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Abstract— An efficient algorithm is proposed to tackle
the performance-driven partitioning problem using re-
timing and replication. We devise a replication graph
to model the composite effect of replication and re-
timing. With the replication graph, we formulate the
problem as an integer linear programming problem. A
heuristic algorithm is derived to solve the problem by
exploring the dual program of its linear programming
relaxation.

1 Introduction

Due to the physical geometric distance and interface
technology limitations, intermodule delay is contributing
the dominant portion of signal propagation delay. Con-
sequently, we should take into account the intermodule
delay for performance-driven partitioning.

For partitioning problem with timing and size con-
straints, Shih et al. [12, 13] propose a algorithm to guar-
antee that the delay between registers satisfies the timing
constraint. In [9, 10], Liu et al. propose the partitioning
algorithms using a retiming technique [6] to explore the
ultimate clock period of the circuit.

As mentioned in [9], replication [5, 4] on parts of the
circuit can improve the clock period of the partition. How-
ever, the combination of replication and retiming compli-
cates the partitioning problem. No systematical solution
has been proposed yet.

In this paper, an efficient algorithm is proposed to
tackle the performance-driven partitioning problem using
retiming and replication.

2 Statement of Problem

In this section, we first take an example to show that
replication can improve the crossing edge count and the
clock period simultaneously. Then we introduce the def-
initions and state the performance-driven partitioning
problem.

2.1 Motivation of This Paper

Fig. 1 shows a circuit of six combinational elements (in
circles) and five registers (in retangles). Each combina-
tional element has its delay and size, while all registers
have zero delays and sizes. Each combinational element
is labeled with a delay (d). As in [9, 10], we assume that

the combinational blocks are fine-grained and therefore
can be split or merged. We also assume that each regis-
ter in the circuit has a single input and a single output
since a physical circuit can be transformed into this way
as shown in section 8 of [6].

.

Figure 2: Replication improves partitioning

In Fig. 2, we show an example that replication can
improve the crossing edge count and performance. Each
edge in Fig. 2 1s labeled by its capacity and associated with
one register. In the partitioned circuits, the intermodule
delays are depicted as shaded nodes and all are assumed
to have the same delay of value 2. For a partition in
Fig. 2(a), the clock period is equal to 3. Loop (S, R, S) has
total delay time 6 and register count 2. Thus, the delay-
to-register ratio of this loop is equal to 3. Based on this
partition, we cannot get a clock period less than 3 even by
retiming. Furthermore, the partition has a crossing edge
count 10.

Fig. 2.(b) shows the circuit with node R in Fig. 2.(a)
being duplicated. The replication results in a cut with
crossing edge count equal to 2. Before retiming, the clock
period of the partition in Fig. 2(b) equals to 3. By shifting
the registers to the new locations as indicated by dash
lines, we can achieve a clock period 2.
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2.2 Definitions

Data Flow Graph: We use a directed data flow graph
G = (V, E) to represent a circuit, where V and F model
the combinational elements and the interconnections, re-
spectively. Each node i 1s associated with a size s;. By
distributing the combinational delay of node ¢ into the
output edges of 7, each edges (¢, j) have a delay time d;;.
For a node with no output edges, the delay is placed on
its input edges. Each edge (7,j) has a register count r;;
which denotes the number of registers on the intercon-
nections from combinational element ¢ to j. Furthermore,
each edge (4, j) is associated with a capacity ¢;; represent-
ing the number of interconnections from node ¢ to j.

In this paper, we focus on two-way partitioning. We
use function size(X) to denote the total size of a node set
X. The upper size limits of two partitions are denoted by
Z1 and Zs, respectively.

Partitioning with replication is strongly related to the

directions of edges. For two disjoint node sets X and Y,
we use [X — Y] to denote the directed cut set from X to
Y. Therefore, [X — Y] contains all the cut edges (¢, )
such that i € X and j € Y. We use function ¢([X — Y])
to denote the total capacities of the edges in [X — Y.
Retiming: Given a data flow graph G = (V| E), a re-
timing [6] specifies a transformation of the original graph
in which registers are added and removed. Lerserson et
al. [6] propose an O(nmlogn) algorithm to determine
the minimum clock period achieved by adopting retim-
ing, where n and m denote the numbers of nodes and
edges, respectively.
Iteration Bound: While retiming can reduce the clock
period of a circuit, there is a lower bound imposed by
the feedback loops in the data flow [11]. Given a feedback
loop {, let d; and r; be the sum of edge delays and the sum
of registers on loop I, respectively. The delay-to-register
ratio of [ 1s equal to f—l’. The iteration bound J is defined
as the maximum delay-to-register ratio, i.e.,

Y loop [ .

d;
max (T_l)

J =

Note that if loop ¢ contains cut edges in a partition, the
total edge delay has to include the cut delays.

Cycle Mean Problem: For the special case that each
edge has exactly one register on it, the iteration bound
problem becomes a cycle mean problem [1]. In our test
cases, each combinational block node connects between
two register nodes. We can identify the iteration bound
and the edges that contribute to the bound in O(nm)
time.

Timing Constraint: We use the iteration bound con-
straint as the timing constraint in this paper. We have
two reasons to use the iteration bound. (i) Tt is faster to
calculate the iteration bound. (ii) The iteration bound
stands for the lower bound of the clock period can be
achieved by retiming.

2.3 Problem Formulation

Given a data flow graph G = (V| E) and three node
sets S, R and T such that SNT =0 and R=V —-S-T

as shown in Fig. 2(a), Fig. 2(b) presents a partitioning
with R being the set of replicated nodes. Each copy of R
needs to collect a complete set of input signals.

Given two disjoint sets S and T, let a replication cut
[S,T] denote the cut set of a partitioning with R =V —
S — T being duplicated. From Fig. 2(b), we can see that
replication cut [S,T] is the union of four directed cuts,

[S,T]=[S—TIU[T — S]U[S — R]U[T — R].

[T—=T]

[s—-9

Figure 3: Two directed cuts

Interpretation of the Cut Set: Suppose we rewrite
the replication cut in the format:

[S,T] =[S — SJU[T — T]

where S and T denote the complementary sets of S and
T, respectively. We can interpret the cut set of the repli-
cation cut [S, T as two directed cuts on the original graph
G as shown in Fig. 3.

Time-Constrained Replication Cut Problem:
Given a directed graph G and a ratio K, find a replication
cut [S,T] with an objective

min ¢([S, T]) = ¢([S — SJU[T — 1)
subject to the size constraints that
size(SUR) < 71, and size(T' U R) < Za,
and the feastble constraints
SNT=0R=V-S-T
and the timing constraint

iteration bound of [S,T] < K.

3 Investigation of the Problem

In this section, we first show that the time-constrained
replication cut problem without size constraint is A7P-
Hard. Then, the edge dependency problem caused by
replication in retiming is illustrated.

By reducing from 3SAT, we have the following theo-
rem [7]:

Theorem 1: The time-constrained replication cut prob-
lem without size constraint is N'P-Hard.

Edge Dependency of Replication in Retiming: Due
to the replication, the loops which entirely locate in the set



Figure 4: (a) Replication cut [S,T] (b) Duplicated graph G*

of nodes SU R or T'U R will not be cut. Only those loops
which intersect both node sets S and 7" will be cut. We
use Fig. 4 to explain this concept. Given a graph G and
a replication cut [S, T'] as shown in Fig. 4(a), graph G¢ in
Fig. 4(b) represents the graph with node set R duplicated.
Due to the replication, directed edge (e, a) in G emanates
from R to S on the same side of the partition and thus
does not cross the cut. Similarly, directed edge (b, c) in G¢
emanates from R to T on the same side of the partition
and thus does not cross the cut.

The loop (a,d,e,a) in G entirely locate in the set of
nodes SU R. So the corresponding loop (a,d, e, a) in G¢
will not be cut. On the other hand, the corresponding
loop ¢ = (a,b,c,e,a) in G¢ of the loop (a,b,c,e,a) in G
will be cut as shown in Fig. 4(b). Therefore, edges (a,b)
and (c,e) contribute cut delay & to loop ¢ in G¢ with re-
spect to replication cut [S, T]. These two cut delays result
in loop £ with greater delay-to-register ratio for retiming.
Thus, given an edge, the edge delay contributed by the
replication cut depends on the configuration of the loop
which contains the edge. This is called the edge depen-
dency problem, which is caused by the composite effect of
replication and retiming.

4 Construction of the Replication Graph

We devise a replication graph to tackle the edge depen-
dency problem. We assume two nodes s and ¢ are to be
separated by the replication cut.

Figure 5: The replication graph G*

Construction of Replication Graph: Given the graph
G = (V, E) and a pair of nodes s and ¢, we create another
graph G’ = (V' E') where each node ¢ corresponds to
a node ¢ in GG and the directed edge (j,#) in G’ is just

the reverse of its corresponding edge (4, j) in GG with equal
capacity (i.e. ¢jyr = ¢;;), equal delay time ( i.e. dj; =
d;;) and equal register count (i.e. 7+ = r;;). From every
node in (G, we add a directed edge with infinite capacity,
zero delay and zero register count to the corresponding
node in . Then, we create a super source s* and a
super sink t* which connect nodes s, s’, ¢ and ¢’ with an
infinite capacity, a delay time 0 and a register count 0.
We refer to the combined graph as the replication graph
G* = (V*, B*) shown in Fig. 5. o

Given a directed cut C' = [{s* JUXUX' — {t* JUXUX']
of G* withV = XUX and V' = X'UX’, areplication cut
[S,T] of the original graph with S = X, T'={i |7 € X'}
and R = V — S — T is derived. Note that T is derived
from the cut in node set V.

Figure 6: Replication graph

Solution of the Edge Dependency Problem: Given
a graph (G, the dependency of the edge delay can be solved
on the replication graph G* in the following way. Given a
directed cut on the replication graph, we assign cut edges
(forward edges) and backward edges in G* with cut delay
6 and —4, respectively. Fig. 6 shows the replication graph
of the graph in Fig. 4.(a). In Fig. 6, (a,b), (a,d) and
(e',¢') are cut edges with cut delay é; (e, a), (¢, ¥'), (b, 1),
(d,d’) and (e, e’) are backward edges with cut delay —é.
Thus, the total cut delay contributing to loop (a,d, e, a)
is zero (Fig. 6). On the other hand, path (a,b,¢) and
path (a',€',¢') are cut on edges (a,b) and (¢',¢'). The
two cuts contribute two cut delay 26 to loop (a, b, ¢, e, a)
in the duplicated graph (Fig. 4.(b)). Note that G’ is the
reverse graph of G.. Thus, path (a, b, ¢) and path (¢, €', ')
correspond a loop (a,b,¢, e, a) in the original graph.

5 Heuristic Algorithm

In this section, we incorporate the size constraint and
release the requirement that two specified nodes s and ¢
need to be separated.

Since the replication graph can solve the edge depen-
dency problem, we can formulate the time-constrained
replication cut as an integer linear programming formu-
lation by utilizing the proposed replication graph. The
relaxation of integer constraint derives a lower bound so-
lution. The duality of the relaxed programming problem
motivates the concept of penalty function of edge capaci-
ties which 1s the base of the proposed heuristic algorithm
of this section. The detail derivation appears in [7].



TPRG

Initially, & = 1; Iteration =CONSTANT;
Stepl. Build replication graph G*.
Step2. Find directed cut C* of G* by directed FM.
Step3. If ( C* violates the timing constraint )
then reflect penalty on edge capacities
else stop
Step4. Increase k by 1
If ( k> Iteration )
then stop
else goto Step2

Figure 7: Outline of algorithm

Fig. 7 show that the outline of the heuristic algorithm
Time-Constrained Partitioning using Replication Graph
(TPRG). In each iteration, the algorithm identifies the
loop which violates the timing constraint and adds penalty
to the edges of the loop. The penalty function of edge ca-
pacities enforces the following directed cut to avoid cut-
ting through the violating loops. The iteration stops if
a feasible solution is found or the number of iterations is
beyond the limit.

5.1 Revision of the Replication Graph

We release the constraint of two special nodes s and ¢
in (G. Therefore, there is no need to create s* and ¢* and
their connecting edges in G*.

5.2 Directed Cut using FM Method

We use a directed FM [4] to get a directed cut of G*.
However, instead of applying a directed FM method to the
original graph as in [4], our approach applies the directed
FM to the proposed replication graph to minimize the
replication cut cost.

5.3 Penalty Function of Edge Capacities

Let C* = [X UX’' — X U X’] denote the directed cut
we found. Based on cut C*, the cut edges and backward
edges are assigned cut delay § and —é, respectively. Then,
we use the mean cycle algorithm [1] to calculate the itera-
tion bound h* of G*. In the mean cycle algorithm, we can
also compute a value h¥, for each edge (u,v) in G*, where
hE . represents the maximum delay-to-register ratio of all
loops passing edge (u,v) in G* with respect to cut C*. If
h* is not greater than K, the algorithm stops. Otherwise,
the capacity of each edges (u,v) in G* with ¥, > K is
updated as follows:

k41 hﬁv - K

_ k
uv = maxr {Oa 2 +

i A},
Z(LJ)EE* and hfj>K(h§j - K)

where A is a given constant. By updating the capacities,
edges located on the most critical loops ( i.e., their delay-

to-register ratio violate the timing constraint most ) will
get largest penalties. In our program, we set A to be 100.

6 Experimental Results

We use the same seven industrial circuits from [13] as
our test cases. In this experiment, each module has size
constraint equal to 60% of the circuit size. Therefore,
the size constraint restricts replication to 20% of the total
size.

We compare our algorithm TPRG to the Fiduccia-
Mattheyses (FM) [3] algorithm, and LAMP [10]. All pro-
grams are run on a single-processor SUN SPARC 10 work-
station. The results of FM are chosen from the best of 20
runs each.

Table 1 shows the characteristics of the test cases. The
fourth and fifth columns stands for the «teration bound J
and the path delay bound B which is defined later with
the external-loop constraint. Since s2 and s6 do not have
feedback loops, the iteration bounds are equal to zero.
The sixth and seventh columns list the crossing edge count
of FM and LAMP, respectively. As indicated in [2], the
intermodule delay & can increase to nearly 100% of the
clock cycle period. Therefore, we set § to be of 60% of
max(J, B), which is calculated before partitioning in this

paper.

FM | LAMP
cir. | #treg. | #comb. J B cut cut
sl 342 8280 6373 | 5447 | 2860 | 3134
s2 472 3378 0 4421 | 87b 847
83 521 6325 2527 | 3238 | 1422 | 1629
s4 380 3850 4922 | 5545 | 1045 | 1032
sh 545 12172 | 4241 | 4876 | 3465 | 3478
s6 357 3026 0 3724 | 848 817
s7 607 4990 996 | 3563 | 1103 | 1141

Table 1: Characteristics of test cases.

External-Loop Constraint: A system can interact
with external systems. Hence, macroscopically, there pos-
sibly exist external feedback loops from the primary out-
puts to the primary inputs. We call this assumption the
external-loop constraint. According to the external-loop
constraint, we have to take into account the path delay.
Given a path p from the primary input pad to the primary
output pad, let d, and r, be the sum of delay time and
the sum of registers on path p. The path delay bound of a
circuit is defined by:

VY 10-path p

In the following, we present the experimental results
with the external-loop constraint. The experimental re-
sults without the external-loop constraint appears in [7].

6.1 Experiment with External-Loop Con-

straint

According to the external-loop constraint, we have to
take into account the path delay. Then the dominant
delay of a given partitioned circuit is: A = max (J, B) .



Table 2 gives our experiments. The timing constraint
is the the same as that in [10]. The data in the first
subcolumn are the value of A derived from above equation
after partitioning. The 7" in the second subcolumn is the
clock cycle period of the partitioned circuit after retiming.

The reductions on the cut edge counts are as fol-
lows. When compared to the FM, TPRG achieved 1.92 ~
72.89% with an average of 22.15%. TPRG achieved 0.61 ~
73.79% with an average of 23.79%, compared with LAMP.
Especially, TPRG improve the cut edge count by 73.79%
for s7, compared with LAMP. Due to s7 with many nodes
having large fan-out and small fan-in, the cut edge count
is dramatically reduced by replication. When compared
to the FM and LAMP, the clock cycle period reductions
are as follows. TPRG achieved 22.80 ~ 34.43% with an
average of 27.60% for A and 13.04 ~ 34.42% with an av-
erage of 26.25% for T, compared with FM. Even given
the same timing constraint, TPRG still get improvement,
compared with LAMP. TPRG achieved 0 ~ 12.91% with
an average of 3.43% for A and 0 ~ 13.78% with an aver-
age of 3.97% for T. The number of iterations of TPRG
for these seven test cases are 6,2, 1,9, 1, 7 and 1, respec-
tively. The size overheads are 19.96%, 0.95%, 13.82%,
19.66%, 20.00%, 19.93% and 12.48%, respectively.

FM LAMP TPRG
cir. A T A T A T cut
sl 8371 9238 | 6373 6653 | 6373 6587 2805
s2 7074 7215 | 5206 5310 | H080 5130 723
s3 5338  h444 | 4019 4099 | 3500 3534 1018
s4 || 8239 8631 | 6360 7H05 | 6360 7505 905
sh 7666 8432 | 6366 6493 | h824 5882 2881
s6 6544 6544 | 4502 5042 | 4502 5042 812
s7 || B103 5227 | 3644 3935 | 3637 3891 299

Table 2: The experiment with external-loop constraint

6.2 Experiment with Tighter Constraint

By using binary search, we can determine the minimum
dominate delay A achieved by our algorithm. Given a
ratio K, if our algorithm cannot find a partition with
dominate delay A no greater than K within 20 iterations,
it fails; otherwise it success and we can go ahead to tighter
timing constraints.

Table 3 show the experimental results. #iter. de-
notes how many iterations TPRG takes to terminate and
over. denotes the percentage of the size overhead of du-
plicated nodes. 10.08% improvement on the clock period
and 20.65% reduction on the cut edge count are achieved,
compared with LAMP approach. Compared with FM ap-
proach, TPRG can achieved 33.33% improvement on the
clock period and 18.8% reduction on the cut edge counts.

7 Conclusive Remarks
In this paper, a replication graph is adopted to to tackle

the performance-driven partitioning problem using retim-
ing and replication.

[cir. | K [ ecut | A [ T | #iter. | over. |
sl | 6373 | 2805 | 6373 | 6587 6 19.96
s2 | 4700 | 785 | 4569 | 4614 8 2.74
s3 | 3300 | 1172 | 3300 | 3325 13 19.75
s4 | 6360 | 905 | 6360 | 7505 9 19.66
sb | 5500 | 2879 | 5476 | 5530 16 19.97
s6 | 4300 | 857 | 4038 | 4318 14 19.95
s7 | 3565 | 296 | 3563 | 3603 7 16.78

Table 3: Results with tighter constraint
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