
Multi-way Partitioning For Minimum Delay For Look-Up Table Based FPGAs

Prashant Sawkar and Donald Thomas

Electrical and Computer Engineering Dept.
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

In this paper we present a set cover based approach
(SCP) to multi-way partitioning for minimum delay for
Look-Up Table based FPGAs. SCP minimizes the num-
ber of chip-crossings on each circuit path with minimum
logic duplication costs to achieve implementations with
minimum delay and minimum number of chips. The over-
all complexity ofSCP is 
(V 2). Experimental results
demonstrate thatSCPproduces partitions that on the av-
erage have 14% fewer chips, 28% fewer pins, and 93%
fewer chip-crossings on each circuit path compared to
ANN which is a simulated annealing based implementa-
tion of classical multi-way partitioning.SCPachieves this
performance and compact packing at the cost of duplicat-
ing 13% of logic on the average. Additionally, in compari-
son with a lower bound we observe thatSCPhas produced
near-optimal solutions.

1 Introduction

Partitioning plays an important role in all aspects of
VLSI design, ranging from logic synthesis, layout, testing,
simulation and verification, and packaging at the device,
board, and system levels. Several approaches have been
proposed on partitioning for FPGAs [1, 2, 3]. Kuznar
[1, 2] associates a $cost to each FPGA device and uses a
bi-partitioner recursively to arrive at a multi-way partition
that minimizes the $cost and interconnection costs of the
partition. Sechen [3] first identifies clusters, and then uses
a simulated annealing based placement of clusters on to
an MCM to minimize wirelength and timing penalty.

However, the number of paths examined during an-
nealing for timing violations is limited due to run-time
considerations.

The important factors that govern performance of a
single chip design are the depth of logic and wire-delays.
Additionally, when a design is to be partitioned, the num-
ber of chip crossings (also referred to as path cuts else-
where) on a circuit path becomes a dominating source
of delay due to significantly higher delays that are ex-
perienced due to I/O buffers and higher capacitances en-
countered on external wiring. In this paper we present
an approach to partitioning that minimizes the number of
chip crossings on each circuit path.

2 Problem Formulation

A combinational boolean networkN can be represented
as a directed acyclic graphG = (V;E); the vertices in
V represent circuit elements (or LUTs), and edges inE
represent signal nets. A primary input (PI) node has no
incoming edges and a primary output (PO) node has no
outgoing edges. Our assumption of a combinational logic
input to partitioning is not a limitation. When we are
given a general boolean network, the sequential elements
are ignored temporarily and are re-assigned to the appro-
priate chips after partitioning. We define theISET to be
composed of the PIs of the original network, and also
the outputs of sequential logic. Similarly, we define the
OSET to be composed of the POs of the original network
augumented by the inputs of sequential logic.

In this paper we present a new constructive approach
to multi-way partitioning for minimum delay on to FP-
GAs. Given an input networkG = (V;E) and an FPGA
deviceD, we construct a multi-way partition which has
the fewest number of chip crossings on any circuit path
and the fewest number of chips.

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or  distributed  for direct  commercial advantage,
the ACM copyright notice and  the title of the publication and its date appear,
and  notice  is  given that  copying  is  by  permission  of  the  Association for
Computing  Machinery.   To copy otherwise,  or  to  republish,  requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50



3 Partitioning For Minimum Delay

The primary goal of our partitioning formulation is to
minimize the number of chip crossings on each circuit
path. The secondary goal is to minimize the number of
chips. Towards this end we propose a three phased ap-
proach:

1. Generate a family of clustersF that attempt to min-
imize chip crossings.

2. Generate a CoverC � F which covers the starting
networkG = (V;E).

3. Pack the clusters in the coverC into minimum num-
ber of chips.

4 Clustering Phase

Clustering plays an important role in partitioning by
contracting the original netlist by way of identifying
strongly connected components. The classical approaches
to clustering discussed in [5] minimize total number of
nets cut or number of clusters on a circuit path and are
not suited well for minimizing the number of chip cross-
ings on individual circuit paths. In order to minimize the
number of chip crossings on every circuit path we have
devised a new approach based on clustering one or more
cones of logic, where each cone may have an element of
theOSET as the root and consist of nodes in the root’s
transitive fanin. This type of clustering has the advantage
of loacalizing all the paths from the cluster’s inputs to the
cluster’s outputs. An important structural component in
the input network is a multi-fanout net. Corresponding
to each multi-fanout net there exists a cluster correspond-
ing to the cones of the terminal nodes (node 2 OSET)
encountered in its fanout cone.

The goal of the clustering phase is to generate a family
or a set of clustersF which localize Input-Output paths
to be on-chip. The set of clustersF is composed of:

1. A cluster for each multi-fanout net which has a unque
set of outputs.

2. A cluster for each cone of logic corresponding to
each node on the OSET.

Figure 1 shows a cluster associated with multi-fanout
net x. The cluster is composed of cones associated with
nodeso1; o2 ando3. The cluster has an olistfo1; o2; o3g

and an input listfi1; i2; : : : ; ikg. The complexity of the
cluster generation phase is
(V 2).

5 Covering Phase

The goal of the covering phase is: Given a circuit
G = (V;E), a family of clustersF = ff1; f2; : : : ; fng,
and an FPGA deviceD into which the network is to be
partitioned, construct a coverC � F of G = (V;E). We
are interested in selecting a coverC in which:

1. Eachbi 2 C is feasible (i.e. fits in FPGA deviceD).

2. Number of chip crossings on each circuit path from
the ISET to theOSET is minimized.

3. Replication of logic is minimized.

The replication of logic may become necessary in or-
der to avoid path cuts when clusters in the cover share
logic and must get placed in different chips due to area or
io constraints. An important goal of the covering phase is
to minimize the replicated area in order to have minimal
impact during the packing phase. It should be noted here
that the family of clustersF may contain infeasible clus-
ters (i.e. clusters that can’t fit intoD) due to violation of
area or i/o constraints or both. If an infeasible clusterbi is
chosen to be in the coverC, then it becomes necessary to
partition bi into fbi1; bi2; : : : ; birg, where eachbik is fea-
sible. The feasible partition ofbi (i.e. fbi1; bi2; : : : ; birg)
is placed on the coverC.

In order to limit the path cuts to only those cones that
are infeasible, we break the input graphG into two parts
called the feasible graphG

f
consisting of all feasible

cones in theOSET, and the infeasible graphG
i

con-
sisting of infeasible cones in theOSET. The covering
problem is then solved separately on the feasible graph
G
f

and the infeasible graphG
i

to produce coversCf
andCi respectively. The cover for the starting networkG
is constructed as:C = Cf

S
Ci. Note that the graphG

i
is empty if there are no infeasible cones in the original
circuit G.

5.1 Set Cover for Feasible Graph Gf

The Set Covering Problem (SCP) is an important op-
timization problem that models many resource-selection
problems. The SCP is known to be NP-Hard, but, good
approximation algorithms exist [4]. In this paper we use
a variant of [4] for set covering. While the classical SCP
attemps to find a minimum cardinality cover, our goal is
to produce a cover that has the maximum benefit, where
benefit of a cluster is defined as a function of area, ios, and
outputs covered by the cones of the cluster. The pseudo-
code outlining our approach for set-covering is shown in
figure 2.

SetCover(Gf )
1. Ff = GenerateClusters(Gf );



2. For eachfi 2 Ff

3. If fi is feasible
fi:score = � � areabenefit+

� � inp benefit+

 � num conescovered;

else
fi:score = 0;

4. Cf = �

5. While (Cf not a cover ofGf )
6. Select a clusterbc with highestfi:score;
7. Cf = Cf

S
fbcg;

8. Update Cover;
9. Update Affected Clusters;

Figure 2. Pseudo-Code for Set Cover ofGf

In the first step we generate all the unique clusters of
the graph. In step 2 a score is assigned to each feasible
cluster fi in Ff . The termarea benefit represents the
number of LUTs shared among the cones of the cluster
corresponding to its olist. It is computed as follows from
the individual cone areas and the cluster area:

area benefit =

jfi:olistjX

j=1

conearea(fi:olistj )� fi:area

This shared area results from the common sub-expressions
and common cubes shared by the cones infi:olist. This
term plays an important role in minimizing the amount of
logic that is replicated. A larger areabenefit in general
implies lesser area and input duplication costs.

The term inp benefit results from the inputs that are
shared among the cones of the cluster, and is computed
as follows:

inp benefit =

jfi:olistjX

j=1

inputs(fi:olistj) � jfi:ilistj

Larger input sharing in general retains heavily I/O related
cones together, minimizing I/O usage among the chips
of the partition. It may also indirectly influence better
packing.

The termnum conescoveredis the number of outputs
on fi:olist. Larger the number of cones covered implies
a smaller cover sizeCf and a relatively simpler packing
problem. The coefficients�, �, and
 are chosen to reflect
the importance of areabenefit, followed by inpbenefit
and lastly the numconescovered.

The set covering algorithm is greedy. The best feasi-
ble clusterbc which represents the best area, io savings,
and the maximum number of cones covered is selected in
each iteration. The selected clusterbc is then placed on
the coverCf . As a result of selectingbc a number of clus-
ters may have to be updated. The updating process (step

9) involves eliminating clusters on the fanout of the se-
lected cluster and also updating other clusters in the fanin
cones of the selected cluster’s outputs. As a result of this
update (step 9) several clusters that were infeasible earlier
may now become feasible. Since the update step invoves
depth-first search of its fanout cone (which is sparse), and
depth first searches for potentially
(V ) clusters (which
are sparse) encountered in the fanin cones ofbc’s out-
put list, its complexity is
(V 2). The overall complexity
of the set cover approach is
(jOSET

f
j �V2), where

jOSET
f
j is the number of primary outputs and register

inputs in the graphG
f
.

An example of set covering for a feasible graph is
shown in figure 3a. The network consists ofOSET =
fo1; o2; o3; o4g. The family of clustersF consists of clus-
ters associated with netsc1 ; c2 andc3 and also the clus-
ters corresponding to the coneso1; o2; o3 and o4 of the
OSET. The cluster associated with netc1 (referred to as
clusterc1 ) has an olistfo1; o2g and ilistI1, clusterc2 has
an olist fo3; o4g and ilist I2, and clusterc3 has an olist
fo2; o3g and olist I3. During the set-covering process,
cluster c1 which has the highest score is selected first,
followed by the selection of clusterc2 . At this point the
coverC = fc1; c2g is generated (see figure 3b). Note, that
the coverC confines all paths to be on-chip, and achieves
this at the cost of duplicating the fanin cone associated
with net c3 . It should be noted that the greedy nature of
the covering routine in general promotes exploiting clus-
ters that are strongly related (i.e.c1 ; c2 ), confining the
duplication to relatively smaller portions of logic.

5.2 Set Cover for Infeasible Graph Gi

The property of the infeasible graph is that its OSET
contains infeasible cones of logic due to area or i/o viola-
tions or both. It is therefore, necessary to partition these
cones such that the number of chip crossings on any path
is held to a minimum.

The set covering approach used here is similar to SCP
algorithm proposed for the feasible graphGf seen earlier.
Since each chosen clusterbc is infeasible, it is further par-
titioned into feasible clusters with minimum number of
chip crossings on any circuit path from the cluster’s input
to the cluster’s output. The minimum path cut partition-
ing is achieved by recursively bi-partitioning the chosen
clusterbc into two sets called the divisor setD and the
quotient setQ. The bi-partitioner uses a net-based ap-
proach and guarantees that the individual cones in the
divisor set are feasible (i.e. fit into FPGA device) and
there is at most a single chip crossing on any circuit path
from the cluster’s input to the cluster’s output [5]. This
process is terminated when the quotient setQ has cones
that are feasible (i.e. fit into specified FPGA). The overall



complexity of the set covering problem for the infeasible
graph is
(V2).

6 Packing

In this phase we are given a coverC of the original
networkG = (V;E), and an FPGA deviceD into which
the clusters inC must be packed. The goal is to produce a
packing with the fewest number of chips. We perform this
packing using a best fit decresing bin packing heuristic.
The overall complexity of this phase is
(jCj � V ).

7 Results

We have conducted experiments on several MCNC
and ISCAS benchmark circuits. Our experimental set
up is shown in figure 4. Each benchmark circuit was
first optimized for area with a standard script using misII.
The optimized circuit was then mapped to Xilinx FPGAs
(4005H, and 3090) using TechMap [5] prior to being par-
titioned usingSCPandANN partitioners. TheANN par-
titioner is simulated annealing based and uses a recursive
bi-partitioning technique to implement multi-way parti-
tioning that minimizes the number of nets cut and also
the number of chips.

In order to determine the quality of the partitioning
solutions produced bySCPandANN and compare them,
we define the following:

1. Idl#chips =Max
��

Network IOs
FPGA IOs

�
;
�
Network Area
FPGA Area

��

Here, the termsNetworkArea and NetworkIOs refer to
the number of LUTs and the number of IOs (PIs+POs)
in the unpartitioned network. TheIdl#chips serves as a
lower bound on the number of chips required to partition
the original network. The lower bound is computed by
considering the number of LUTs and number of IOs of
the given network independently. It should be noted that
this lower bound may not be achievable in reality (i.e.
optimal > lower bound).

2. Areacost =

P
k

i=1
chipareai

Network Area

The termAreacostrepresents the cost due to logic dupli-
cation.

3. Pincost =

P
k

i=1
chipiosi

Network IOs

The termPincostrepresents the cost due to I/O duplication
and internal signals that become I/Os due to partitioning.

circuit IOs LUTs Regs Levels
rot 242 289 0 9
apex6 242 346 0 6
c2670 372 314 0 8
c5315 301 659 0 11
DES 501 1380 0 8
c3540 72 420 0 14
c6288 64 768 0 26
s5378 84 588 164 7
s9234 75 787 211 16
DALU 91 676 0 13
trial 476 635 0 9
trial1 777 1278 0 11
trial2 848 955 0 9
c7552a 314 678 0 10
s13207 194 886 485 10
s15850 151 1325 522 16
s38417 135 4111 1536 13
s38584 322 4370 1394 12

Table 1. Benchmarks Mapped on Xilinx 4005H FPGA.

In table 1 the characteristics of optimized and tech-
nology mapped benchmark circuits that serve as starting
networks to be partitioned on to Xilinx XC4005H FPGA
are shown.

The XC4005H device has 192 I/Os, 392 4-input LUTs,
and 392 Flip-Flops. The result of partitioning the circuits
shown in Table 1 are shown in Table 2. The term#cp
refers to the number of chips in the partition. The term
#cc refers to the maximum number of chip crossings on
any circuit path. The termspc and ac respectively refer
to the pincost and areacosts that were defined earlier.

From the data in Table 2 we observe that theSCPpar-
titioner in comparison withANN produces partitions that
have 14% fewer chips, 28% fewer pins, and 93% fewer
number of chip crossings on each circuit path. This per-
formance and efficient packing was achieved at the cost
of duplicating 13% of the logic on the average. It should
be noted however that despite the duplication costsSCP
has fewer number of chips and pins on average. We ob-
serve thatSCP achieves an average chip area utilization
of 76% and average chip I/O utilization of 82% compared
to ANN which achieves average chip area and I/O utiliza-
tions of 57% and 94% respectively. As a consequence,
it can be seen thatANN saturates chip I/Os faster than
SCP and leads to more number of chips in the partition.
We further note that all of the circuits partitioned bySCP
were successfully placed and routed using Xilinx’s PPR.
Additionally, we observe thatSCP matches ideal in 10
test cases, 1 more than ideal in 6 test cases, and 2 more
than ideal in the other 2 test cases.

In addition to the potential timing benefits due to maxi-
mization of on-chip paths, we believe that smaller pincosts
(avg. 28%) and smaller partition sizes (avg. 14%) in gen-
eral imply easier wiring at the PCB or the MCM levels



and the potential to achieve compact placements, smaller
wirelengths, and consequently better overall performance.

We have also mapped and partitioned the benchmarks
of Table 1 on to Xilinx XC3090 FPGA. The XC3090 has
320 CLBs and 144 IOs. In comparison with theANN
partitioner theSCPpartitioner achieved 23% fewer chips,
16% fewer pins, 97% fewer path-cuts, at a cost of 14%
more area. The results for XC3090 show a similar trend
to those discussed earlier for the XC4005H.

The run-times for the individual test cases for parti-
tioning usingSCP ranged from a few seconds to approx-
imately 20 minutes (for s38417) on Dec-Station 3100.

8 Conclusions

In this paper we proposed a constructive approach to
multi-way Partitioning for minimum delay for Look-Up
Table Based FPGAs. Our approach to clustering and set
covering has a complexity of
(V2), and achieves ex-
cellent area/IO tradeoffs to produce a cover of the original
network with minimum number of path-cuts on each I/O
path of the circuit and minimum replication of logic. Our
results have demonstrated the efficacy of the proposed ap-
proach and its ability to produce near-optimal solutions.

9 Acknowledgements

This work was performed under NSF contract MIP-
9112930. The authors gratefully acknowledge the Resi-
dent Study Grant recieved from IBM Corporation.

circuit SCP ANN Ideal
#cp #cc pc ac #cp #cc pc #cp

rot 2 0 1.10 1.00 2 1 1.08 2
apex6 2 0 1.17 1.00 2 1 1.24 2
C2670 2 0 1.02 1.00 2 2 1.40 2
C5315 3 0 1.44 1.36 3 4 1.83 2
DES 4 0 1.44 1.01 7 4 2.50 4
C3540 2 0 1.54 1.39 2 7 3.79 2
C6288 3 0 5.39 1.45 3 9 6.42 2
s5378 2 1 3.25 1.07 3 5 5.23 2
s9234 3 1 5.60 1.19 4 7 10.25 3
DALU 3 0 2.40 1.49 3 6 4.74 2
trial 3 0 1.15 1.00 4 3 1.42 3
trial1 5 0 1.20 1.12 6 4 1.50 5
trial2 5 0 1.10 1.00 5 3 1.31 5
C7552a 3 0 1.51 1.10 3 3 1.86 2
s13207 4 1 4.01 1.00 4 9 4.18 3
s15850 5 1 5.78 1.08 6 10 6.15 4
s38417 13 1 16.22 1.14 16 10 21.91 11
s35854 14 1 7.55 1.04 16 7 10.60 12

Table 2. Comparison of SCP with ANN and Ideal for circuits mapped
on XC4005H

References

[1] R. Kuznar, F. Brglez, and K. Kozminski, “Cost Minimiza-
tion of Partitions into Multiple Devices,” DAC-93.

[2] R. Kuznar, F. Brglez, and B. Zajc, “Multi-way Netlist Par-
titioning into Heterogeneous FPGAs and Minimization of
Total Device Cost and Interconnect,” DAC-94.

[3] K. Roy and C. Sechen, “A Timing Driven N-Way Chip and
Multi-Chip Partitioner,” ICCAD-93.

[4] V. Chvatal, “A Greedy Heuristic For the Set-Covering Prob-
lem,” Mathematics of Operations Research, 4(3), pp 233-
235, 1979.

[5] P. S. Sawkar, “Performance Optimized Partitioning and
Technology Mapping For FPGAs,” Ph.D. Thesis in prepa-
ration, Carnegie Mellon University, March 1995.



x

o1

o2

o3

In
pu

ts
i1
i2
i3
.

.

.

.

.

.
ik



o1

o2

o3

o4

c1

c2

c3

o1

o2

o3

o4

c1

c2

a)    Original Network and Clusters  b)    Covering of Network by c1 and c2.

I1

I3

I2

duplicated 
logic.

Area Saved

Area Saved



Optimize
Logic
mis2/sis

TechMap

Set Cover
Partition
  (SCP)

Annealer 
Partition
   (ANN)

Circuit
to be
Partitioned

K-way
Partition

K-way
Partition


	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index


