
1 of 6

Automatic Layout Synthesis of Leaf Cells

Sanjay Rekhi, J. Donald Trotter, and Daniel H. Linder

Microsystems Prototyping Laboratory
NSF Engineering Research Center, 2 Research Blvd.
Mississippi State University, Starkville, MS 39759

Abstract ––This paper describes algorithms for automatic layout
synthesis of leaf cells in 1–d and in a new 1–1/2–d layout style, useful
for non–dual circuit styles. The graph theory based algorithms use
concepts set forth by Euler and Hamilton to achieve two tasks. The
transistor placement algorithm uses the Euler’s theorem, while the
placement of the groups of the transistors is achieved by using
Hamiltonian graphs. Results show that the algorithms produce
extremely competent layouts when compared to other algorithms
in the literature and manual layouts.

I. INTRODUCTION

This paper addresses the layout generation of functional cells,
defined as basic functional entities in a design, but more commonly
called “cells.” These are classified as one–dimensional (1–d) and
two–dimensional (2–d) cells. A one–dimensional cell is an array of
transistors in which all drain and source terminals lie along a single or
double horizontal row(s) of diffusion and the growth of the cell is in one
direction only, usually along the horizontal axis. Two diffusion arrays
are typically used for a CMOS technology, one for the pull–down
circuit (Ndiffusion) and the other for pull–up (Pdiffusion). In the
two–dimensional cells, the Ndiffusion and Pdiffusion are not restricted
to single horizontal lines and growth is in both directions, i.e., along the
horizontal and the vertical axes with multiple rows of Pdiffusion and
Ndiffusion. Algorithms which automatically generate the symbolic
representation of the functional cells from a schematic representation
have been described. In a symbolic representation of a cell, various
components such as the transistors and the nets are placed on a virtual
grid relative to the placement of other devices rather than at fixed
locations defined by the process design rules. Different design rule
dependent views or physical views can then be compiled from the
symbolic view for a given process technology.

The algorithms are capable of generating the functional cells in the
one–dimensional layout style and also in a new layout style, which is
considered to be  one–and–a–half–dimensional (1–1/2–d). In 1–1/2–d
the Pdiffusion is not restricted to be placed in a single row. Some
Pdiffusion could be placed in the Ndiffusion row; similarly, the
Ndiffusion is also not restricted to be placed in a single row. Thus, there
is some restricted growth along the vertical axis. Fig. 1 shows the layout
style for the 1–d functional cell and the new 1–1/2–d functional cell.

ÑÑÑ
ÑÑÑ
ÓÓÓ
ÓÓÓ

ÑÑÑ
ÑÑÑ
ÓÓÓÓÓÓÓ
ÓÓÓÓÓÓÓ

ÓÓÓÓÓÓÓ
ÓÓÓÓÓÓÓ

ÑÑÑ
ÑÑÑ1–d 1–1/2–d

P–diffusion
N–diffusion

Fig. 1 One and One–and–a–half Dimensional Functional Cell

The new layout style allows functional cell layout generation usable
by standard place–and–route packages for different logic implementa-
tions. This paper describes graph theory based algorithms for the task
of transistor placement and for the placement of the connected groups
of transistors. The transistor placement task is based on the popular
Euler’s theorem and the task of group placement is influenced by the
Hamiltonian graphs.

The important parameters that are used to traverse a graph are trail
and path. A trail is defined as an alternating sequence of vertices and
edges for which all edges are unique, and a path is defined as a sequence
for which no vertices are repeated. A non–trivial closed trail (order �

3) is called a circuit and a circuit where all except two vertices (start and
end) are distinct is a cycle. Eulerian trail of a graph G is defined for a
connected graph G as an open trail containing all the edges of G. A cycle
of a graph G containing every vertex of G is called a Hamiltonian cycle
of G; thus, a Hamiltonian graph is a graph that possesses a Hamiltonian
cycle.

II . COMPARISON WITH OTHER RESEARCH

Earlier algorithms developed by Uehara and Cleemput [1], Madsen
[2], and Nair et al. [3] can be characterized by their use of the Euler’s
theorem to find the dual–Euler paths in the circuits of series–parallel
nature where the pull–up and the pull–down circuits are duals of each
other. These algorithms do not always find the optimal results. They
ignore routing and heuristically determine the minimum number of
dual–Euler paths. The mathematical basis provided by Chakravarty [4]
determines that choosing an ordering of transistors such that the number
of routing tracks are minimized is an NP–hard problem. This
mathematical analysis is based on the Euler theorem and assumes
series–parallel circuits where the pull–up and the pull–down circuits are
duals of each other.

Other algorithms described in [5]– [10] are based on two fundamen-
tal operations: transistor pairing and placement of the paired groups, the
only differing characteristic being how the transistor pairs are chosen
and how the groups are placed. Wimer et al. [5] first pair the PMOS and
the NMOS transistors to share a vertical column and then form diffusion
chains by using an exhaustive search. If the total number of chains is less
than or equal to five, the group of chains that minimize the overall
circuit cost is found and placed linearly by using an exhaustive search.
If the number of chains is greater than five, then a random placement is
performed. Chen and Chow [6] also begin by pairing the PMOS and the
NMOS transistors in three steps. A weighted bipartite matching
operation is performed to pair the transistors that were not paired either
in the circuit netlist preprocessing step or in the polysilicon gate based
pairing step. A diffusion sharing graph (DSG) is derived from the pairs,
where each vertex represents a pair and an edge indicates sharing of
diffusions between the pairs. The DSG is modified to obtain an
adjacency graph from which the authors derive Hamiltonian paths by
using a branch–and–bound algorithm. The orientation of the transistors
is determined by scanning the placement from left–to–right followed
by a scan from right–to–left.

Ong et al. [7] also begin by pairing the two types of transistors,
followed by formation of the diffusion lines by using a branch–and–
bound algorithm. A diffusion line is formed by a linear placement of the

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or  distributed  for direct  commercial advantage,
the ACM copyright notice and  the title of the publication and its date appear,
and  notice  is  given that  copying  is  by  permission  of  the  Association for
Computing  Machinery.   To copy otherwise,  or  to  republish,  requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50



2 of 6

transistors in the circuit. These lines are then placed linearly; wide
transistors are broken into smaller ones and routing is performed.
Poirier et al. [8] also begin by pairing the two types of transistors to
produce a 2–d layout of the cell. Hwang et al. [10] say that since the
height of the cell is user defined, the layout area can only be minimized
by minimizing the width of the cell. The authors  disagree with this
claim [10] since the height is also important in many cases. The authors
view that the layout area of the cell is reduced by minimizing the width
and the height of the cell, where the most effective way of reducing the
width is by minimizing the diffusion gaps with proper  placement of the
transistors. This also affects the routing density  which  affects cell
height or permissable transistor width. In the synthesis process
described by Hwang et al., the authors maintain the user defined height
by folding the transistors (which increases the width of the layout)
and/or by using cell templates where the horizontal metal–1 or metal–2
[10] power busses are placed in the middle of the cell.

Algorithms based on expert systems have also been devised. These
algorithms use a rule based transistor pairing and placement [11]. The
exact algorithms described in [9] use various classifications of the dual
paths for circuits of height four or less (maximum of four transistors in
series) to determine the transistor placement which provides the
minimum number of gaps and routing channels.

The algorithm described by Madsen in [2] uses the duality principle
to find the Euler’s path for various user specified constraints, e.g., fixed
i/o pin placement, fixed netlist or changeable netlist. The series and
parallel subgraphs are reduced. The path tracing is initiated in the
parallel graph, where all possible paths between two end points are
found. Then the series graph (dual of the parallel graph) is traced to find
the maximum dual–Euler path(s). For the changeable netlist configura-
tion, the edges (transistors) in the series graph (series network) can be
swapped as long as the Boolean logic function is preserved. A gap is
inserted if the next vertex (circuit node) cannot be reached. The solution
which has the minimum number of dual–Euler paths is chosen as the
final solution.

Although our transistor placement algorithm appears to be very
similar to the algorithm described by Madsen [2], it is fundamentally
different; it does not assume duality and does not expect the pull–up and
the pull–down circuits to have the same number of transistors, or even
the same number of input signals. No graph reduction is possible
because of the above assumptions –– unlike the algorithm described in
[2] which assumes that parallel connected transistors will be series
connected in the dual network and vice–versa. Unlike the previous
algorithms, which begin with transistor pairing, our algorithm begins
with a vertex (circuit node) alignment. The best transistor pair for the
selected vertices is then determined. This is different from the delayed
binding procedure described in [2] which finds a linear placement of the
transistors in the series graph for all possible linear transistor placements
in the parallel graph.

The transistor netlist is expected to be non–changeable. No
reordering is attempted as the layout generator is expected to be driven
by an optimizer described in [12] that produces optimized schematics
considering the global constraints, e.g., performance requirements.

III . PROCESS OF LAYOUT SYNTHESIS

Fig. 2  shows the block diagram of the entire layout synthesis
process. The process  consists of three major parts: Placement, Routing
and Rendering. The first part is the placement program, which consists
of graph determination and partition phase, the placement of transistors
for each partition and the placement of the partitions (or subcells).  The
output of the placement program is a partial symbolic view for which
the transistors are placed on a virtual grid. The second part is the routing
program which operates on the partial symbolic view and creates the

routed symbolic view of the cell.  Our goal is to enable the user to edit
directly the symbolic view to improve the results of the placement and
the routing programs since additional design considerations may be
important, e.g.,  performance vs poly resistance. The optimized
symbolic view of the cell is the input to the rendering program, which
creates the detailed layout of the cell based on user defined properties,
e.g., width of the power busses, height of the cell, etc. The design rules
and the final device sizes are also input to the rendering program. The
symbolic view is created by assuming a standard device size. If a final
device size is larger than the “permissable” device size, the placement
and the routing steps are rerun with transistor folding, if necessary.

Symbolic
Editor

Rendering
Program

Routing
Program

Placement
Program Design

Rules
Designer
Options

Device
Sizing

Detailed LayoutSymbolic
View of Cell

Symbolic
Placement

Schematic
Netlist

Routing
Info

Detailed
Routing

Fig. 2 Layout Synthesis Process

The objective of the transistor placement algorithm is to minimize
the number of diffusion gaps in the circuit while trying to minimize the
number of routing channels required to form the interconnect among
the transistors. Fig. 3 illustrates the diffusion gaps and the alignment of
two transistors so that the polysilicon can be on the same vertical
column. Other transistor alignments are also possible as shown in the
left hand side of the figure, common in multiplexer gates, where the
polysilicon gate is not used for alignment. The figure also shows the
horizontal routing tracks.

ÑÑ
ÑÑ

ÓÓ
ÓÓ

ÑÑÑ
ÑÑÑ

ÓÓÓ
ÓÓÓ

ÑÑ
ÑÑ

ÓÓ
ÓÓ

track2

track3

diffusion gap

transistor chaining

transistor
alignment

ÇÇÇÇ
ÇÇÇÇ

track4

ÇÇÇÇtrack1
Â
Â
Â
Â
Â
Â

ÂÂ
ÂÂ
ÂÂ
ÂÂ
ÂÂ
ÂÂ

ÂÂ
ÂÂ
ÂÂ
ÂÂ
ÂÂ
ÂÂ

ÇÇÇÇ
ÇÇÇÇ

Â polysilicon
metal1

Ç

Fig. 3 Related Terminology

IV. ALGORITHMS FOR TRANSISTOR PLACEMENT

A. Graph Transformation and Circuit Partitioning
The layout synthesis process begins with a circuit transformation

procedure, for which the vertex set of the graph is defined by the circuit
nodes and the edge set is defined by transistor labels since there may be
more than one edge per vertex pair. For the graph representation, each
gate input defines a row which contains two sets of edges, one for the
pull–up network and another for the pull–down network. The transistor
source and drain connections, the standard size of the transistors etc., are
also stored in the representation. The vertex lists are separately formed
and are called pverts and nverts for the two networks. The degree of the
vertices, the type of the vertex, etc., are stored in the vertex list. Every
vertex is classified as internal, external or supply. The supply nodes of
the circuit are represented by supply vertices. An external vertex is a
circuit node common to both the networks, and a vertex which is neither
a supply nor an external vertex is an internal vertex. If an edge exists



3 of 6

between two external vertices, then both the vertices are reclassified as
xfer vertices. The common edges, or the transistors, for this arrange-
ment form a transfer gate. This structure has a versatile use and is
extremely popular in the design of latches, flip–flops, multiplexers, etc.

For a cell consisting of smaller sub–functions, the circuit is
partitioned into subcells. For this phase, unique groups (or sets) of
transistors are formed such that the intersection of the vertex lists of the
subcells yields either a null set or a set of supply vertices. Fig. 4 shows
the circuit schematic of a  JK flip–flop cell. The JK flip–flop is made of
many different small subcells. The transistors that are connected at
source or drain to other transistors are considered as strongly connected
transistors. The supply connections are not considered to define the
strong connections among transistors since the various subcells may
share Vdd/Gnd nodes.

pb

p

p

pb

K

JbK

M1 D

D

Jb

x2

Q
x2

clk p

M2 S2

Qb
G3

G5 G7

G4

G6

G1

G0

G2

pb

S1

Fig. 4 JK Flip Flop Circuit Schematic

A recursive graph–partitioning algorithm is used to collapse all
parallel transistors to form a group of series connected vertices. All
vertices that are adjacent to the non–supply vertices in the series–group
are found. This provides all the sub–graphs for the subcells that are
contained within the cell of interest. All of the sub–graphs in the
pull–down circuit set are compared with the sub–graphs in the pull–up
circuit set to find the subcells that have common external or xfer
vertices. These groups from the pull–up set and the pull–down set that
have common external or xfer vertices are merged to form a single
subcell and get  a unique subcell–id number. The various graphs derived
for the JK flip–flop cell after graph partitioning are shown in Fig. 5.

M2
M2

S1

S1
Vdd

Gnd

Gnd

Vdd

Vdd

Gnd

p
p

pb
pb

Vdd

Gnd

Vdd

Gnd

Q
Q

Qb
Qb

Vdd

Gnd

S2
S2

Vdd

Gnd

Gnd

Vdd

M1
M1

D
D

2

1

5

3

6

4

G7G5G4G3 G6G0 G1 G2

Fig. 5 Various Groups in the JK Flip Flop

B.Transistor Placement Algorithm
The transistor placement algorithm operates on a subcell or a group

at one time and begins by finding a set of best vertex pairs (vi , vj ) that
potentially provides the minimum set of trails. The two vertices are
usually chosen such that vi  � {pull–up circuit nodes} and vj  �
{pull–down circuit nodes}, but the selection could be such that vi , vj  �
{pull–up circuit nodes} or vi , vj  � {pull–down circuit nodes}. This
flexibility of choice of vertices has not been observed in any of the
previous algorithms. This flexibility,  coupled with the modularity of
the algorithms, provides a unique capability of being able to generate
layouts for various logic families. Two representative logic families are
chosen to demonstrate this unique capability: the most common and
rich static CMOS logic family with non–dual multiplexer gates,
series–parallel or non–series–parallel transistor interconnections, and

the new CPL logic family.  The logic style is derived from the circuit
graphs, and the layout architecture is determined, 1–d or 1–1/2–d. For
the 1–d layout architecture both the P–graph and N–graph are
considered simultaneously; whereas for the 1–1/2–d layout architec-
ture, the graphs are considered separately.

The weight of the vertices is calculated based on the degrees of the
vertices and circuit configurations. The vertices with a degree of 1 have
the highest weight, followed by the remaining odd vertices which have
a lower weight in descending order of degrees. The even degree vertices
have the lowest weight in the descending order of degrees. The vertex
classification, supply, xfer, external and internal also influence the
weighting criteria. Depending on the distribution of the vertex weights
one of pverts or nverts is chosen as the preferred vertex list. For the 1–d
layout architecture, all vertices in the preferred list are compared to the
vertices in the other vertex list to obtain a set of two vertices. The set
contains one vertex from the pull–up circuit and the other from the
pull–down circuit, which have to be aligned. For the 1–1/2–d layout
architecture, the vertex set is derived from a single vertex list. The set
of two vertices found above for both the layout architectures is called
the seed vertex pair.

A set of transistors (ST) is found for the seed vertex pair, such that at
least one of the source/drain terminals of the transistor pairs corresponds
to the vertex pair, and both the transistors have the same subcell–id. The
transistor pair that forms a multiplexer gate is preferred. Otherwise, the
transistors are aligned based on the gate terminals. If a suitable transistor
pair is not found, then all the transistors in ST are searched to align the
vertex pair, and consequently the transistor pair. If a suitable transistor
pair is not found, then another seed vertex pair is chosen and the process
is repeated.

After the transistors have been aligned, the next vertex pair is derived
from the transistor pair and the process is repeated until all the transistors
in the group have been covered. If incident edges cannot be determined,
then a gap is inserted and the process begins by choosing a new seed
vertex pair.

ÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÓÓÓÓÓÓ
ÓÓÓÓÓÓ
ÓÓÓÓÓÓ

Â
Â
Â
Â
Â

Â
Â
ÂÂ
Â
Â

ÂÂ
ÂÂ
ÂÂÂÂ
ÂÂ
ÂÂ

Â
Â
Â
Â
Â

ÑÑÑÑÑ
ÑÑÑÑÑ
ÓÓÓÓÓ
ÓÓÓÓÓ
ÓÓÓÓÓ

Â
Â
Â
Â
Â

Â
Â
ÂÂ
Â
Â

ÂÂ
ÂÂ
ÂÂ
ÂÂ
ÂÂ

ÑÑÑÑÑ
ÑÑÑÑÑ
ÓÓÓÓÓ
ÓÓÓÓÓ
ÓÓÓÓÓ

Â
Â
Â
Â
Â

Â
Â
ÂÂ
Â
Â

Â
Â
Â
Â
Â

V
dd S1 M2

V
dd

V
dd M1

V
dd

S1 M2

G
N

D

G
N

D

M1 G
N

D

D p

M2

S2 pb

M1

pbp

V
dd DQb K Jb

G
N

D

D
Jb K

V
ddQ

G
N

D

G2 G3 G4

G
N

D

Fig. 6 Transistor Placement for Some Subcells in JK Flip Flop

The trail determination problem for minimum routing tracks is
harder when the pull–up and the pull–down circuits are considered
simultaneously. If the number of PMOS transistors in a circuit are
considerably larger than the number of NMOS transistors or vice–ver-
sa, then the pull–up and the pull–down circuits are considered
separately, enforcing a 1–1/2–d layout style. This style provides an area
improvement over the 1–d layout style if the difference in the number
of transistors is six or more for the MOSIS scalable technologies. No
improvement in area is attained if the difference is four. For the
difference of less than 4, the 1–1/2–d layout style requires more area
than the 1–d layout style due to the spacing rule between the two types
of diffusions. Fig. 6 shows the transistor placement results for a few
selected groups from the JK flip–flop. The layouts of the other groups
in the JK flip–flop are trivial and are not shown. In the group G3 the
signals S1 and M2 form xfer vertices and are aligned as shown. In groups



4 of 6

G2 and G4 there are no xfer vertices, but the correct pairs of transistors
are aligned.

C. Group Placement Algorithm

The transistor placement algorithm can be repeatedly called for the
cells that consist of subcells, as in the JK flip–flop. The transistor
placement algorithm results in sets of unbroken diffusion chains called
groups. The number of groups may not be the same as the number of
subcells because a subcell may result in two or more broken diffusion
chains. The re–grouping algorithm is used to find a linear placement for
the groups such that for any vertical cut across the cell, the number of
nets crossing the cut is minimized. The nets within a group (internal
nets) and nets among groups (external nets) are used to calculate the
value of the cut. The external nets (excluding the power supply nets) are
further classified as a single external net used to interconnect two groups
and a multiple external net that connect more than two groups.

A Group Adjacency Graph (GAG) is derived for this algorithm. The
various groups form the vertex set and the edge set is defined by the
interconnections among the groups. Fig. 7 shows the group adjacency
graph for the JK flip–flop. Complete subgraphs are formed by using
multiple external nets and then pruned such that the maximum
adjacency between groups is preserved. The pruned graph is called the
Minimal Group Adjacency Graph (MGAG), as it preserves the
maximum adjacency and is minimum with respect to the property of
maximum adjacency.  Fig. 7 also shows the MGAG for the JK flip–flop.

2 0 6

1

7

34

5
pb

p, pb

p, pb, M2, M1
S2, S1D

Q S2

Qb S1

S2

pb
p, pbpb

2 0 6

1

7

34

5
pb

p, pb

p, pb, M2, M1
S2, S1D

Q S2

Qb S1
GAG: MGAG:

S1

Fig. 7 Group Adjacency Graphs

A linear ordering of the groups is found from the MGAG to
minimize the maximum number of net crossings across a group
boundary. This task is performed by using a branch–and–bound
algorithm which begins by identifying a set of vertices which have the
maximum weight (internal nets) and minimum degree (default mode).
Alternatively, the user can also force the selection of the seed vertices
by defining a global parameter that makes all the vertices in the MGAG
the seed vertices.

Each seed vertex starts a solution, the vertices adjacent to the seed
vertex are examined to find the one with the maximum degree. If many
vertices have the same degree, then weights are examined to find the
next solution point. If many vertices have the same weight and degree,
then the solution is branched. This recursive process continues until all
vertices have been included or until the solution cannot be grown any
more (incomplete solution). Each incomplete solution is examined for
the remaining vertices to find the complete solutions by using a greedy
algorithm, which modifies the incomplete solution. Each non–included
vertex is greedily put in the incomplete solution such that the increase
in the value of the cut is minimum for each iteration. The final solution
for the JK flip–flop is shown in Fig. 8. The solution has been obtained
by using the default seed vertex selection. The branch–and–bound
algorithm creates only two orderings,  (G5, G7, G4, G3, G6, G0, G2, G1)
and (G5, G7, G4, G3, G6, G1, G2, G0 ).

A recursive algorithm is used to scan the ordered list to merge the
diffusion gaps. For n (n � 3) groups, the second group is checked
against the first and the third. A cost for mirroring group one and/or
group two based on the number of nets crossing the boundary is
estimated. Then the third group is considered and is compared with the
fourth group to calculate the cost for mirroring group three. This
process continues for all the n groups in the cell. The recursive
algorithm takes into account merging two groups and considers the
effect of the new merged group over the entire cost. Thus, many cost
values are calculated. The recursive algorithm continues until no more
merging can occur. A linear scan follows the previous recursive scan to
mirror and merge the groups based on the previously generated cost
values. An interactive capability is also provided to control the group
placement and merging. The relative position for each group is
specified by the user which determines the placement and the routing.

(a)

(b)

Fig. 8 Layouts of the JK Flip–Flop

V. ROUTING

Initially, routing was achieved using YACR which is a symbolic
channel router.  Only  a single routing area was used; thus all the routing
was in the middle of the two diffusion areas. YACR is a two layer router
typically used for routing standard cells with two layers of metal.   Some
post–processing was added to support the routing in polysilicon layer.

Support for two additional types of routing has been created: metal1
routing over the transistor active areas and poly routing in the corridors
under the metal1 supply buses.  The former takes advantage of silicided
processes.  The second is effectively restricted to river routing with three
basic connections: poly wire to poly gate, to poly wires running
vertically through diffusion gaps, and to poly metal contacts.  Since the
latter connection cannot be placed under the power bus, it has only
limited use.  Four general types of wiring have been identified as being
reasonable for poly interconnects: low performance asynchronous set
and reset connections, high resistance feedbacks for latches, reasonably
local internal clocks for multiplexers, and local gate shorts between



5 of 6

neighboring transistors.  The extra poly resistance in the local clock
coming off of the first clock inverter for a flip–flop is actually an
advantage in delaying the signal while the other inverter is responding.

Because the original notion that cell terminals would be placed
during the rendering process led to significant rerouting which canceled
the benefit of previously generated symbolic views of cells, a program
(bipartite matching) was created to place the terminals after transistor
placement.  This has led to partitioning the channel into two or even
three horizontal slices with one or two rows of terminals in the middle.
Fundamentally,  the routing required violates the basic notion of
YACR’s two layers on a uniform grid.  However, effort is continuing
relative to extending and controlling YACR, e.g., track assignment and
the layer assignment algorithms.

 Other routers, e.g., Mentor Graphics’ maze router based Microroute,
are also being investigated. Our initial Microroute results for complex
cells are  less than satisfactory for creating the symbolic view since there
appears to be little “strategic planning”; however, the maze router
results which are design rule correct may fit in fine for the rendering
problem, given the specific design rules.

Fig. 8a shows the symbolic view for the JK flip–flop created with
YACR.  The symbolic view  has only one diffusion gap and contains
five horizontal metal–1 routing tracks. Fig. 8b shows a  manually edited
version with four routing tracks.

VI . RESULTS

These algorithms have been implemented in GENIE, which
provides an excellent prototyping environment, but like any other
interpretive language, has large execution time. The comparison
between execution times for different GENIE and C programs to
implement the same task was performed with the GENIE programs
averaging a factor of 7.41e7 times slower than the C programs. The
GENIE programs are executed from within the Mentor Graphics design
environment. The maximum recorded time to obtain the complete
solutions for the cells described in the previous algorithms while
running Led on a Sun Sparcstation 2 was 20 seconds. For a ring
oscillator circuit consisting of 51 two–input NAND gates (204
transistors), where each NAND gate is enabled with a common signal,
the algorithm takes 17 minutes to find the solution. This circuit
implementation style was chosen so that the worst case branch–and–
bound results can be measured. For the same ring–oscillator where only
the first gate is enabled and the remaining gates have both the inputs tied
together, the algorithm produces the complete solution in 9.4 minutes.

The results produced by the new algorithms have been compared
with the results from the existing algorithms described earlier. TABLE I
shows the comparison of the solutions obtained from our algorithm and
the algorithms in the literature. The algorithms are divided in the
following classes, which represent the type of circuits the algorithms
expect as input.
1. Single Series–Parallel CMOS with dual pull–up and pull–down

circuits and equal number of transistors in both the circuits.
2. Single Series–Parallel CMOS with dual pull–up and pull–down

circuits with transistor folding.
3. Multiple Series–Parallel CMOS with dual pull–up and pull–down

circuits and equal number of transistors in both the circuits.
4. Multiple Series–Parallel CMOS with dual pull–up and pull–down

circuits with transistor folding.
5. Multiple CMOS with dual or non–dual (pass–gate) pull–up and

pull–down circuits with transistor folding.
6. Multiple CMOS with non–planar pull–up and pull–down circuits

without transistor folding.
7. Non Series–Parallel CMOS.
8. General Class of CMOS Circuits.

2
7

12
17
22
27
32
37

2 7 12 17 22 27 32 37
0
5

10
15
20
25
30
35
40

0 5 10 15 20 25 30 35 40

Number of Transistors Number of Transistors

E
xe

cu
tio

n 
T

im
e 

(s
ec

s)

E
xe

cu
tio

n 
T

im
e 

(s
ec

s)

(a) Flip–Flops and Latches (b) Other Cells

Actual
Linear

T–Flip–Flop

Fig. 9 Execution Time vs Complexity

The algorithms described in this paper implement the category of
general class of CMOS circuits, do not  assume any particular logic
style, and determine the correct layout style, 1–d or 1–1/2–d for each
subcircuit.

TABLE I 

COMPARISON OF RESULTS

Reported Algorithm Our Algorithm

Author CC NG PG RT Q NG PG RT Q ET

[6]–Fig 10b 5 1 1 4 5 2 1 3 5 8

[6]–Fig 11b 5 2 2 4 6 1 1 3 4 11

[2]–Fig. 5 1 0 0 5 5 0 0 5 5 4

[9]–Pg. 66 3 0 0 4 4 0 0 4 4 6

[9]–Pg. 72 3 0 0 4 4 0 0 4 4 7

[9]–Pg. 78 7 2 2 8 10 3 3 4 7 8

[9]–Pg. 96 3 0 0 5 5 0 0 5 5 3

[9]–Pg. 126 3 1 1 3 4 0 0 5 5 7

[9]–Pg. 151 3 0 0 6 6 0 0 2 2 4

[9]–Pg. 151 3 0 0 9 9 2 2 5 7 12

[9]–Pg. 152 3 2 2 5 7 2 2 5 7 9

[9]–Pg. 127 3 0 0 3 3 0 0 2 2 2

[5] 5 0 0 – – 0 0 7 7 12

[11] 5 3 3 5 8 2 2 5 7 9

[13]–Fig. 7.7 8 1 1 5 6 0 0 2 2 4

[13]–Fig. 8.5 8 3 3 10 13 3 3 5 8 12

NA 8 – – – – 1 1 6 7 5

NA 8 – – – – 1 1 4 5 6

NA 8 – – – – 1 1 6 7 4

NA 8 – – – – 1 1 4 5 5

NA 8 – – – – 2 2 8 10 9

The table shows the author of the previous algorithm and the
classification of the algorithm CC (1–8 above). The number of
diffusion gaps (NG, PG) and the number of routing tracks (RT) are used
as the basis of comparison. The quality factor Q, is the sum of the
routing tracks and the diffusion gaps. The execution time (ET) for our
algorithm to obtain the solution is also provided in the table.

On an average, about 40% of the total time to execute the three
portions of the synthesis process has been  spent on the graph build and
circuit partitioning portion. Fig. 9–(a) shows the relationship between



6 of 6

the average execution time in seconds to obtain the layout versus the
number of transistors for the latches and the flip–flops in the ITD/MSU
standard cell library. Fig. 9–(b) shows the same for the remaining cells
in the library, including the full–adder, clock generation cell and other
series–parallel and non–series–parallel circuits.

Although a worst case analysis of the algorithms under all of the
worst case conditions leads to a worst case timing vs complexity of
O(T7) where T is the transistor count,  it has not been observed. For the
T–flip–flop with a reset function in the ITD/MSU cell library some of
the groups do not have an xfer vertex, and the pull–up and the
pull–down circuits do not have common gate signals; but the next
vertex pair can be merged. This means that a new seed vertex pair will
not have to be found for every transistor pair. The execution time
observed from Fig. 9–(a) is therefore worse for this cell than for any
other cell.  In practice the execution time is roughly linear with
complexity.

A

B

0

1

p0 p1

p2 p3

n0 n1

4
P–diffusion

N–diffusion

Fig. 10 NOR Gate with Folded PMOS

A Ab

Bb Bb

B

Cb Cb
C

p p

S Sb

12 13

Vdd
P–diffusion

N–diffusion

Fig. 11 Half Adder in CPL

VII . CONCLUSION

The methodology for automatic layout synthesis of a general class
of CMOS functional cells and the necessary placement algorithms to
implement this process have been described in the paper.  The
additional support for the 1–1/2–d layout style facilitates efficient use
of layout area for logic styles with mostly NMOS or mostly PMOS
transistors. Fig. 10 shows the placement  result  for a two input NOR
gate where each PMOS transistor is individually folded. Fig. 11 shows
the placement result for a half–adder in the CPL logic style and its
1–1/2–d solution.  Even with all the extra features that are not found in
most of the other algorithms, our algorithms provide extremely
competitive results when compared to other algorithms in the literature
and to handcrafted layouts. While many algorithms have claimed linear
order of execution time, their solution spectrum is limited to only static
single cell series–parallel circuits. The algorithms described in this
paper are not only quite flexible in supporting various circuit styles, but
are also run–time efficient, being roughly linear with complexity.

Although the layout generator results are essentially as good as hand
layouts for medium or smaller cells, the group placement algorithm
needs improvement for the complex cells to compete with handcrafted
layouts.  As one should expect, the group placement has a tremendous
impact on routing.  Presently, where handcrafting leads to perhaps four
horizontal tracks in a flip–flop, the automatic generation leads to

perhaps 5  tracks.  Consequently, plans are in place to incorporate an
improved weighting scheme based on the following:
1. Reduce solution space consistent with minimum cell width by de-

termining minimum possible number of diffusion gaps and by
maximizing power supply sharing between neighboring groups,
i.e., strategically place the groups which contribute gaps.

2. Consider intragroup interconnections with a weight based on frac-
tional distances across the group width to support sharing of tracks.

3. Consider the impact of poly routing under the power buses and
metal 1 routing over the diffusions relative to the wiring cross–sec-
tion in the channel with due consideration for performance.

4. Consider terminal placement and associated interconnections.
These considerations  lead in the case of the JK flip–flop to the  group

placement: (G7,G5,G4,G3,G0,G2,G1,G6).

For general usability, the programs will also have to be re–coded
from GENIE to a portable and more powerful language, e.g., C++. The
transistor placement algorithm lends itself very well to parallel
execution if the cell consists of multiple groups. The solution for each
group can then be found separately. The branch–and–bound algorithm
used for the group placement algorithm also lends itself very well to a
parallel program. The different seeds selected in the algorithm can be
used to grow the solutions on separate computers to obtain the complete
solutions to the group placement problem. Our long–term goal is to
utilize parallel programming to obtain the layout for complete row(s) of
cells and to extend our 1–1/2–d algorithm to a 2–d algorithm.

REFERENCES

[1] Uehara T., and Cleemput W. M., “Optimal layout of CMOS functional
arrays,” IEEE Transactions on Computers,  Vol. C–30, p.p., 305–312,  May
1981.

[2] Madsen J., “A new approach to optimal cell synthesis,” IEEE International
Conference on Computer–Aided Design, p.p., 336–339, November 1989.

[3] Nair R., Bruss A., and Reif J., Linear time algorithms for optimal CMOS
VLSI: algorithms and architectures, (P. Bertolazzi and F. Luccio edition),
Amsterdam, Elsevier North–Holland, p.p., 327–338, 1985.

[4] Chakravarty S., He X., and Ravi S. S., “Minimum area layouts of
series–parallel transistor Nnetworks is NP–hard,” IEEE Transactions on
Computer–Aided Design, Vol. 10, No. 7, p.p., 943–949, July 1991.

[5] Wimer S., Pinter R. Y., and Feldman J., “Optimal chaining of CMOS
transistors in functional cells,” IEEE Trans. on Computer–Aided Design,
Vol. 6, No. 5, p.p. 795–801, September 1987.

[6] Chen C. C. and Chow S.–L., “The layout synthesizer: an automatic
netlist–to–layout system,” IEEE 26th Design Automation Conference, p.p.
232–238, June 1989.

[7] Ong C.–L., Li J.–T., and Lo C.–Y., “GENAC: An automatic cell synthesis
tool,” IEEE 26th Design Automation Conference, p.p. 239–244, June 1989.

[8] Poirier C. J., “Excellerator: custom CMOS leaf cell layout generator,” IEEE
Trans. on Computer–Aided Design, Vol. 8, No. 7, p.p. 744–755, July 1989.

[9] Maziasz R. L. and Hayes J. P., Layout minimization of CMOS cells, Kluwer
Academic Publishers, Boston MA, 1992.

[10] Hwang C. Y., Hsieh Y. –C., Lin Y. –L., and Hsu Y.–C., “An efficient layout
style for two–metal CMOS leaf cells and its automatic synthesis,” IEEE
Transactions on Computer–Aided Design, Vol. 12, No. 3, p.p., 410–424,
March 1993.

[11] Kollaritsch P. W., and Weste N. H. E., “TOPOLIZER: An expert system
translator of transistor connectivity to symbolic cell layout,” IEEE Journal
of Solid–State Circuits, Vol. SC–20, p.p., 799–804, June 1985.

[12] Rekhi S.,“Automatic layout synthesis of leaf cells,” Ph. D. Thesis,
Mississippi State University, December 1994.

[13] Baltus D. G., and Allen J., “SOLO: A generator for efficient layouts from
optimized MOS circuit schematics,” IEEE 25th Design Automation Confer-
ence, p.p., 445–453, June 1988.


	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index


