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Abstract

Often, and certainly inthe early stages of adesign, the knowl-
edge about delaysisimprecise. Stochastic programmingisnot
an adequate means to account for thisimprecision. Not only
isa probability distribution seldom a correct trand ation of the
designer's delay knowledge, it also leads to inefficient algo-
rithms. In this paper possibilistic programming is proposed
for handling the retiming problem where delays are modelled
as (triangular) possihilistic numbers. Beside the capability of
optimizing the most possible clock cycle time and generat-
ing itspossihility distribution, it allowsfor trade-offs between
reducing clock cycle time and chances for obtaining worse
solutions. It isshown that the computational complexity isthe
same as for retiming with exact circuit delays.

I ntroduction

Most synthesis methods use estimated values for the coeffi-
cients of the constraintsand cost functionsguiding the design.
Especially intheearly design phasestheseestimatesmay befar
from the values ultimately realized. Effort devoted to obtain
globally optimal solutionswith respect to these cost functions
istherefore of doubtful use. Yet wrong decisions made there
may cause the necessity of a complete redesign, longer times
to market, and thus reduced revenue.
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Figure 1: “Neuzel” before retiming.

Examplel Wewant to minimizethe clock cycle ¢ of a circuit
called “ neuzd” , given in figure 1. Initially ¢ = 10ns, which
can be cal cul ated by finding thel ongest path between flip-flops
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Figure2: “Neuzel” after retiming.

or primary inputs/outputs. A faster circuit can be obtained by
shifting both latches backward (see figure 2). Now the circuit
should have ¢ = 8ns. After applying logic synthesis tools
to the combinatorial parts of the circuit, and placement and
routing, ¢ turnsout tobe 14ns. Thisismainly dueto thedelay
of the combinatorial block ¢ that came out at 10ns instead of
4ns. Theoriginal configuration would then have ¢ = 12ns.

It may seem reasonable to assume parameters to be random
variables with an carefully derived probability distribution.
Stochastic programming [Sen72] can then be applied. Unfor-
tunately, stochastic programming methods are computation-
aly inefficient, and generating good probability distributions
of circuit parametersisdifficult and in most cases not adequate
(see example 3).

The approach we propose hereis based on possihilistic pro-
gramming [Zad78]. Methods belonging to this category have
their roots in the theory of fuzzy sets and solve optimiza
tion problems on fuzzy numbers. These fuzzy numbers are
easy to generate for most design parameters. Whenever math-
ematical programming formulations of problems are practi-
ca astraight-forward transformation into a possihilistic pro-
gramming problem deserves consideration. Recently, such a
straightforward application of the possibilistic approach to the
high-level synthesis problem of simultaneous scheduling, se-
lection and allocation of functional units, a problem that can
be solved efficiently with general integer programming meth-
ods [GE9Q], was presented [Kar95]. Leiserson’s approach
to the retiming of very large networks [LS91] does not allow
such a straightforward transformation, although itskernel, the
feasibility check for cycle times, is often formulated as an in-
teger program. In thispaper we will show how to extend their
algorithmto handle imprecise delays of combinatoria units.



Figure3: Thetriangular possibility distributionof fuzzy num-
ber x.

1 Possibilistic programming
1.1 Possbility distributions

To take uncertainty into account we use possibility
distributions!, as introduced by Zadeh [Zad78]. The inter-
pretation of such functionsisthat ahigher measureis assigned
to more likely events. Among the various types of distribu-
tions, triangular and trapezoid are the most common ones in
solving possibilistic mathematical problems. We have chosen
for using fuzzy numbers with triangular possibility distribu-
tions(.) only (see e.g. figure 3). Such a number is denoted
by X = (™, «F, x°), where ™, the most possible value has
possibility measure 1 (7 (2™) = 1), and is between the bound
vaues z? and z° (z¥ < ™ < z°). These bound values
zP and z° can be interpreted as the most pessimistic and the
most optimistic values. Which one is pessimistic and which
optimistic depends on the context.

Example2 Thedeay of unit“ c” inexamplelwasapparently
difficult to estimate. Therefore, instead of a poor approxima-
tion, we may represent thedelay asthetriangular fuzzy number
d(e) = (4, 3,10). This means that the most possible delay of
the unit “c” is 4ns, we do not expect it to be smaller than
3ns, nor larger than 10ns. In thiscontext z? = 3 isthe most
optimisticvalue, z° = 10 the most pessimistic.

Values for ™, z° and z? can be derived from technology
parameters, experience with the synthesis methods used, and
information about the structure of the circuit.

Thefollowing exampl e shows that fuzzy numbers often can
represent the meaning of a constraint better than probability
distributions.

Example 3 Thetiming specificationfor the phaserotator (fig-
ure 4) containsthe following timing constraint;

The delay between arrival of the signal on the
“control” input and thetime when the data becomes
availableat the“ MIr” output should not be shorter
than 5ns or longer than 15ns.

lin fuzzy mathematical programming we use membership functions
instead.
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Figure 4: The phase rotator.
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Figure 5. The strategy to solve “ mincz”.
possibility distribution of D tothat of £.

We prefer the

A straightforward application of the synthesis tools yidds a
delay of 10ns. Oneway to express thisisasthefollowingfuzzy
congtraint: delaycontrot arrr < X = (10,5,15)

Ontheother handif wewere using stochasti c programming,
thedelay should be arandomvariablewith a given probability
distribution. It isclear that such a model would not represent
thereal meaning of our constraint.

Of course, thisis not to imply that possibility theory can be
asubstitutein al applicationsfor probability theory.

1.2 Linear programmingwith imprecise objec-
tive coefficients
We define the following Possibilistic Linear Program (PL P):

mince  sit. {Ax <b,and x> 0} (D
where ¢ may consist of imprecise numbers with possibilistic
distributions. Replacing A and b with a fuzzy matrix A, and
afuzzy vector b istedious, but straightforward (see[LH92]).
For given z, thevalue of the fuzzy objectivefunction (eg. 1) is
afuzzy number defined by three corner points(c™ z,1),(c” x,0)
and (c°z,0). Thus, minimizingthefuzzy objective by pushing
these three points to the left may not yield a valid possibil-
ity distribution. Therefore, instead of minimizing these three
objectives independently, we rather simultaneously minimize
™z, maximize [¢™a — cfx] and minimize [¢°2 — ™) (See
figure5). Inthisway we obtain the following Multiple Objec-
tive Linear Program (MOL P):

max z3= (™ —cP)w 2
min z=c"z
min zz3= (¢’ =)z

st.ee X={e: Az <b, >0}



This (MOLP) would be equivalent to minimizing the most
possible value of the imprecise cost (at the point of possi-
bility degree = 1), if we ignored the first and third objective
function. By including the other objectives we enable atrade-
off between this goa and reducing the “risk of paying higher
cost” (seeregion |l infigure5), and improving “the possibility
of the lower cost” (region).

To solve problem of eg. 2 any M OL P technique can be used
(e.g. utility theory, goal programming, fuzzy programming or
interactive programming).

2 Retiming synchronous circuitry with
impr ecise propagation delays
2.1 Preliminaries

Classical retiming appliesto any edge-triggered, single-phase,
synchronouscircuit. Thiscan bemodelled asafinite, directed
multigraph G =< V, E,d, w >. The vertices represent the
connected components of the circuit after removing all latch-
ing elements. These components are acyclic combinatorial
circuits, and their maximum input-output delay is added as a
weight d € RT to each vertex. The weights w on the edges
represent the number of latching elements on the connection
between the corresponding combinatoria circuits. When the
combinatoria delaysare not exactly known, applyingthe stan-
dard retiming algorithm of [LS91] may in the end lead to un-
necessary violation of timing constraints and cause expensive
redesigns. Instead of a single nonnegative number we assign
a fuzzy number to each vertex: d € X, where X isthe space
of triangular fuzzy numbers. Figure 6 showsan example. The
vertices still represent the combinatoria elements of the cir-
cuit, but each vertex v € V' now hasatriangular fuzzy number,
d(v), asitsweight, modelling the nonnegativeimprecise prop-
agation delay of the corresponding element. The extra vertex
vy, representsinterfaceswith the external world, anditisgiven
zero propagation delay. The interpretation of the edges and
their weights is the same as in the classica model. How to
handle multiple fanout is described in [LS91].
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Figure 6: The graph modd of the "neuzel" circuit.

The problem of finding a retiming » of the graph G which
optimizes its fuzzy/imprecise clock-period ¢ can be formu-
lated as the general integer M OL P (analogousto the program
of eg. 2):

maxzy = ¢" —of ©)
min z; o™
min z3 ¢° — o™

st.d= (¢, ¢, ¢°) €Y.

where Y isthe set of feasible imprecise clock periods. The
method described in section 1.2 can then be used to solveit.
However, integer programming isin the genera case NP —
hard. If it was possible to extend the standard approach
whilepreservingitslow computational complexity, an efficient
retiming method with reduced risk for redesign would become
available. We will show that thisis possible. First however,
some definitionsarein order:

DEFINITION 1 Let f : X — R* be a linear mapping with
positive coefficients, G=<V,E,d ,w> a retiming graph with im-
precise delays. Then the crisp graph of G under f isagraph
G=<V,Ed; W>, d; € RT obtained from G by mapping all
fuzzy delays d of & into crisp values: d; = f(d).

We can of course apply classicd retiming to
Gy=<V.Ed; w>. Inpaticular, if f(Z) = f(x™, 2P, 2°) =
z™ the result will be the optimal clock period when al com-
binatoria delays are equal to the most possible value assigned
to their vertices. The imprecise delay of a path is defined
through the usua definition of the addition operation on trian-
gular fuzzy numbers:

DEFINITION 2 Theimprecise delay of a pathpin graph G is:

Zde devZZd vZZdovZ

vV EP V;EP vV EP V;EP

To enabl e optimization we need amax-operator over triangul ar
fuzzy numbers:

DEFINITION 3 The maximum imprecise total propagation de-
lay on any critical pathfromu to v is:

D(u,v) = maxd(p) =

(max d™, maxd”, maxd®). (5)
peC

p€eC p€eC p€eC
where C' is the set of paths between v and v with the lowest
number total edge weight.

DEFINITION 4 Theimpreciseclock period ¢ of thecircuit mod-
eled by G isatriangular fuzzy number defined by theequation:
5= (G)= max d(p)=(max d™, max d*, max d°), (6
¢p=0(G)= max, I(p) (peWD , e df, mex ), (6)

where W0 isthe set of all pathsthat w(p) = 0.

LEMMA 1 Applying a linear mapping f (as in def. 1) to the
imprecise clock period of G yields the same number as deter-
mining the clock period of the crisp graph of & under f:

61 = 6(Gy) = (). (7)

ProoF. Consider al paths p in Gy for which w(p) = O.
Because the structure and the edge weights of crisp graphs
are identica to those of &, this set is the same as in G.



For any SlfCh path in G; we have d(p) = >, ., d(vi) =
> viep J(d(vi)). Since f islinear and from definition 2 we

06ty e, F(d(vi) = F(Z,,e, d(vi) = f(d(p)). Thus

¢; = maxd(p) = max f(d(p))  (%).

For (i we have by definition 4 that f(¢) = f(maxd(p)).
Again, the properties of f imply that f(maxd(p)) =
max f(d(p))- Combining this with (x) we obtain
max f(d(p)) = ¢;. O

THEOREM 1 Given acrisp graph &'; obtained from G by use
of themapping f (as defined in def. 1) the following holds:

Jrin 95 = min f(9). (8

where K isthe set of all feasible clock periodsin G';.

ProOF. From |lemma 1 we know that applying the same legal
retiming r to G and G yields f(¢) = ¢ ;. From thisfollows
that the retiming for which ¢ = ¢,,i,, isaso aretiming of

G with £(§) = f(6)min- D

2.2 TheFORTM algorithm
Theorem 1 isthe basis of the following agorithm:

ALGORITHM FORTM (fuzzy optimization retiming):

1. Map the fuzzy graph G into the crisp graph Gy using a
mapping: f(Z) = aizp + azy, + asz, Whereay, ap and
a3z > 0.

2. RuntheL Sagorithm on the graph G';.

3. Usetheresulting configuration as optimal solution to the
retiming problem of G.

THEOREM 2 The algorithm FORTM solves exactly the pro-
gram of equation 3.

ProOF. We solve the program of equations 3 by mapping it
into intermediate retiming problem, which we solve using an
exact method. All our mappings are well defined in the sense
of the definition 1. Therefore, from theorem 1 we get that the
solution of the temporary problem represents exact solutionto
the original problem. O

2.3 Choice of the coefficients

We replace the three goa functions of the program 3 by a
single one:

min [—Bu(¢™ — ¢F) + B26™ + Ba(6° — ¢™)]  (9)

where coefficients 3; represent the relative importance of the
three subgoals. Without lost of generality we can assume that
51 = 1. Then, we can rewrite the equation above as.

min[¢"+ (82— 3 —1)¢"+ P3¢ =min[a1¢"+az20"™ +az¢°’|
(10)

To justify the application of the FORTM algorithm, we have
to make sure that all coefficients a; are positive. Consider
therefore the rel ative importance of the three subgoal's of pro-
gram 3. It is easy to see that in practice every designer will
assign 3; valuesin such away that 8; < 33 < 3,. Otherwise
we could obtain solutionswith, for example, small risk of ob-
taining alonger clock period but relatively long most possible
clock period. Because of that and since 3, = 1thecoefficients
a1, az Will be positive. Consider now two "symmetric" fuzzy

(@)

Figure 7: Two fuzzy numbers

numbers as in figure 7. They have the same pessimistic and
optimistic values, but A’s most possible value is smaller than
B’smost possiblevalue. If we are to prefer A over B in such
acase we should have

PPH P2—P3—1)(pP-HAHA30° < 9P B2—F3—1) (¢~ DHP3¢°.
(11)
Thisimpliesthat
(B2—p3—1) >0, (12)
which is equivalent to the requirement that a, > 0. In this
way we have shown that for every practical choice of 3; al
coefficients a; will be positive and therefore the function of
€g.10 will be a mapping function in the sense of definition 1,
and consequently theorem 2 applies.

2.4 Computational complexity

The complexity of step 1isO(|V|). Instep 2 wecall the stan-
dard retiming algorithm L S* of complexity O(|V || E|Ig|V]).
This complexity remains unchanged because the graph map-
ping operations do not change the structure of the graph. Also
thevaluesof d; remainwell defined. Thusthetotal complexity
isO(|V||E|1g|V]).

3 A numerical example

In this section we illustrate with a smple numerical example
how to usetheobtained resultstoretimecircuitswithimprecise
delays.

Consider thecircuit “neuzel” fromfigure 1. Itsgraph model
is presented in figure 6. The delay of every combinatorial
block of the circuit is a triangular fuzzy number (also shown
in figure 6). We use the following coefficients. 3; = 1,

2or O(|V[21g|V]) if we use Bellman-Ford ingtead of FEAS
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Figure8: G after retiming if d(c) = (4, 3, 10).
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Figure9: G after retimingif d(c) = (4,3, 6).

B2 = 3583 = 2 . The mapping function for the graph G/,
thus becomes:

J(E) = f(a™, 2", 2%) = 2" + 0.5 + 2°.

The minimum clock-period retiming of thegraph G5 isshown
in figure 8. This is the same configuration as in the initial
circuit. Asyou recall from our discussion of example 1thisis
exactly the solutionthat wethen had preferred. Thereader can
easily check that if we had d(c¢) = (4,3, 6) (therisk that the
delay of theunit“c” islarger would be smaller) thenwewould
getds(c) = 19inG; (seefigure9). Thesameretiming results
as produced by the L S agorithm with exact delays equal to

™,
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Figure 10: Two solutions to the retiming problem of the
“neuze” circuit.

Infigure 10 two triangular fuzzy numbers are depicted. The
fuzzy number A drawn with full linesis the imprecise clock-
period of the configuration that we obtained usingthe FORTM
algorithm. The fuzzy number B represents the possibility dis-
tribution of the clock cycle timein the configuration generated
by the L S algorithm. Comparing these two solutionswe can
see that the most possible clock-period in A is larger than
in B, and that the left spreads are the same. B does have a
much larger right spread however, which "measures’ the risk
of obtaining a worse solution. We conclude that solution A
is “better” in the sense of the strategy defined by program 3.
There may still be design situations in which the user wants
faster circuits and he is prepared to take more risk. In such
case he can influence the tradeoff between the three subgoals
of eg.3 by appropriately setting the weight coefficients 3;.

It isinteresting to point out a very important characteristic
of this method. There may exist many solutionswith similar
most possible values of the cost function (very close to the
global optimum). The algorithmwill be ableto choose among
these one with a small risk of ending up with a dower im-
plementation and a maximal possibility of obtaining an even
faster one.

4 Conclusions

In this paper we presented an extension to the “classical”
algorithm for retiming synchronous circuits to cope more ad-
equately with the uncertainty in combinatoria delays. We
described an agorithm that handles retiming of single-phase,
edge-triggered, synchronous circuits with imprecise delays,
given as triangular fuzzy numbers. The computational com-
plexity of this agorithm is the same as for single-valued de-
lays,i.e. O(|V]|E]1g|V]). Webelievethat similar techniques
can be successfully applied to other synthesis tasks. In fact,
whenever mathematical programming formulations apply for
obtai ning efficient optimizations and one has to deal withim-
precise data, possibilistic programming deserves considera-
tion. As examples we mention here retiming of circuits with
level-sensitive latches [LE92][1L92] or transistor sizing.
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