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Abstract| Recently, it has been shown that retiming
has a very strong impact on the run time of sequential,
structural automatic test pattern generators (ATPGs), as
well as the levels of fault coverage and fault e�ciency at-
tained. In this paper, we show that retiming preserves
testability with respect to a single stuck-at fault test set
by adding a pre�x sequence of a pre-determined number
of arbitrary input vectors. Experimental results show
that high fault coverages can be achieved on high perfor-
mance circuits optimized by retiming with a much less
CPU time (a reduction of two orders of magnitude in
several instances) than if ATPG is attempted directly on
those circuits.

I. Introduction

Due to the steadily increasing demand for high perfor-
mance integrated circuits, performance optimization must be
considered as a key step during each stage of the synthesis
process. Synthesis tools must be able to synthesize circuits
that meet performance constraints while optimizing other de-
sign parameters like area, power, and testability.
One of the e�ective techniques for performance optimiza-

tion of sequential circuits is retiming. Retiming ([4], [5])
involves moving registers across portions of combinational
logic in order to minimize the clock cycle time or the num-
ber of registers used. It has been determined ([6], [8]) that
retiming sequential circuits for performance optimization in-
creases the run time required by sequential, structural auto-
matic test pattern generators (ATPGs), as well as decreases
the levels of fault coverage and fault e�ciency attained. In
several instances, the increase in execution time is more than
two orders of magnitude.
In order to reliably predict the behavior of, or derive tests

for, a sequential circuit that does not have a global reset
state, a synchronizing sequence is applied to drive it to a
known state. In this paper, we study the preservation of syn-
chronizing sequences and test sets under the retiming trans-
formation. We show that a synchronizing sequence for a cir-
cuit can be mapped to synchronize any of its corresponding
retimed circuits to an equivalent state. More importantly, we
show that a test set generated for a circuit is preserved on its
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corresponding retimed circuit by adding a pre�x sequence of
a pre-determined number of arbitrary input vectors. The im-
plications of this result on the testability of retimed circuits
and the cost of test pattern generation are then discussed.
The rest of the paper is organized as follows. Section II

introduces the basic concepts and de�nitions used. Section
III presents an overview of retiming. Section IV presents the
e�ect of retiming on synchronizing sequences and test sets.
Section V demonstrates testability preservation of retiming
on a set of circuits synthesized from MCNC �nite-state ma-
chine descriptions. Section VI summarizes the main results
of this paper.

II. Basic Concepts and Definitions

In our work, we focus on synchronous sequential circuits.
We assume that a synchronous sequential circuit is composed
of combinational logic gates and edge-triggered D ip-ops
(DFFs). For circuits that do not have a global reset state,
initialization is achieved by synchronizing sequences. A syn-

chronizing sequence for a machine K is an input sequence
that brings the machine to a known and unique state (or a
set of equivalent states [11]), that can be determined without
any knowledge of the output response or the initial state of
the machine [3]. The �nal state reached by the synchronizing
sequence is called a reset state. A state that can be reached
from the reset state via some input sequence is called a valid
state. A state which cannot be reached from the reset state
is called an invalid state.
The following de�nitions on state equivalence and state

distinguishability are taken from [3]. Two states q and q0

in a machine K are said to be equivalent if and only if the
input/output (I/O) behavior of K starting in initial state q is
the same as that of K starting in initial state q0. Two states
q and q0 in a machine K are said to be distinguishable if and
only if there exists a �nite input sequence that yields one
output sequence when K is started in state q, and a di�erent
output sequence when K is started in state q0. Equivalence
and distinguishability of two states in two di�erent machines
can be de�ned similarly.
Given two machines K and K 0, if for every state in ma-

chine K 0 there exists at least one equivalent state in machine
K, then machine K is said to space-containmachine K 0, de-
noted K �s K 0. If for every state in K there is at least
one equivalent state in K 0 and vice versa i.e., K �s K

0 and
K �s K 0, then K and K 0 are said to be space-equivalent,
denoted K �s K

0.
Given a machine K, let Ki denote the set of states reach-

able from any state in K after applying i transitions. It
should be observed that K0 �s K and that Ki �s Ki+1.
A machine K is said to time-contain machine K 0, denoted
K �t K

0, if there exists a time i such that K �s K 0

i. If
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Fig. 1. (a) Retiming forward/backward across a single-output
combinational gate, (b) Retiming forward/backward across a
fanout stem.

after applying N transitions to machine K 0 every state in
K 0 has at least one equivalent state in K i.e., K �s K 0

N ,
then K is said to N-time-contain K 0, denoted K �Nt K

0.
If K �N1t K

0 and K 0 �N2t K, then machine K is said to
be N-time-equivalent to machine K 0, denoted K �Nt K 0,
where N = max(N1;N2). It should be observed that
K �Nt K

0 is equivalent to KN �s K
0

N . Space-containment
and space-equivalence are stronger relations and imply time-
containment and time-equivalence, respectively.

In order to detect a single stuck-at fault in a sequential
circuit, the machine has to be placed in a state which excites
the fault, and then the fault e�ect must be propagated to a
primary output. If no explicit reset state is assumed, then
memory elements are assumed to start from the unknown
initial state.

To process the unknown initial state in addition to \0" and
\1", simulation algorithms use an extra logic value, denoted
by x. There is a loss of information associated with the use
of 3-valued logic, which may lead to pessimistic results i.e., a
synchronizing sequence for a circuit might not be considered
a valid synchronizing sequence using 3-valued logic simula-
tion. In our work, we call a synchronizing sequence (or a
test) derived based on 3-valued simulation structural-based,
otherwise it is called functional-based. It should be observed
that functional-based synchronizing sequences (or tests) cor-
respond to those derived based on the state transition graph
of a circuit.

Let K be a single stuck-at fault testable circuit. Let K 0

be a circuit resulting from applying a transformation T to
circuit K. The transformation T is said to be single stuck-at
fault testability preserving if K 0 is guaranteed to be single
stuck-at fault testable. Transformation T is said to be single
stuck-at fault test-set preserving if any complete single stuck-
at fault test set for K is also a complete single stuck-at fault
test set for K 0.
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Fig. 2. An example of a backward retiming move across a single-
output combinational gate.

III. Retiming: An Overview

Retiming can be thought of as a collection of atomic trans-
formations which move sequential elements forward or back-
ward across a single-output combinational gate or a fanout
stem, as shown in Fig. 1. In this �gure, I1; I2 and Z are
assumed to be functions of the primary inputs and the state
variables. Z is assumed to be a primary output, G is a com-
binational gate, and Q;Q0; and Q1 are sequential elements
(DFFs).

For the purpose of retiming, a sequential circuit is mod-
eled as a �nite edge-weighted directed graph G = (V;E;W ).
The vertices V represent either an input/output pin or a
combinational logic block. For simplicity and without loss of
generality, we assume that vertices represent single-output
combinational gates and fanout stems. The edges E corre-
spond to interconnections between input pins, combinational
logic gates, fanout stems, and output pins. The weights W
assign to each edge a non-negative integer representing the
number of sequential elements along the interconnection be-
tween the two vertices. Retiming computes an edge weight
that minimizes a cost function (e.g., the length of the longest
combinational path in the circuit, the number of memory el-
ements in the circuit, or a combination of both).
Fig. 2 shows an example of a circuit that is retimed for

increased performance. Assuming that the delay of a combi-
national gate is related to the number of its inputs, the circuit
C1 has a clock period of four delay units. The performance
of the circuit C1 can be improved by one delay unit through
retiming resulting in the circuit C2. As can be seen from the
�gure, while the state transition graph (STG) of C1, has no
equivalent states, the STG of C2 has three equivalent states,
namely f01; 10; 11g. Thus, as was illustrated in [2], retiming
can create and add equivalent states. Furthermore, it should
be observed that for every state in C2 there is an equivalent
state in C1 and vice versa. State f00g in C2 is equivalent to
state f0g in C1, and states f01; 10; 11g in C2 are equivalent
to state f1g in C1. Thus, this implies that C1 and C2 are
space-equivalent i.e., C1 �s C2. This observation leads us
to the following result.
Lemma 1: Let K 0 be a circuit resulting from a retiming of



K using forward and backward retiming moves across single-
output combinational gates. Then, K �s K

0.
Due to space limitations, the reader is referred to [1] for

proofs of all theorems and lemmas presented in this paper.
Let K 0 be a circuit resulting from a retiming of K. It was

observed in [4] that, in general, it is not true that for every
state in K there is an equivalent state in K 0 i.e., K 6�s K

0.
This is due to the fact that when K is retimed backward
across a fanout stem node, there exist assignments on the
DFFs in K that are inconsistent with the values produced
by the logical structure of the circuit i.e., when di�erent val-
ues are assigned on the branches of a fanout stem. Such
assignments have no equivalent assignment on the DFFs in
the circuit K 0. Similarly, not every state in K 0 has an equiv-
alent state in K (i.e., K 6�s K

0) when K is retimed forward
across a fanout stem node. Thus, this implies that the two
circuits K and K 0 may not be space-equivalent i.e., K 6�s K

0.
Let F and B represent the maximum number of forward

and backward retiming moves, respectively, across any node
when K is retimed to K 0. It was shown in [4] that for every
state in KB, there is an equivalent state in K

0 i.e., K 0 �s KB

or K 0 �Bt K. Similarly, for every state in K 0

F there is an
equivalent state in K i.e., K �s K 0

F or K �Ft K
0. This

implies that K and K 0 are time-equivalent since there exists
a time N = max(F;B) such that KN �s K

0

N or K �Nt K
0.

Based on Lemma 1, F and B can be tightened to repre-
sent the maximum number of forward and backward retiming
moves across any fanout stem node, respectively.
Lemma 2: Let K 0 be a circuit resulting from a retiming of

K. Let F and B represent the maximum number of forward
and backward retiming moves across any fanout stem node
in K, then:
1. K 0 �Bt K,
2. K �Ft K

0,
3. K �Nt K

0, where N = max(F;B).
Lemma 2 is an important result as it clearly describes

the relation between the state transition graphs of a circuit
and any of its corresponding retimed circuits. Based on this
lemma, we show in the following section how a synchronizing
sequence or a test for a retimed circuit, can be derived based
on a synchronizing sequence or a test for its corresponding
original circuit.

IV. Testability Preservation Under Retiming

To detect a fault in a sequential circuit, assuming unknown
initial state, both the fault-free and the faulty circuits need
to be synchronized. Thus, it is important to study the e�ect
of retiming on synchronizing sequences for the fault-free and
the faulty circuits. In this section, we �rst derive the con-
ditions under which synchronizing sequences are preserved
under retiming. Then, we show that a test set for a circuit
is preserved on its corresponding retimed circuit by adding
a pre�x sequence of a pre-determined number of arbitrary
input vectors.

A. Preservation of Synchronizing Sequences for Fault-Free

Circuits

In this subsection, we determine the conditions under
which synchronizing sequences for fault-free circuits are pre-
served under retiming. We �rst show that retiming preserves
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Fig. 3. An example of a forward retiming move across a fanout
stem.

structural-based synchronizing sequences.

Theorem 1: Let K 0 be a circuit resulting from a retiming
of K. If a structural-based synchronizing sequence I syn-
chronizes K to a state q, then I synchronizes K 0 to a state
q0 equivalent to q.

Theorem 1 is an important result as it guarantees that a
circuit and any of its corresponding retimed circuits are struc-
turally synchronized to equivalent states and hence exhibit
the same input/output behavior after synchronization.

For example, referring to Fig. 2, the input vector h11i syn-
chronizes the circuit C1 to state f1g. Similarly, the input vec-
tor h11i synchronizes the circuit C2 to the equivalent states
f01; 11g. It should be observed that state f1g in C1 is equiv-
alent to states f01; 11g in C2. Thus, the input vector h11i
synchronizes both circuits to equivalent states.

While structural-based synchronizing sequences are pre-
served under retiming, the same is not true for functional-
based synchronizing sequences. This is due to the fact that
the retimed circuit might contain states that have no equiv-
alent state in the original circuit.

Observation 1: A functional�based synchronizing se-
quence for a circuit K does not necessarily synchronize any
circuit resulting from a retiming of K.

Example 1: The circuit L1 in Fig. 3 is transformed to circuit
L2 using a forward retiming move across a fanout stem node.
The vector h11i is a functional-based (but not structural-
based) synchronizing sequence for the circuit L1 and syn-
chronizes L1 to the state f1g. However, the same vector
does not synchronize the circuit L2.

We next derive the conditions under which functional-
based synchronizing sequences are preserved on retimed cir-
cuits.

Lemma 3: Let K and K 0 be two circuits and K �s K
0. If

a functional-based synchronizing sequence I synchronizes K
to a state q, then the same sequence I synchronizes K 0 to a
state q0 equivalent to q.

Thus, from Lemma 2, it follows that every functional-
based synchronizing sequence for a circuit synchronizes to an
equivalent state any circuit resulting from a retiming of K
using forward and/or backward retiming moves across single-
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output combinational gates, and backward retiming moves
across fanout stems.
Theorem 2: Let K 0 be a circuit resulting from a retiming

ofK, and P be a sequence of arbitrary input vectors of length
equal to the maximum number of forward retiming moves
across any fanout stem node in K. If a functional-based
synchronizing sequence I synchronizes K to a state q, then
the sequence P [ I synchronizes K 0 to a state q0 equivalent
to q.
Theorem 2 provides the mechanism for deriving synchro-

nizing sequences for retimed circuits based on functional-
based synchronizing sequences for their corresponding origi-
nal circuits. For example, we have shown in Example 1 that
the vector h11i is a functional-based synchronizing sequence
for the circuit L1 (shown in Fig. 3), but not a synchronizing
sequence for the circuit L2. It can be readily veri�ed that
each of the following sequences h00; 11i, h01; 11i, h10; 11i, and
h11; 11i is a functional-based synchronizing sequence for L2
and synchronizes it to state f11g which is equivalent to state
f1g in L1.

B. Preservation of Synchronizing Sequences for Faulty Cir-

cuits

In this subsection, we study the e�ect of retiming on syn-
chronizing sequences for faulty circuits. We use the term
corresponding faults to relate faults in a circuit, K, and any
circuit, K 0, resulting from a retiming of K. Let e be an edge
from vertex u to vertex v in K. An edge e of weight n is
considered to be divided into n+ 1 lines as shown in Fig. 4.
A fault on a line ei in K corresponds to all faults on the lines
e0i1 ; e

0

i2
; � � � ; e0i

m+1
in K 0 created by placing m DFFs on line

ei. Similarly, a fault on a line e0i in K 0 corresponds to all
faults on the lines ei1 ; ei2 ; � � � ; eim+1 in K that are merged to
form the edge e0i by removing the m DFFs separating them.
For example, the following constitute corresponding faults

in the circuits in Fig. 1(a):
� Stuck-at-0 (stuck-at-1) fault at line I1�Q0 in K1 and
stuck-at-0 (stuck-at-1) fault at line I1�G in K2.

� Stuck-at-0 (stuck-at-1) fault at line Q0 � G in K1 and
stuck-at-0 (stuck-at-1) fault at line I1�G in K2.

� Stuck-at-0 (stuck-at-1) fault at line G � Q in K2 and
stuck-at-0 (stuck-at-1) fault at line G� O in K1.

� Stuck-at-0 (stuck-at-1) fault at line Q � O in K2 and
stuck-at-0 (stuck-at-1) fault at line G� O in K1.

It should be observed that faults outside the modi�ed region
in a retimed circuit are in one-to-one correspondence with
faults outside the modi�ed region in the original circuit. In
general, for every fault on a line in a retimed circuit, there is
at least one corresponding fault in the original circuit.
In the following, we show that for every fault in a retimed

circuit, there exists a corresponding fault in the original cir-
cuit such that a synchronizing sequence for the original faulty
circuit can be mapped to serve as a synchronizing sequence
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Fig. 5. An example of a forward retiming move across a single-

output combinational gate.

for the corresponding faulty retimed circuit. This result is
stated �rst for each of the atomic retiming transformations.
Lemma 4: Let K 0 be a circuit resulting from a forward

retiming move across a single-output combinational gate or
a fanout stem in K. For every fault f 0 in K 0, there exists
a corresponding fault f in K such that if a sequence I syn-
chronizes Kf to a state q, then the sequence p [ I, where p

is an arbitrary input vector, synchronizes K 0f
0

to a state q0

equivalent to q.
Lemma 5: Let K 0 be a circuit resulting from a backward

retiming move across a single-output combinational gate or
fanout stem in K. For every fault f 0 in K 0, there exists a
corresponding fault f in K such that if a sequence I synchro-

nizes Kf to a state q, then I synchronizes K 0f
0

to a state q0

equivalent to q.
Next, the result is generalized for any sequence of atomic

retiming transformations.
Theorem 3: Let K 0 be a circuit resulting from a retim-

ing of K, and P be a sequence of arbitrary input vectors of
length equal to the maximum number of forward retiming
moves across any node in K. For every fault f 0 in K 0, there
exists a corresponding fault f in K such that if a sequence
I synchronizes Kf to a state q, then the sequence P [ I

synchronizes K 0f
0

to a state q0 equivalent to q.
Theorem 3 guarantees that by adding a pre�x sequence to

a synchronizing sequence for a faulty circuit, its correspond-
ing faulty retimed circuit is synchronized to an equivalent
state. Thus, after synchronization both faulty circuits have
equivalent I/O behavior.
We next show that adding a pre�x sequence is necessary for

preserving synchronizing sequences on corresponding faulty
retimed circuits.
Observation 2: Let K 0 be a circuit resulting from a retim-

ing of K. Let f in K be the only corresponding fault to f 0

in K 0. Then, a synchronizing sequence that synchronizes the
faulty circuit Kf does not necessarily synchronize the faulty

circuit K 0f
0

.
Example 2: The circuit N2 in Fig. 5 is obtained from N1 by
a single forward retiming move across the single-output AND
gate G1. The stuck-at-1 fault on line G1�Q12 in N2 has one
corresponding fault in N1 namely, the stuck-at-1 fault on line



G1 � G2. The sequence h001; 000i synchronizes the circuit
N1 in the presence of the stuck-at-1 fault on line G1�G2 to
the state f001g. However, the same sequence does not syn-
chronize the circuit N2 in the presence of the stuck-at-1 fault
on line G1�Q12. The sequence drives the circuit to the state
f1xg, and hence does not synchronize it. This is due to the
fact that the stuck-at-1 fault on line G1�Q12 in N2 is not
space-equivalent to its corresponding single stuck-at fault in
the circuit N1. However, it is space-equivalent to the multi-
ple stuck-at-1 fault on lines I1�Q1 and I2�Q2 in N1. It
is also interesting to observe that the synchronizing sequence
h001; 000i is structural-based. Thus, while structural-based
synchronizing sequences are preserved under retiming for the
corresponding fault-free circuits, they are not preserved for
the corresponding faulty circuits. Hence, it is necessary to
add the pre�x sequence to guarantee synchronization.

C. Preservation of Test Sets

In this subsection, we study the preservation of test sets
under retiming. We show that a test set for a retimed circuit
can be derived based on a test set for its corresponding orig-
inal circuit by adding a pre�x sequence of a pre-determined
number of arbitrary input vectors. The derived test set de-
tects each fault in the retimed circuit corresponding to a fault
detectable by the test set in the original circuit.
We have shown, in the previous two subsections, that for

every fault f 0 in a circuit K 0 resulting from a retiming of
K, there exists a corresponding fault f such that if I syn-
chronizes K and Kf to states q and qf , then the sequence

I 0 = P [ I synchronizes K 0 and K 0f
0

to states q0 and q0
f 0

such that q0 is equivalent to q and q0
f 0

is equivalent to qf .
Here P is a sequence of arbitrary input vectors of length
equal to the maximum number of forward retiming moves in
K. Thus, this implies that after such synchronization, retim-
ing preserves the I/O behavior of both the fault-free and the
faulty circuits. If a test set distinguishes between the states
q and qf and hence detects the fault f in K, then its pre�xed

version also distinguishes between the states q0 and q0
f 0

and
detects the fault f 0 in K 0. For any given input sequence, such
as a set of test vectors, retiming does not alter the sequence
of logic values which propagate through each node in the cir-
cuit. Retiming can only alter the clock cycle at which the
logic values arrive at a�ected nodes. Because the same logic
values are propagated through each node, the same paths
are sensitized, and therefore the same (single stuck-at) faults
which those vectors detect in the original circuit are detected
in the retimed circuit. This concept is formalized in the fol-
lowing theorem.
Theorem 4: Let K 0 be a circuit resulting from a retiming

of K, and P be a sequence of arbitrary vectors of length
equal to the maximum number of forward retiming moves
across any node in K. For every fault f 0 in K 0, there exists
a corresponding fault f in K such that if T is a test for f in
K, then the sequence P [ T is a test for f 0 in K 0.
Since we have shown that a test for a fault in a retimed

circuit can be derived based on a test for its corresponding
fault in the original circuit, this implies that retiming does
not introduce any redundant or undetectable faults into the
circuit. If a fault in the original circuit is detectable, then
all its corresponding faults in the retimed circuit are guar-

TABLE I

Characteristics of finite-state machines used to

synthesize circuits

FSM PI PO States

dk16 3 3 27
pma 9 8 24

s510 20 7 47

s820 18 19 25

s832 18 19 25

scf 27 54 121

anteed to be detectable. This leads to following important
conclusion.
Corollary 1: Retiming preserves single stuck-at

fault testability.

The signi�cance and the implications of these results on
test pattern generation are discussed in Section V.
We next show two situations where without adding a pre�x

sequence, a test set is not guaranteed to be preserved under
retiming.
Observation 3: Let K 0 be a circuit resulting from a retim-

ing of K. Let f in K be the only corresponding fault to f 0 in
K 0. Then, a functional-based test for the fault f in K does
not necessarily test the fault f 0 in K 0.
Example 3: Referring to Fig. 3, consider the stuck-at-0 fault
on the output of L2 and its corresponding stuck-at-0 fault on
the output of L1. The input vector h11i detects the stuck-
at-0 fault on the output of L1 since it produces a 1 on the
output of the fault-free circuit L1 and produces a 0 on the
output of the faulty circuit. However, the input vector h11i
does not detect the stuck-at-0 fault on the output of L2 since
it produces an x on the output of the fault-free circuit L2 and
produces a 0 on the output of the faulty circuit.
Observation 4: Let K 0 be a circuit resulting from a retim-

ing of K. Let f in K be the only corresponding fault to f 0 in
K 0. Then, a structural-based test for the fault f in K does
not necessarily test the fault f 0 in K 0.
Example 4: Referring to Fig. 5, the structural-based test
sequence T = h001; 000; 100; 010; 010i detects the stuck-at-1
faults on line I1�Q1, line I2�Q2, line Q1�G1, line Q2�G1,
and line G1�G2 in N1. However, the test sequence T detects
only the stuck-at-1 faults on line I1�G1, line I2�G1, and
line Q12 � G2 in N2. The test sequence T does not detect
the stuck-at-1 fault on line G1�Q12 in N2.

V. Experimental Results

In this section, we demonstrate the e�ect of retiming on the
performance of a structural-based sequential automatic test
pattern generator (ATPG). Using fault simulation results,
we also demonstrate that the retimed circuits can be tested
e�ciently and e�ectively based on the test sets derived for
the original circuits.

A. Synthesis of Circuits

Several circuits were synthesized from the MCNC �nite-
state machine (FSM) benchmarks using the SIS sequential
synthesis tool [12]. Table I lists the number of primary in-
puts, primary outputs and states for the FSM descriptions
used to synthesize the circuits. The versions of dk16, pma,



TABLE II

Test pattern generation results

Original Retimed

Circuit #DFF %FC %FE #CPU #DFF %FC %FE #CPU CPU Ratio

dk16.ji.sd 5 99.8 100.0 308 19 99.7 100.0 99529 323.1

pma.jo.sd 5 99.4 100.0 791 21 98.8 99.3 183145 231.5

s510.jc.sd 6 98.2 100.0 24507 20 95.3 96.0 405630 16.6
s510.jc.sr 6 94.3 99.3 43060 26 53.9 54.6 415021 9.6

s510.ji.sd 6 99.2 100.0 2918 11 98.8 99.6 165190 56.6

s510.ji.sr 6 98.9 100.0 12460 23 91.4 92.0 343420 27.6

s510.jo.sr 6 96.2 100.0 3822 28 56.5 57.0 1000000 261.6

s820.jc.sd 5 99.4 99.9 1536 14 95.3 96.6 267502 174.2

s820.jc.sr 5 98.7 100.0 1207 9 98.5 99.8 7913 6.6
s820.ji.sr 5 98.2 100.0 8385 8 97.3 100.0 296864 35.4

s820.jo.sd 5 100.0 100.0 1282 22 92.5 93.6 381636 297.7

s820.jo.sr 5 98.6 99.8 1212 13 97.3 98.8 97495 80.4

s832.jc.sr 5 98.4 100.0 1225 27 53.7 56.0 496961 405.7

s832.jo.sr 5 98.1 100.0 1103 15 96.7 99.1 499200 452.6

scf.ji.sd 7 99.6 100.0 17262 20 63.1 63.7 689651 40.0
scf.jo.sd 7 99.6 100.0 16725 23 97.8 97.9 699508 41.8

s510, and scf used employ an explicit reset line.

The SIS command sequence employed followed that sug-
gested in the SIS documentation [13]. For more details on
the exact sequence of commands used, the reader is referred
to [8]. Since the logic structure of the synthesized circuits
depends on the state encoding algorithm and the synthesis
script used, multiple (non-retimed) circuits were created from
the same FSM descriptions using a variation of the two. Each
circuit attained a di�erent area-delay trade-o�. The name of
each circuit contains multiple �elds which reect the syn-
thesis options employed. The :j �eld denotes the jedi state
encoding algorithm used: :jo represents the output dominant
algorithm, :ji the input dominant algorithm, and :jc a com-
bination of the input and output dominant algorithms. The
:s �eld denotes the SIS script used for logic synthesis: :sd

indicates script.delay, and :sr indicates script.rugged. The
presence of a :re �eld indicates that the circuit is a retimed
version of the correspondingly named circuit.

B. Test Pattern Generation

The HITEC ATPG [9] was used to measure the increase in
the required ATPG CPU time caused by retiming. Table II
lists the results of the HITEC ATPG on the synthesized cir-
cuits. The columns labeled #DFF list the number of DFFs in
each circuit, #CPU reports the number of DECstation 3100
CPU seconds which HITEC required to attain the levels of
fault coverage and fault e�ciency reported in the columns la-
beled %FC and %FE, respectively, on sequential (non-scan)
versions of each circuit. Fault coverage is de�ned as the per-
centage of faults which were detected. Fault e�ciency is
de�ned as the percentage of faults which were detected or la-
beled redundant. The rightmost column, titled CPU Ratio,
lists the ratio of the CPU run times between the retimed and
the corresponding original circuits.

The results presented in Table II demonstrate that retim-
ing increases the amount of ATPG time required as well as
decreases the achieved levels of fault coverage and fault ef-
�ciency. In seven instances, the ratio of CPU time between
the retimed and original circuits is more than two orders of
magnitude, and in four instances there is a substantial di�er-
ence between the levels of fault coverage and fault e�ciency

attained in the original and corresponding retimed circuits.
It has been demonstrated in [8] that the increase in com-
plexity by retiming is not speci�c to the HITEC ATPG, as
the e�ect is shown to exist in two additional state-of-the-art
sequential, structural ATPGs.

C. Fault Simulation

Based on the results given in Section IV, a test set for a
retimed circuit can be derived based on the test set gener-
ated for its corresponding original circuit by adding a pre-
�x sequence of a pre-determined number of arbitrary input
vectors. We have found that for the circuits pma:jo:sd,
s510:jc:sd and scf:jo:sd, there is a maximum of a single
forward retiming move across any node when transformed
to their retimed versions. Thus, to create test sets for the
retimed versions of these circuits, a single arbitrary input
vector needs to be pre�xed to the test sets generated for the
original circuits. For all the remaining circuits, it was found
that no additional vectors need to be added as there were no
forward retiming moves.

To assess the practical implications of these results, the
test sets derived for each of the retimed circuits, based on the
test sets generated for the original circuits, were fault simu-
lated on the corresponding retimed circuits using PROOFS
[9]. Fault simulation results are shown in Table III. The
columns labeled #Faults specify the total number of col-
lapsed faults in the original and retimed circuits, respectively.
The columns labeled #UnDet specify the number of unde-
tected faults resulting from fault simulation of test sets gen-
erated for the original circuits on the original circuits, and
those derived based on the test sets of the original circuits
on the corresponding retimed circuits, respectively.

As can be seen from Table III, the fault simulation results
on the original and corresponding retimed circuits are iden-
tical in all but eight instances. Any di�erences between the
number of undetected faults in an original and retimed circuit
are due to the e�ect which occurs when a sequential element
is added to a line and the fault on that line is mapped to two
di�erent faults. For example, referring to Fig. 1(a), retiming
the circuit K2 to K1 causes a fault on I1 to be mapped to
two separate faults, including a fault on I1, and a fault on



TABLE III

Fault simulation results

Original Retimed

Circuit #Faults #UnDet #Faults #UnDet

dk16.ji.sd 587 1 615 1

pma.jo.sd 537 3 587 4

s510.jc.sd 656 12 700 12
s510.jc.sr 628 36 668 36

s510.ji.sd 759 6 769 6

s510.ji.sr 725 8 759 9

s510.jo.sr 612 23 656 25

s820.jc.sd 688 4 706 5

s820.jc.sr 547 7 555 7
s820.ji.sr 547 10 553 10

s820.jo.sd 737 0 777 0

s820.jo.sr 585 8 601 9

s832.jc.sr 552 9 596 11

s832.jo.sr 619 12 639 13

scf.ji.sd 1892 7 1920 9
scf.jo.sd 1955 8 2005 8

circuit

transformed
     circuit

ATPG

test
 set

   retime
      for
testability

Fig. 6. A new technique for enhancing the performance of ATPG.

the output of Q0. The opposite happens when retiming re-
moves a sequential element{ two faults are mapped onto a
single fault. In such instances, if the test set detects the fault
in the original circuit, then it will also detect the two corre-
sponding faults in the retimed circuits. Conversely, if the
test set does not detect the fault in the original circuit, then
neither of the corresponding faults in the retimed circuit will
be detected. This phenomena was found to account for all
discrepancies in the number of undetected faults between the
original and retimed circuits for the derived test sets. In all
other cases, the number of undetected faults for the derived
test sets is equal for the original and retimed circuits.
These results demonstrate a powerful technique to o�set

the dramatic increase in the time required for test generation
of retimed circuits. The technique involves targeting for test
generation a more easily testable version of the circuit that
will be implemented. Fig. 6, originally proposed in [7], sum-
marizes this new technique for enhancing the performance
of ATPG. For example, consider the circuit s510:jo:sr:re
(given in Table II). The HITEC ATPG is able to achieve
only a 56:5% fault coverage in one million CPU seconds on
s510:jo:sr:re. However, when the circuit s510:jo:sr:re is re-
timed to the circuit s510:jo:sr by minimizing the number
of DFFs, HITEC requires only 3822 seconds to generate a
test set which attains a 96:2% fault coverage on s510:jo:sr.
The test set generated for s510:jo:sr achieves a 96:2% fault
coverage when fault simulated on the circuit s510:jo:sr:re.

VI. Conclusions

In this paper, we have determined the impact of retiming
on the testability of sequential circuits. We have shown that

retiming preserves testability with respect to a single stuck-at
fault test set by adding a pre�x sequence of a pre-determined
number of arbitrary input vectors. The signi�cance of this
result is illustrated by the fact that performance-driven re-
timing dramatically increases the run time required by struc-
tural sequential ATPGs (an increase of two orders of magni-
tude in several instances), as well as decreases the levels of
fault coverage and fault e�ciency attained. We have demon-
strated that high fault coverages can be achieved on high
performance circuits optimized by retiming in a much less
CPU time than if ATPG is attempted directly on those cir-
cuits. Testability preservation under retiming thus suggests
a new approach for improving the performance of sequential
ATPGs and reducing the cost of test pattern generation. Un-
like design for testability techniques, this approach does not
incur any increase in silicon area or degradation in perfor-
mance.
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