
Design–Flow and Synthesis for ASICs: a case study(*)

��))!#%�
%#��$�� (*) �� ��*(!0!�� ��,�""%(%� (*) �� ��",�*%(�� �%$!�"!�(%� (*) �
�%��(�
�� �+� �)� ������ ��((/� �+)�(�,�� ������� �!+)�&&�� ��0�� (*)

(*) ITALTEL SIT – 20019 Settimo Milanese (MI) –ITALY
����� 	�)*(��*� ��(�-�(�� �!#!*��� �� �.�(!����� �!��"�)�.�� ��

������ � ��&*�� "���� $����
(+$�"� �$!,�()!*/�� �.�(!����� �!��"�)�.�� ��

Abstract – The growing complexity of devices to be designed and
manufactured, and the need to reduce the time–to–market, stress
the importance of sound design methodologies. In this framework
formal synthesis has the advantage of increasing the quality both of
the design process and of the realized devices. The problem of
relating the different abstraction levels involved in the extended
design process is solved through the use of logic synthesis tools. The
evaluation of the design constraints, characterizing optimal
implementations such as area and timing, provide the most
pragmatic approach to identify efficient guidelines applicable in the
abstract phases of the design flow. The resulting design
methodology combining both formal and more traditional design
tools has been tested on a complex device in the area of
telecommunications.

I. INTRODUCTION

What are the problems vis a vis existing design flows and
methods? Simulation cannot possibly provide exhaustive
coverage, the test vectors used are always, of necessity, a
sub–set of the exhaustive aims. There are problems in knowing
if the appropriate test–sets really do cover the anticipated
behavior and use of the system being designed. There remain
problems such as bus contention, deriving scheduling
information, the re–use of previous designs and redesign
which make the engineer’s task more difficult. Current
approaches do not always follow the ideal of starting with a
specification and there is certainly no mathematical rigour
involved in the intermediary stages which lead to an
implementation. The traditional design flow can be viewed by
the following figure 1.

In order to validate the design process, simulation is used to
show conformity of the underlying stages of the design with
those higher up in the design hierarchy. The designer is
restricted by the usual problems caused by ever more lengthy
simulation runs which can only provide a validation, i.e. a
sanity check on the design; such simulation does not and
cannot provide verification.

What is needed is an approach which also provides the
designer with the possibility to conduct an exploratory activity
in the early design phases, quick and automatic generation of
mathematically correct–by–construction qualitative design
alternatives ([1],[2],[3]), the generation of explicit
cost/benefit parameters to support the designer in the choice
between alternatives and the presence of a commercial
framework able to encapsulate the tools applied at different
levels of abstraction and in different phases of the design
process so as to support a unified design flow ([4],[5]). To
provide a winning strategy, the next generation of design
environments should guarantee satisfying these requirements.

In this paper we describe an innovative design methodology,
viz. a formal approach, which is able to provide such
capabilities (figure 2). Our goal is to derive a critical
assessment on benefits and drawbacks provided by the use of
such a design flow from the users’ point of view.

The key aspects of this approach are outlined in the
following sections, but in essence rely on a rigorous initial
specification which allows the implementation to be explored

�
�

�
�

�
�

�

�
�

�

�
�

)/)*�#
�)&��

� ���
�)&��

� ���
�)&��

� � �/)*�#
��'+!(�#�$*)

� ��)!�$
�&��!�!��*!%$

Figure 1. The conventional design flow.

� �,!%(�"
� �%��"!$�

� ��)!�$
� � $*!*/

� � � � ��)!�$
� � �/$* �)!)

� /)!��"
��/%+*

��� �	�	���	��

� � *�)*
,��*%()

� � ���
� (�)+"*)

�)�
� &"%*)

%(

� ���
� #%��"

� ���
� � #%��"

� � ���
�)*!#+"!

� ���
� � �%��

� � ���
)*!#+"!

� � ���
� (�)+"*)

� ���
� � �%��

� �)!#
(�)+"*)

��� �	�	���	��

	�����	�
�	��
�

������	�
�	����		���

� � � � ��)!�$
� � �!#+"�*!%$

(*) This research activity is part of PATRICIA (ESPRIT II n. 5020) and
 FORMAT (ESPRIT III n.6128).

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

�
�

�
	

�
�

� � �%!"��
���#� ����"!

� � � �� ���
���������"���

�
�
�
�

�

���

��

��

Figure 2. The Lambda design flow.

� ����$�� ��
� � � ����%!�!

� � � ��"� ��"�$�
�� ���� �%�"��!�!

� � � � � �# "��
� � � � �%�"��!�!

� �� �����
���#��"���

�%!����
��%�#"

�������� �����
��� �����

�������� ��������
�����

�	� ����������

�	� ����������

!%!"��
� !����

� � "�!"
!"��#��

� �#���
� �!#�"!

� �$��
� � ��!

� ���
� � ���

�
��
� ��"��!"

� ���
� � !����

� ���
� � ���

�
��
� �����

� �� ��
� �!#�"!

����
����� ���� ���
��	��
�� ���� �������� ��������

at any abstracted level to gain: insight into partitioning, design
exploration etc. but at an early stage in the design flow,
enabling the designer to make key decisions at the right time.
In addition, the implementation alternatives are
mathematically proven to satisfy the original specification as a
result of the design process. These facts result in a significant
reduction in the time–to–market parameter.

II. THE REAL ENVIRONMENT

Re–design steps, caused by errors introduced in the various
phases of the design activity, are in many cases responsible for
delays in the production cycle [6]. The introduction of sound
design methodologies ([7],[8],[9],[10],[11]) can substantially
improve the quality of the design process and the reliability of
the manufactured devices. The synergies existing between the
exploitation of formal reasoning in the abstract phases of
design and of logic synthesis in the more implementation
oriented steps of the design flow are worth exploring in view of
the improvement of the quality of the design cycle.

Formal synthesis tools operate at very abstract levels,
generating and validating a logic partitioning of the global
specification of the device and producing a netlist involving
functional macro–blocks. Many implementation aspects are
on purpose left unspecified, because this allows a more
efficient handling of the general characteristics of the
behavioral description. The definition of lower level details
and constraints is postponed to the subsequent phases of the
design process. On the other side logic synthesis tools operate
from descriptions represented using a specific subset of
VHDL, the de–facto standard hardware description language
([12],[13]), in which all the implementation details have been
correctly specified. The application of both techniques require

the filling of the substantial gap existing between these
different levels of abstraction.

In a top–down approach to design, the instantiation
mechanism corresponds to design transformations from the
more abstract design levels to the implementation oriented
descriptions of the device. This process is supported by
complex automatic or man–controlled transformational
modules (figure 3) in the design environment. Such interfaces
access a library of blocks, described in VHDL [14], apt for
logic synthesis. The parametric components of this library are
aligned with the cells formally specified and applied in the
high–level synthesis process. In this way the initial high–level
description is transformed into a structural/behavioral one of
lower–level. The instantiation process involves various
phases.

The first step takes care of the environment definition and
the interface instantiation of the entities. Moreover the range
and direction of the I/O ports of the components are declared.
The second step identifies the standard library blocks in the
netlist. For each of them the corresponding VHDL description
is derived through the instantiation of the parametric elements.
Finally user–defined modules, for which a behavioral
description is not pre–defined, are identified. In this case the
designer directly provides the VHDL description of the
behavior.

The final VHDL representation is simulated to complement
the animation of the initial specifications. This phase verifies
that all the added implementation details have not changed the
global behavior of the device. After a satisfying simulation
phase, the VHDL structural/behavioral description is fed to the
logic synthesis phase producing a low level netlist. A
technology mapping and optimization phase for area or timing
concludes this process producing an object oriented data base.
From this point on the consolidated design flow is applied
guiding the designer in the physical implementation of the
device.

Following this path, the exploration of the design space, in
order to identify the most efficient architectural
implementation, is guaranteed. The integration of these tools
into an industrial design environment (section III) supports the
generation of low level implementations of the architectural
alternatives. Comparisons based on implementation
parameters (area dimension and timing efficiency) that
constitute the final constraints of designs are produced.

The unified aspects of the design flow are managed through
CAD frameworks ([15],[16]). These are environments
explicitly developed to allow the integration of
different–vendor tools into customized and specialized user
environments.

III. FORMAL SYNTHESIS: APPLICATION AND BENEFITS

Formal methods have been widely applied in the
post–design verification ([17],[18],[19],[20],[21]) of the
correctness of the implementations versus the initial
specification. The difference between this technique and the
traditional simulation phase lies in the fact that in the latter a
special set of test signals must be identified and the final result

is dependent on this choice (non–exhaustive validation), while
in the former all the cases are covered (exhaustive validation).
Formal validation can guarantee the logical equivalence of the
two representations. Simulation analyzes details much closer
to the physical functionality of the device.

 A complementary approach consists in applying formally
based synthesis tools (transformational approach). Due to the
abstraction of the involved formalisms, the initial phases of the
design are the most appropriate for the application of this
methodology. The LAMDBA system [22] is a commercial tool
that already satisfies most of the requirements of the users.
Being an open system, it looks promising for adding the extra
features required by the market in the future. The associated
DIALOG interface, equipped with a window for schematic
editing, is quite similar to what the user already applies for
schematic entry. This feature increases users’ acceptance,
following the rule of incremental introduction of innovation
into the designers’ community. The interface supports the
designer in the process of transforming step–wise the initial
specification into a constrained implementation. The
specification language (ML [22]) owns the necessary
expressiveness to operate at the required abstraction levels.
ML is a functional language provided of a specific semantic
and an enriched syntax most apt to the application of tactics on
which the tool is built. An ML animator is used to verify the
correctness of the specification before starting the
implementation phase.

The LAMBDA output interface is based on the use of
standard description languages including EDIF and VHDL.

A. Formal specification and synthesis of a complex device

In LAMBDA/DIALOG a mixed design strategy is applied.
Top–down and bottom–up approaches ([3],[23]) are applied,

Formal
library

VHDL
Database

Circuit Data Base

AREA
analysis/optimization

TIMING
analysis/optimization

Comparable gate level
implementations

Logic synthesis

VHDL
 library

Figure 3. Tools and interfaces in the applied design flow.

Formal synthesis

aligned

ÊÊÊÊ
ÊÊÊÊ
ÊÊÊÊ

Formal
specifications

logic
synthesis

vhdl mixed
simulation

LAMBDA4.2
formal synthesis

ËËËË
ËËËË
ËËËË

Transformational
Module

at the designer’s choice, and enhance usability. A formal
synthesis process starts with the formalization of the
specification of the device. This phase involves:
� � the definition of the external interface for the global

device;
� � the partitioning of the global specification in an

architectural description of high level modules;
� � the definition of formal specifications for the high level

modules.
A DSP–like complex ASIC, typical of the telecom

application area, has been chosen to test the design flow going
from high–level formal based synthesis down to the physical
level. The device implements an arithmetic co–processor to
control the incoming rate of Asynchronous Transfer Mode
(ATM) connections. It applies a specific algorithm and is part
of a board including other ASICs, memories, an internal bus
and I/O interfaces. The device was completely specified and
formally synthesized. Sub–modules of this ASIC are used in
the paper as working test–benches to support with practical
examples and figures the proposed approach.

B. The top level analysis of the device

The goal of the initial design phase is to define the global
behavior of the component through the definition of its
external interface and the identification of the relationship
with the environment. In many cases the global behavior of the
device is usually not consolidated at this stage, and various
details are subject to changes to accommodate requirements
from the board on which the device will be placed. The
specification of other components of the board can also impact
on the device under design. As a consequence, the
specification must be abstract and flexible enough to cope with
progressive refinements required by the environment.
Moreover the specification has to be modified in order to
accommodate a more efficient implementation in hardware.

When an algorithmic description of the behavior of the
device is available, the definition of the interface between the
external environment and the module involves the definition
of control signals and data busses. A first logic partitioning of
the module identifies a control/computational part and
memories. The formalization of the overall control flow of the
behavior of the component involves the identification of
macro functionalities. The constraints relative to the
parallel/sequential execution are expressed involving internal
control signals and delay elements. Data flow is naturally
described in ML, but control flow is not, due to the functional
nature of the language. This limitation imposes the definition
of a partitioning strategy in blocks and the description of the
control flow in terms of communication/activation protocols.
From this description the specification in ML can be
efficiently derived. This solution constraints the theoretical
potentiality of generating formal alternative architectures
because the initial partitioning phase must always be
pre–defined by the designer.

The macro functionalities belonging to this top–level netlist
can be classified in three groups: memory elements and
registers, control blocks, usually represented as Finite State

Machines (FSMs), and computational blocks. The
specification strategy is different from case to case. Registers
and FSMs are characterized by recursive functions
representing the states and by a set of functions representing
the combinational parts. Recursive functions update the values
of the internal states and of a subset of the output signals from
previous states and a subset of the input signals. On the
contrary, a more traditional functional description is applied to
describe the computational modules.

The ML code for the top level specification consists in a
term, called ’abbreviation’, representing the chosen
partitioning, the external interface and the internal signals (30
lines of code). After partitioning, when the specification of the
macro functionalities and associated blocks are considered,
the specification amounts to 700 lines of code, including
almost 150 ML functions, of which 25 are recursive. Four
datatypes are defined and 4 different types of registers are
introduced.

This specification differs considerably from those written
for logic synthesis or simulation. In fact hardware description
languages, such as VHDL, maintain the imperative approach,
and their semantics ([24],[25]) are defined in terms of
simulation, so stressing considerably the timing properties. In
addition to this, hardware description languages utilize models
(signals, timing properties, asynchronous processes, etc.) that
have been introduced in order to express more naturally the
behaviors of hardware components.

On the other side the advantages involved in the use of
formal–based tools in the first phases of the design flow are
quite evident. Approaches based on interfacing VHDL to ML
have been considered to solve the problem of having
simultaneously a visible user–friendly and hardware oriented
language for designers and a good internal logic representation
language for formal manipulation. In a recent approach [26]
the full VHDL language has been considered with only a few
restrictions. The result of the translation phase is not only an
ML program but also a file that contains rules allowing the
automatic simplification in LAMBDA of the generated
description. An alternative approach consists in introducing
specific graphical tools (i.e. timing diagrams editors, spec
charts editors, etc.) that simplify the designer’s specification
effort and in linking them to a formal based environment which
allows to check the correctness of their definition ([27],[28],
[29]).

C. Alternative, formally derived implementations of the device

In the formal synthesis phase the designer proceeds to derive
a hierarchical implementation of the device starting from the
previously described specification. The top–down approach is
mainly used during the first steps of the synthesis. Functions
included in the specification are instantiated as Black Boxes,
in order to identify and introduce different hierarchic levels.
The bottom–up approach is useful to assemble and merge
pre–existing modules in order to derive different partitioning
solutions to improve area overhead and timing properties.

 The results of two alternative formal synthesis processes
applied to the ASIC described in section III,A have been

compared. The two implementations are characterized by the
fact that the components have been differently assembled into
user–defined blocks. Both cases represent hierarchic
descriptions of the device with four levels of depth.

One case resulted more compact in terms of the number of
elementary cells included in the final netlist (236 elementary
cells vs 330). This effect is due to a refinement in the
specification style for control blocks and finite state machines.
This result highlights the relevant role of the designer’s
choices in determining the global area overhead for the
implementation of the device. Even if the number of cells is
not directly related to the number of equivalent gates
appearing in the final implementation (further optimization
procedures can reduce dramatically this figure), it gives
anyway an idea of the quality of the synthesized device.
Alternative partitioning schema, obtained using the tactics for
merging/assembling, can help in exploring the design space in
order to reach different implementations.

IV. DESIGN CONSTRAINTS AND FEEDBACKS TO THE

SPECIFICATION PHASE

 The activity of the lower level design phase starts from the
RTL description provided by LAMBDA in terms of a set of
VHDL entity declarations and structural architectures. After
instantiating the necessary parameters, using an interactive
interface prompting the designer for the missing information
(i.e. range of busses, and so on), a gate level implementation of
the device is generated through logic synthesis. At this stage
figures of merit are available to quantify the compliance of the
obtained implementation to the environmental constraints. In
this way qualitative back–annotations are defined going from
the lower levels towards the upper and more abstract levels of
the design flow. The final goal is to derive an automatic
implementation through synthesis that is comparable, in terms
of physical constraints, with the one optimized ’by hand’ by
the designer (in the following referenced as Imp_0),
characterized by an area of 8192 equivalent gates and a clock
period of 51.44 nsec.

Only a qualitative comparison of these figures is possible
because of the different implementation technologies (CMOS
1.2 �m and 0.8 �m ”Sea of Gates”) and the different number of
accesses to RAM for a read/write operation on a 64 bits word (4
words of 16 bits are read/write one after the other).

A. Alternative implementations exploring the design
environment

The first synthesis in LAMBDA (L_imp1) refers to an
architecture of the device including instances of all the three
different classes of modules considered in the previous
section: control blocks (finite state machines), memory
elements (registers and register files) and computational
blocks operating in synchronous mode. The modules are here
constrained by a start/end communication protocol for mutual
activation/deactivation. The specifications of the FSM blocks
follow a classical style (different actions are performed
according to the value of an internal state and the input
patterns). Their implementations are characterized by a

register for storing the internal states and combinational blocks
to implement the evaluation part. The specification of the
computational block follows a functional approach,
implementing a hierarchy of functions at different levels of
detail. The synthesis of this module follows the schema of
instantiating different blocks for every different functional
level and identifying basic blocks for each functional operator.
Specific delay properties are associated to each operational
block, representing the computational timing effort of the
function. These delay properties are relevant because they are
propagated upwards till the top–level, and generate the global
timing property of the device.

Registers Counter FSMs Comput.
 module

 ASIC
 tot.

L_imp1 5212 527 527 26560 33023

Imp1opt. 5052 513 418 26362 32641

L_imp2 4097 212 394 4712 9705

Imp2opt. 4095 210 282 4697 9571

Table1. Synthesis results in eq. gates for the main modules
of the ASIC for alternative implementations.

Some optimization steps have been subsequently applied by
the logic synthesis tool in order to minimize the area and the
timing. Area is expressed by the number of resulting
equivalent gates of the final implementation. The timing
property is expressed by the clock phase generated, i.e. the
maximum delay associated to all the combinational sub–nets
included between sequential elements. The first row in Table 1
contains the number of equivalent gates resulting from the first
mapping of the circuit L_imp1 in the chosen technology
(H4CP3 MOTOROLA – CMOS 0.8 �m ”Sea of gates”)
subdivided by modules. The second row contains the values of
the same parameters after a first area optimization phase. The
timing value corresponding to this implementation was equal
to 102 nsec.

The first remark concerns the value of the resulting area
(about 4 times larger than that of Imp_0). The area
optimization process of the synthesis tool is not able to reduce
significantly this parameter. The timing parameter (clock
phase) is also not satisfactory, even if a significant
improvement was obtained in the optimization on the critical
block (computational module) from 102 to 67 nsec. On the
contrary the two control blocks based on FSM representations
are efficiently implemented, and the registers and memory
blocks (including the internal counter) don’t represent a
bottleneck neither from the area point of view (16.8% of the
complete device) nor from the timing aspects. The
computation block is the most critical. Its dimension (80% of
the total area) is not justified by the complexity of the
algorithm. The first sub–module, that computes an addition
and a comparison, requires an area comparable with that of the
RegFile. The second sub–module, where two subtractions, one
multiplication and one complex shift operation are
implemented, requires the 43% of the global are. The

additional logic included at the top level of the module uses the
rest of the total area (30%).

A closer analysis of the top level of the computational
module shows the presence of delay components, introduced
during the formal synthesis phase for synchronization
purposes. The assumption is that they balance the delay
property associated to every computational block of the netlist
allowing data to reach synchronously the following block.
These components are logic synthesized as arrays of latches (in
case of delay equal to one clock step) and arrays of FIFOs (in
case of delay greater than one clock step). The delay property
associated to the operational blocks were based on the
computational complexity of the functionality and not on
realistic implementation aspects. As a consequence, the
resulting memory elements introduced can effectively
generate the observed area explosion (30% of total).

To remove this arbitrary overhead, synchronization
components are to be minimized, i.e. the formal synthesis of
computational modules must be performed reducing as much
as possible the number of delay components in the netlist. To
do so, no delay properties are associated to the computational
blocks belonging to the lower levels. In this way a reduced
number of synchronization components is added. This action
is legal because it has no impact of the semantic of the
specification. Further improvements can be obtained
optimizing the VHDL functional library. The behavior of the
library elements must be written avoiding as much as possible
the use of statements that involve a complex hardware
implementation after the logic synthesis phase. Applying these
guidelines, L_imp2 was obtained (final two raws of Table 1).
The area is considerably reduced. The timing value on the
contrary increased up to 152 nsec.

B. Results and figures of merit

The resulting clock period characterizing L_imp1 is much
higher than that of Imp_0, so undermining the obtained
solution. Further guidelines were identified with the goal of
decreasing this parameter, without increasing the area. The
computational module resulted the most critical one in terms
of physical constraints. So the design efforts were focused
mainly on this module. The alternative implementations differ
mainly in two aspects: different design strategies, including
varying degrees of component re–use, and different
granularity for computations. Every different implementation
is represented by a point in a bi–dimensional space (figure 4),
whose axes are the area dimension (number of equivalent
gates) and the timing value (the clock phase in nanoseconds).
Implementations related to the same synthesis strategy have
been connected with dashed lines. This diagram shows clearly
that there exists a circumscribed area including most of the
obtained implementations (dashed area in figure 4). Most of
theses cases are comparable with Imp_0 even if none of them is
more efficient in both area and timing. Implementation
L_imp7, for instance, has an area dimension 4.54% and a
clock phase 16.12% greater than Imp_0. In most cases area and
timing show an opposite trend: the ”best” area implementation
(L_imp5) requires a timing value greater than other

�$������#'�(��� &� ��&�%�

��!��� "�$�!�
� %���

Telecom ASIC

��� $��'%�� %&$�&��*�� �'�&�"����&�! � &�$!'��� &)!� ���&� "$!�'�&%
��� $��'%�� %&$�&��*�� �'�&�"����&�! � &�$!'��� �!'$� 	���&� "$!�'�&%
�� ��"���� &�&�! � �� ���+� �� %* ��$! �+�&�! � ����� &%

����"�

�� ��"���� �� ��!"&���+��� ��"���� &�&�! �

Figure 6. Comparison of the obtained implementations

����"

����"�

����"�

����"	
����"�

����"

��"��

��

��

��

��

	�

�

���

���

	��
�� ���� ���� ����

implementations; and, on the other way, the best timing
implementation (L_imp3) requires the largest area.

These results show that it is not possible to identify a unique
synthesis strategy leading to an absolute optimal solution. The
area and timing constraints are the milestones that allow the
identification of an optimal circuit implementation in
compliance with the system level design requirements. For
this reason these two parameters must be kept under control
even at the highest levels of specification and partitioning. The
described pragmatical guidelines allow the designer to keep
trace of low level constraints when operating at an abstract
level so enhancing the final quality of the implementations,
which is the ultimate goal of any industrial design flow.

V. CONCLUSIONS

In this paper we have described the prototype of an
innovative design methodology with associated tools
supporting both formal reasoning and standard design
techniques in a unified design flow. This new approach can be
applied to the design of complex ASICs, to increase the global
quality of the produced devices coupled with a decreased
time–to–market. From this research activity suggestions have
been collected to make the tools more user–friendly and more
accepted to the users’ community.

Based on the design experience of a meaningful example,
figures of merit have been provided in order to prove the
advantages of quantitative evaluation means. They
complement the qualitative, and somehow subjective, analysis
which can be applied in the high level design phase. Design
guidelines have been suggested, based on the outcome of the
experimental results. Limitations of the approach are related to
complexity. An engineering phase on the tools must precede

the successful application of this methodology to different
classes of designs of increasing complexity.

REFERENCES

[1] M.Fourman, E. Mayger, ’Formally Based System Design – Interactive
Hardware scheduling’, G. Musgrave, U.Lauther (eds), VLSI ’89,
Elsevier (1989)

[2] S. Finn, M. Fourman, M. Francis, R. Harris, ’Formal System design –
Interactive Synthesis based on Computer–Assisted Reasoning’, Proc.
IFIP WG 10.2, 10.5 Workshop, North Holland, (1990)

[3] R.B. Hughes, G. Musgrave, ’Design Flow Graph Partitioning’, HOL
’92, IMEC Leuven Belgium, (1992)

[4] M. Bombana, P. Cavalloro, G. Zaza, ’Specification and formal synthesis
of digital circuits’, Proc. IFIP TC10/WG10.2 Workshop, North Holland,
(1992)

[5] C. Bolchini, M. Bombana, P. Cavalloro, C. Costi, F. Fummi, G. Zaza, ’A
design methodology for the correct specification of VLSI systems’,
Euromicro ’93, Barcelona, (1993)

[6] G. Bezzi, M. Bombana, P. Cavalloro, S. Conigliaro, G. Zaza,
’Quantitative evaluation of Formal–based Synthesis in ASIC Design’,
Proc. II Conference on TPCD’94, Bad Herrenalb (1994)

[7] L. Claesen, M. Genoe, E. Verlind, F. Proesmans, H. De Man,
’SFG–Tracing: a methodology of design for Verifiability’, Proc. Adv.
Res. Workshop on Correct Hardware Design Methodologies, Turin,
(1991)

[8] T. Robles Valladares, A. Marín López, C. Delgado Kloos, T. de Miguel
Moro, G. Rabay Filho, ’Automatic Hardware Implementation of Formal
Specifications’, III Jornadas de Concurrencia, Gandía, (1993)

[9] W. Grass, M. Mutz, W. D. Tiedeman, ’High–level synthesis based on
formal methods’, EUROMICRO’94, Liverpoool (1994)

[10] T. Kropf, K. Schneider, R. Kumar, ’A formal framework for high level
synthesis’, Proc. II Conference on TPCD’94, Bad Herrenalb (1994)

[11] K. L. McMillan, ’Fitting Formal methods into the Design Cycle’, DAC
’94, San Diego (1994)

[12] D. L. Perry: VHDL, McGraw–Hill, Inc. (1991)
[13] LEDA: VHDL System, Meylan (1993)
[14] C. Costi, ’A VHDL subset definition for simulation and synthesis in the

Italtel environment’, ITALTEL Technical Report, (1992)
[15] M. Miserandino, ’ITL_TOOLKIT 1.0’, Italtel Sit, Milano (1992)
[16] Mentor Graphics: Getting started with Falcon Framework, (1991)
[17] F. Anceau, ’Formal verification in industrial environment’,Workshop

on Formal Methods, L’Aquila, (1989)
[18] F. Anceau, ’Panel on formal methods in hardware design’, 10th Int.

Symp. on Computer Hardware Description Languages, Marseille,
(1991)

[19] CLSI Solutions: VFormal, (1993)
[20] W. Damm, H. Hungar, P. Kelb, R. Schloer, ’Using graphical

specification languages and simbolic modelchecking in the verification
of a production cell’, FZI’93, (1993)

[21] T. Filkorn P. Varkentin,’Internal representation of Transition Systems
based on BDDs’, V1.1 tech. rep. ZFE BT SE 11/F1, Siemens AG (1993)

[22] AHL: Lambda Reference Manual – Version 4.1, London (1992)
[23] R. B. Hughes, G. Musgrave, ’Design–flow graph partitioning for formal

hardware/software codesign’, in Software/Hardware Codesign, ch. 10,
Rozenblit and Buchenrieder (eds), IEEE Computer Society Press,
(1994)

[24] S. Olcoz, J. M. Colom, ’Toward a Formal semantics of IEEE Std. VHDL
1076’, EURO–DAC ’93, Hamburg (1993)

[25] W. Damm, B. Josko, R. Schloer, ’A net–based semantics for VHDL’,
EURODAC’93 Hamburg (1993)

[26] G. Umbreit, ’Providing a VHDL interface for proof systems’,
EURODAC’92, Hamburg (1992)

[27] R. Schlör, W. Damm, ’Specification and verification of system–level
hardware designs using timing diagrams’, EDAC ’93, (1993)

[28] W. D. Tiedeman, S. Lenk, C. Grobe, W. Grass, ’Introducing structure
into behavioral descriptions obtained from timing diagram
specifications’, EUROMICRO’93, Barcelona (1993)

[29] J. Helbig, P. Kelb, ’An OBDD–representation of state charts’,
EDAC’94, Paris (1994)

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

