzzy number A drawn with full lines is the imprecise clock-
period of the configuration that we obtained using the FORTM
algorithm. The fuzzy number B represents the possibility dis-
tribution of the clock cycle time in the configuration generated
by the LS algorithm. Comparing these two solutions we can
see that the most possible clock-period in A is larger than
in B, and that the left spreads are the same. B does have a
much larger right spread however, which "measures" the risk
of obtaining a worse solution. We conclude that solution A
is “better” in the sense of the strategy defined by program 3.
There may still be design situations in which the user wants
faster circuits and he is prepared to take more risk. In such
case he can influence the tradeoff between the three subgoals
of eq.3 by appropriately setting the weight coefficients �i.

It is interesting to point out a very important characteristic
of this method. There may exist many solutions with similar
most possible values of the cost function (very close to the
global optimum). The algorithm will be able to choose among
these one with a small risk of ending up with a slower im-
plementation and a maximal possibility of obtaining an even
faster one.

4 Conclusions
In this paper we presented an extension to the “classical”
algorithm for retiming synchronous circuits to cope more ad-
equately with the uncertainty in combinatorial delays. We
described an algorithm that handles retiming of single-phase,
edge-triggered, synchronous circuits with imprecise delays,
given as triangular fuzzy numbers. The computational com-
plexity of this algorithm is the same as for single-valued de-
lays, i.e. O(jV jjEj lg jV j). We believe that similar techniques
can be successfully applied to other synthesis tasks. In fact,
whenever mathematical programming formulations apply for
obtaining efficient optimizations and one has to deal with im-
precise data, possibilistic programming deserves considera-
tion. As examples we mention here retiming of circuits with
level-sensitive latches [LE92][IL92] or transistor sizing.
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