
A Transformation-Based Approach for Storage Optimization�

Wei-Kai Cheng Youn-Long Lin

Department of Computer Science, Tsing Hua University

Hsin-Chu, Taiwan 30043, R.O.C.

E-mail: fdr808309, yling@cs.nthu.edu.tw

Abstract
High-level synthesis (HLS) has been successfully tar-

geted towards the digital signal processing (DSP) do-
main. Both application-speci�c integrated circuits (A-
SICs) and application-speci�c instruction-set processor
(ASIPs) have been frequently designed using the HLS ap-
proach. Since most ASIP and DSP processors provide
multiple addressing modes, and, in addition to classical
constraint on the number of function units, registers, and
buses, there are many resource usage rules, special con-
siderations need to be paid to the optimizing code genera-
tion problem. In this paper we propose three transforma-
tion techniques, data management, data ordering, and
transformational retiming, for storage optimization dur-
ing code generation. With these transformations, some
scheduling bottlenecks are eliminated, redundant instruc-
tions removed, and multiple operations mapped onto a
single one. The proposed transformations have been im-
plemented in a software system called Theda:MS. A
set of benchmark programs has been used to evaluate the
e�ectiveness of Theda:MS. Measurement on the syn-
thesized codes targeted towards the TI-TMS320C40 DSP
processor shows that the proposed approach is indeed very
e�ective.

1 Introduction
For both ASIP and programmableDSP processor, the

code generation problem is very important as it signif-
icantly a�ects the overall performance. High-level syn-
thesis has been successfully targeted towards the DSP
domain. In Paulin's survey [1] regarding future CAD re-
quirements by a group of designers, code generation and
microcode synthesis are among the most urgent needs
in high-level synthesis for DSP applications. It is esti-
mated that about four �fths of the DSP applications are
implemented with either programmable DSP processors
or ASIP.

There have been several systems targeted towards the
code generation and microcode synthesis of DSP appli-
cations. For example, Ptolemy [3], FlexWare [1],and
Cathedral II [4]are all well known systems. Beyond op-
eration scheduling and register-for-variable allocation,

�Supported in part by a grant from the National Science Coun-

cil of R.O.C. under contract no. NSC84-2215-E-007-045

there are active researches on the transformation tech-
niques for further improving the results of synthesis or
microcode generation [2] [5] [6] [7] [8] [9].

Since storage (memory or register) synthesis is very
important to code generation. In this paper, we pro-
pose three transformation techniques { data manage-
ment, data ordering, and transformational retiming {
targeted towards programmable DSP processors or ASIP
with non load/store architecture. Data management re-
duces the number of violations against the constraint
on the number of memory and register accesses when
multiple instructions are scheduled to executed simulta-
neously. It also eliminates redundant load/store instruc-
tions. Data ordering rearranges instruction execution
order to minimize the dependence caused by the usage
of indirect memory addressing mode. It also balances as
much as possible the data ow graph and, hence, mini-
mizes the critical path length. Transformational retim-
ing combines some addressing mode transformation tech-
niques and some retiming techniques together to elimi-
nate the violations against addressing mode constraints,
and merges multiple instructions into more inclusive one.

The rest of this paper is organized as follows. The ba-
sic ideas are �rst introduced in section 2. Section 3 gives
an overview of the software system that implementing
the proposed transformations. Detailed transformation
algorithms are described in section 4. In section 5, some
experiment results are presented. Finally, in section 6
we draw a conclusion and speculate on possible future
research.

2 Basic Ideas

2.1 Data Management
Data management determines the best storage loca-

tion (register or memory) for each operand. Many DSP
processors are non-load/store architecture. There is usu-
ally register access constraint when multiple instructions
are executed simultaneously. Therefore, it would be bet-
ter for certain data to be kept in the memory rather than
the register. We use the data management technique to
determine where to store the data. It is di�erent from
code spilling, which temporarily stores data into memory
while running out of registers.

We illustrate the idea using the example depicted in
Figure 1. Figure 1(a) and (b) are two code segments with
di�erent data locations for the same function. Their cor-
responding DFG are shown in Figure 1(c) and (d), re-
spectively. Assume that there can be two memory reads
and two register reads during an instruction cycle. In
Figure 1(a), instructions 1 and 4 load data into registers
10 and 2, respectively, for later usage by instructions 2,
5, 7, and 9. In contrast, in Figure 1(b), no preloading has

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

LDF

LDF

SUBF

SUBF

ADDF

ADDF

STOF

STOF

ADDI

ADDI

* AR5 , R2

* AR4 , R10

R6 , R0

R1 , R0 , R3

R3 , R5

R7 , R5

R10 , * AR5++

R3 , * AR4++

1 , AR4

1 , AR5

4

1

MPYF * AR2++ , R10 , R62

3

MPYF * AR2++ , R2 , R15

6

MPYF * AR2++ , R10 , R57

8

MPYF * AR2++ , R2 , R79

10

11

12

13
14

LDF

MPYF

SUBF

MPYF

SUBF

MPYF

ADDF

MPYF

ADDF

STOF

STOF

ADDI

ADDI

* AR4 , R10

* AR2++ , * AR4 , R6

R6 , R0

* AR2++ , * AR5 , R1

R1 , R0 , R3

* AR2++ , * AR4 , R5

R3 , R5

* AR2++ , * AR5 , R7

R7 , R5

R10 , * AR5++

R3 , * AR4++

1 , AR4

1 , AR5

1

2

3

5

6

7

8

9

10

11

12

13
14

(a) (b)

(c) (d)

2

7

8

13

14

1

3

4

5

6

9

10

11

12

2

7

8

13
14

1

3

5

69

10

11
12

Figure 1: E�ect of data management: (a) A code seg-
ment, (b) A code segment with di�erent data locations
for the same function as that of (a), (c) DFG for (a), (d)
DFG for (b).

been performed and, hence, instructions 2, 5, 7, and 9
fetch data directly from the memory. For the later case,
instructions 3 and 5 can be executed in parallel; While in
the former case, this parallelism is not available because
of too many register access during the same instruction
cycle. As it has less violation against the register access
constraint, the code in Figure 1(b) is better from the
data management point of view.

2.2 Data Ordering
Data ordering minimizes the occurence of addressing

dependences using addressing mode transformation. In
many DSP application programs, the array structure is
often used for storing data in the memory while instruc-
tions in the loop body usually access these data with
indirect addressing mode. This results in a type of de-
pendence which we called addressing dependence.

The occurrence of addressing dependence is also illus-
trated using Figure 1. In Figure 1(c) and (d), there are
dashed lines between instructions 2 and 5, 5 and 7, and 7
and 9 denoting addressing dependence. These execution
order constraints are imposed because the �rst operands
of all four instruction are placed in successive memo-
ry locations and all referred to with addressing register
AR2 using the auto increasing mode, where �AR2++
denotes addr = AR2; AR2 = AR2 + 1. By minimizing
the occurrence of addressing dependence via addressing
mode transformation, the scheduling freedom can be in-
creased. For example, in Figure 2 (a) the critical path

length is 6; while if we change the execution order of in-
struction (2, 5) to (5, 2) as in Figure 2 (b), the critical
path length becomes 5.

(b)

2

7

8

13

1

3

5

6

9

10

12

4

11

(a)

2

7

8

13

1

3

5

6

9

10

12

4

11

Figure 2: (a) A DFG; (b) A DFG obtained from (a) with
data ordering.

2.3 Transformational Retiming
The transformational retiming performs retiming fol-

lowed by addressing mode transformation. Its basic idea
is illustrated in Figure 3. In the loop body of the iir
algorithm depicted in Figure 3(a), instructions 13 and
14 depend on instructions 1 and 4, respectively. If in-
structions 13 and 14 are retimed to the next iteration
of the loop body as shown in Figure 3(b), new data de-
pendences will be formed between instructions 13 and
14 and instructions 1 and 4, respectively. By means of
addressing mode transformation, instructions 1 and 4
can be merged with instructions 13 and 14, respectively,
to form new instructions using auto increasing mode as
shown in Figure 3(c). This results in fewer instruction
count.

3 System Overview
Our software system implementing the proposed ideas

is called Theda:MS. Input to Theda:MS is a data ow
graph (DFG) generated by the compiler front end, the
instruction set speci�cation, and the addressing pattern
transformation library. Output from Theda:MS is an
assembly code for the target DSP processor or ASIP. It-
s essential tasks include memory access and addressing
mode transformation, instruction scheduling, and regis-
ter allocation.

A typical DFG representation is shown in Figure 1(c).
The DFG is similar to the traditional DFG with the
addition of the addressing dependence(denoted by the
dashed lines).

The instruction set speci�cation describes the con-
straint of each instruction, including the instruction for-
mat, the legal addressing mode, and the accessible reg-
isters. It also speci�es the restrictions on how multiple
operations can be combined into an instruction word.

The addressing pattern transformation library pro-
vides the transformation pattern for data ordering and
transformational retiming as shown in Figure 4. For data
ordering, it provides patterns for changing the instruc-
tion execution order from that on the left hand side to
that on the right hand side. For transformational retim-
ing, it provides patterns that combines multiple opera-

LDF

LDF

MPYF

SUBF

MPYF

SUBF

MPYF

ADDF

MPYF

ADDF

STOF

STOF

ADDI

ADDI

* AR5 , R2

* AR4 , R10

* AR2++ , R10 , R0

R0 , R9

* AR2++ , R2 , R3

R3 , R9 , R3

* AR2++ , R10 , R9

R3 , R9

* AR2++ , R2 , R0

R0 , R9

R10 , * AR5++

R3 , * AR4++

1 , AR4

1 , AR5

4

1

2

3

5

6

7

8

9

10

11

12

13
14

(a) (b)

LDF

LDF

MPYF

SUBF

MPYF

SUBF

MPYF

ADDF

MPYF

ADDF

STOF

STOF

* AR5 , R2

* AR4 , R10

* AR2++ , R10 , R0

R0 , R9

* AR2++ , R2 , R3

R3 , R9 , R3

* AR2++ , R10 , R9

R3 , R9

* AR2++ , R2 , R0

R0 , R9

R10 , * AR5++

R3 , * AR4++

4

1

2

3

5

6

7

8

9

10

11

12

ADDI

ADDI

1 , AR4

1 , AR5

13
14

LDF

LDF

MPYF

SUBF

MPYF

SUBF

MPYF

ADDF

MPYF

ADDF

STOF

STOF

*++ AR5 , R2

*++ AR4 , R10

* AR2++ , R10 , R0

R0 , R9

* AR2++ , R2 , R3

R3 , R9 , R3

* AR2++ , R10 , R9

R3 , R9

* AR2++ , R2 , R0

R0 , R9

R10 , * AR5++

R3 , * AR4++

4

1

2

3

5

6

7

8

9

10

11

12

(c)

Figure 3: A Transformational Retiming Example: (a) a
loop body, (b) the retimed loop body, (c) the �nal loop
body after addressing mode transformation.

tions into one operation as the �rst example shown, or
some other transformations (the second example).

Addressing Pattern transformation library

:

1
2
3
4

* ARn++
* ARn++
* ARn++
* ARn++

2
1
3
4

*++ ARn(2)
*− ARn
*++ ARn
*++ ARn

Data Ordering

1
2
3
4

* ARn++
* ARn++
* ARn++
* ARn++

1
3
2
4

*++ ARn
*++ ARn
*− ARn
*++ ARn

ADDI k, ARn

* ARnOp
*++ ARn(k)Op

Transformational Retiming

:

Op1 * ARn++(k)

* ARn++(k)Op2

Op1 * ARn++(IRm)

* ARn++(IRm)Op2

Figure 4: The addressing pattern transformation library.

The transformation of memory access and addressing
mode utilizes all three transformation techniques. First,
the data ordering transformation is invoked to break the
addressing dependences, balance the DFG, and, possi-
bly, reduce the critical path length. Then the transfor-
mational retiming transformation is applied to eliminate
violations against addressing mode constraints and to
combine multiple instructions into a single one. Final-
ly, the data management transformation is applied to
eliminate violations against register and memory access
constraints and to remove redundant load/store instruc-
tions.

For instruction scheduling and register allocation, we
apply the algorithm of [10]. The algorithm schedules op-
erations into control steps, minimizes the pipeline con-

icts, binds data and address values to registers, and
allocates registers for loop counters and other special-
purpose usage.

4 Algorithms
4.1 Data Management

Figure 5 gives a pseudo code description of the data
management algorithm. The algorithm modi�es a D-
FG in two phases. During the �rst phase, it determines
whether an operand should be brought into the register
before it is accessed. For each operand, the evaluation
functions evaluate r and evaluate m are used to calcu-
late the gains of fetching the operand directly from the
memory and loading it into the register beforehand, re-
spectively. If evaluate m > evaluate r, we will store the
operand in the memory; otherwise, we will load it in-
to the register before it is accessed. During the second
phase, the algorithm calls the function delete to elimi-
nate load/store instructions whose data will not be used.
The DFG is then modi�ed accordingly.

Algorithm Data Management(SDG)
/** phase 1 **/

Op set = the set of operands for determining data location;
I set = the set of load instructions with operands in Op set ;

I reg = ;;
for each operand opi 2 Op set do

gain r = evaluate r(opi);
gain m = evaluate m(opi);
if gain m � gain r then

operand opi is fetched directly from the memory;
else

operand opi is loaded into the register beforehand;
let Ii be the instruction loading opi;

I reg = I reg [Ii;
endif

endfor

/** phase 2 **/
I del = I set� I reg;

SDG = delete(SDG,I del);
end Data Management.

Figure 5: The data management algorithm.

We use Figure 6 to illustrate how the evaluation func-
tion works. Figure 6(a) and (b) show the ASAP schedul-
ing and the ALAP scheduling results, respectively, of the
DFG of Figure 1(c). In this example, operands of in-
structions 2, 5, 7, and 9 are evaluated. For instruction
9, it can only be scheduled into step 5 as determined by
the ASAP and ALAP schedulings. Other instructions
that might be scheduled into step 5 are 8; 11; 12; and 14.
The possibility that these instructions be scheduled into
step 5 is 1; 1

4
; 1; and 1

4
. If instruction 9 accesses its second

operand from the memory, it can be executed in parallel
with instruction 8. Among the remaining instructions,
instructions 11 and 12 can also be executed in parallel.
Therefore, the gain is 1� 1 + 1� 1

4
= 11

4
. On the other

hand, if instruction 9 accesses its second operand from
the register, it can be executed in parallel with instruc-
tion 11 or 12, and leaves no more parallelism. Therefore,

the gain is Max(1 � 1; 1 � 1
4
) = 1. For instructions 2,

5, and 7, their appropriate data locations can also be
determined similarily.

(a) (b)

14

4

11

2

7

8

13

1

3 5

6

9

10

12

2

7

8

13

1

3 5

6

9

10

12

4

11

14

1

2

3

4

5

6

1

2

3

4

5

6

Figure 6: The ASAP scheduling (a) and ALAP schedul-
ing (b) of the example in Figure 1 (c).

Figure 1 again is used to illustrate how the function
delete works. In Figure 1(c), the predecessors of instruc-
tion 12 are instructions 1 and 6. But in Figure 1(d),
the predecessors of instrcution 12 becomes instructions
6 and 7 because the addressing register AR4 is used by
both instructions 2 and 7. Similarly, for instruction 11,
its predecessors in Figure 1(d) becomes instructions 1
and 9 instead of 1 and 4 in Figure 1(c). Since instruc-
tions 5 and 9 in Figure 1(b) fetch their operands directly
from the memory, instruction 4 is of no use and can be
removed from the code segment. Although instructions
2 and 7 also fetch their operands directly from the mem-
ory, instruction 1 is not redundant because R10 is used
by instruction 11.

4.2 Data Ordering

Figure 7 gives a pseudo code description of the data
ordering algorithm. During the �rst phase, the ALAP
scheduling is performed on both the input DFG and the
modi�ed DFG while all addressing dependences are ig-
nored. The ALAP function returns the execution order
of the operations with addressing dependences. If the ex-
ecution orders for the input DFG and the modi�ed DFG
are di�erent, it proceeds with the second phase. During
the second phase, it �rst calls the pattern matching1
function to check whether there is applicable addressing
mode transformation in the addressing patterns library
for this data ordering. If there exists a matched pattern,
it calls the function pattern transform1 to apply the
pattern and return the transformed DFG without actu-
ally reordering the data in the memory. On the other
hand, if there exists no matched pattern, then it calls
the function data exchange to reorder the data in the
memory according to the new execution order without
changing the addressing mode.

For the example in Figure 2 (a), if the addressing de-
pendence between instructions 2, and 5 is ignored dur-
ing ALAP scheduling, the execution order will become
(5, 2). Suppose they all use �ARn + + for indirect ad-
dressing. If there exists a matched transformation pat-
tern �+AR2 and �AR2++(2), where �+AR2 denotes
addr = AR2+1; AR2 = AR2, and �AR2++(2) denotes
addr = AR2; AR2 = AR2+2, in the addressing patterns
library, we can change the usage of ARn by instructions
5, and 2 accordingling.

Algorithm Data Ordering(SDG)
/** phase 1 **/
Oa = the set of operations with addressing dependences;
Ea = the set of addressing dependence edges in SDG;
Sa
DG

= elimination of Ea from SDG;
Exc o = ALAP(SDG);
Exc a = ALAP(Sa

DG
);

/** phase 2 **/
if Exc o and Exc a are di�erent then
Ptrans = pattern matching1(Exc o,Exc a);
if Ptrans 6= NULL then

SDG = pattern transform1(SDG,Ptrans);
else

data exchange(Exc o,Exc a);
endif

endif

end Data Ordering.

Figure 7: The data ordering algorithm.

4.3 Transformational Retiming

Figure 8 gives a pseudo code description of the algo-
rithm. The algorithm consists of two phases. During the
�rst phase, it �rst uses the function pattern matching2
to traverse the DFG and �nd out all the instructions
matching the transformation patterns de�ned in the ad-
dressing patterns library. Then it sorts the matched in-
structions according to the priority de�ned in the library.
Finally, it transforms the matched instructions one at a
time using the function pattern transform2. There are
two categories of transformation patterns: one for elim-
inating violations against addressing mode constraints
and the other for combining multiple instructions into
a single one. If a transformation lengthens the critical
path of the DFG, it is discarded.

During the second phase, all successor instructions
of all transformed instructions are retimed to the next
iteration using the retiming f function. Then the trans-
formation process of the �rst phase is applied again to
further compact the DFG. Finally, all instructions which
have been retimed from the previous iteration but have
not been matched during the current iteration are re-
timed back to the previous iteration using the function
retiming back.

We use the example depicted in Figure 9 to illustrate
the transformational retiming algorithm. In Figure 9(a),
suppose there are three set of instructions found and
sorted into the order (2, 3, 7), (5, 10), and (5, 6). The
(5, 10) set is to combine into a single instruction while
the other two are to eliminate violations against address-
ing mode constraint. Firstly, instructions 2, 3, and 7 are
transformed. Then, instructions 5 and 10 are merged
into a single instruction as depicted in Figure 9(b). Be-
cause this merging increases the length of the critical
path (from 4 to 6), we undo it and continue with the
transformation for instructions 5 and 6 as depicted in
Figure 9(c). During the second phase, we retimed in-
structions 8, 9, 10, 11, 12, and 13, which are successors of
the transformed instructions 2, 3, 7, 5, and 6, to the next
iteration as depicted in Figure 9(d). Now suppose the

Algorithm Transformational Retiming(SDG)
/** phase 1 **/
P set = pattern matching2(SDG);
Optrans = the set of operations in P set;
P set = sort(P set);
for each ptrans 2 P set do

SDG = pattern transform2(SDG,ptrans);
endfor

/** phase 2 **/
Opsuc = the set of operations that are successors of Optrans;
SDG = retiming f(SDG,Opsuc);
P set = pattern matching2(SDG);
Opno = the set of operations not in P set;
P set = sort(P set);
for each ptrans 2 P set do

SDG = pattern transform2(SDG,ptrans);
endfor

Oppre = Opsuc \Opno;
SDG = retiming b(SDG,Oppre);

end Transformational Retiming.

Figure 8: The transformational retiming algorithm.

new matched patterns are (13, 1) and (9, 4). Figure 9(e)
shows the transformation result. Since the length of crit-
ical path is not increased, these two transformations are
taken. Finally, instructions 8, 10, 11, and 12, which have
not been transformed, are retimed back to the previous
iternation as shown in Figure 9(f).

5 Experimental Results
We have implemented the proposed approach in a

software system called Theda:MS using the C program-
ming language. We have tested our system with a set of
benchmark programs. We compare Theda:MS and the
TI TMS320C40 C compiler in terms of the code e�cien-
cy targeted towards the TMS320C40 DSP processor.

Seven frequently used DSP algorithms in the C lan-
guage are used as the benchmarks. The �rst four bench-
marks come from [11]. They are a 6th order FIR �lter
(�r), an IIR �lter (iir), a 16-point discrete fourier trans-
form algorithm (dft), and a 32-by-32 two-dimensional
convolution algorithm with a 3rd order Kaiser �lter k-
ernel (convolution). The latter three benchmarks are
from [12]. They are an edge detection algorithm (edge)
for 32-by-32 image, a 16-by-16 discrete consine transfor-
m algorithm (dct), and a 16-by-16 wiener �lter frequency
responance (wiener). We use the TI TMS320C40 simula-
tor to simulate the codes and count the execution cycles.

The experiment studies the e�ectiveness of the pro-
posed transformations. The �rst row of Table 1 shows
the execution cycles of the codes generated by the TI
TMS320C40 compiler with the highest level (Level 2)
optimization. The second rows shows the result of our
system with the transformation procedures deactivated.
The next three rows show the results when data ordering,
transformational retiming, and data management are ap-
plied, respectively. The last four rows show the results
when data ordering followed by transformational retim-
ing, data ordering followed by data management, trans-

(c)(b)(a)

2
7

13

1

3

12

4

11

8

6

9

2
7

1

3

5

6

4

8

13
9

10

12
11

2
7

3

5

6

8

10

12
11

1 13, 4 9,

2
7

8

3

5

6

10

12 11

4 9,1 13,

(d) (f)(e)

2
7

8

13

1

3

5

6

9

10

12

4

11

510,

2
7

8

13

1

3

5

6

9

10

12

4

11

Figure 9: Transformational retiming example: (a) A
DFG with three matched patterns, (b) A transforma-
tion lengthening the critical path, (c) Realization of two
transformations, (d) Retimed DFG, (e) Realization of
two transformations in the next iteration, (f) Back re-
timing.

formational retiming followed by data management, and
all all three transformations are applied, respectively. In
all but the smallest examples, all transformations lead
to signi�cant reduction in the cycle counts.

Figure 10 shows the program listings for the iir bench-
mark. Figure 10(a) is the C source program from Page
174 of Reference [11]. Figure 10(b) is the TMS320C40
assembly code generated by the TI TMS320C40 compil-
er using Level 2 (the highest level) optimization. Fig-
ure 10(c) shows the assembly code generated by our sys-
tem without the transformation procedures proposed in
this paper. Figure 10(d) shows the assembly code gener-
ated by our system with the transformation procedures
activated. Compared Figure 10(c) and (d), we can see
that operand locations for instructions 5, 7, and 9 are
di�erent, hence, resulting in di�erent instruction order-
ings. In Figure 10(c) we can pack three two-instruction
microcodes, while in Figure 10(d) we can pack �ve two-
instruction microcodes. The total number of instructions
is also reduced.

6 Conclusion and Future Work
We have presented three transformation techniques

for storage optimization during code generation targeted
towards DSP processors and ASIPs with non load/store
architecture. With these transformations applied be-
fore instruction scheduling and register allocation, the
code compactness and execution speed can be greatly
improved. Simple yet e�cient algorithms have been de-
signed based on cost functions taking into account prac-
tical considerations. Experimental results over a set of
DSP kernel programs have demonstrated the e�ective-
ness of the proposed transformations.

In the future, we would like to extend the proposed
approach for a multiple-DSP-processor system. Such a
system promises even higher level of performance. In
addition to the proposed techniques, we will develop
methods for partitioning and interface/communication
design, and consider the hierarchal memory structure.

Table 1: E�ect of the three transformation techniques targetted towards the TI's DSP processor TMS320C40 in terms
of execution cycles. Theda(): our system without transformations applied. o: data ordering; r: transformational
retiming; m: data management.

Compilers �r iir dft con. edge dct wiener

TI 40 65 11456 126377 25565 10115 8805
Theda() 37 58 10918 126377 25565 9843 8805
Theda(o:) 37 58 10896 126377 25525 9843 8805
Theda(r:) 37 52 10642 118295 24953 9577 8805
Theda(m:) 37 57 10775 126377 22657 7842 7743
Theda(o:r:) 37 52 10642 118295 24953 9577 8805
Theda(o:m:) 37 57 10775 126377 22657 7842 7743
Theda(r:m:) 37 52 10388 118295 21968 7349 7743
Theda(o:r:m:) 37 52 10388 118295 21968 7349 7743
Theda(o:r:m:)

TI
0.93 0.80 0.91 0.94 0.86 0.73 0.88

for (i = 0 ; i < iir−>length ; i ++) {
 history1 = * hist1_ptr ;
 history2 = * hist2_ptr ;

output = output − history1 * (* coef_ptr ++) ;
new_hist = output − history2 * (* coef_ptr ++);

output = new_hist + history1 * (* coef_ptr ++) ;
output = output + history2 * (* coef_ptr ++) ;

* hist2_ptr ++ = * hist1_ptr ;
* hist1_ptr ++ = new_hist ;
hist1_ptr ++ ;
hist2_ptr ++ ;

}
(a) (b)

SUBF
MPYF
LDF * AR4 , R10

* AR2++ , R10 , R0
R0 , R7

LDF *AR5 , R2
MPYF * AR2++ , R2 , R3
SUBF R3 , R9 , R3
MPYF * AR2++ , R10 , R9
ADDF R3 , R9
MPYF * AR2++ , R2 , R0
ADDF R0 , R9
STF R10 , *AR5++
STF R3 , * AR4++
ADDI 1 , AR4
ADDI 1 , AR5

||

||

||

LDF * AR4 , R5
LDF * AR5 , R4
MPYF * AR2++ , R5 , R6
STF R5 , * AR5++
SUBF R6 , R9 , R3
MPYF * AR2++ , R4 , R0
SUBF R0 , R3 , R3
MPYF * AR2++ , R5 , R1
STF R0 , * AR4++
ADDF R3 , R1 , R2
MPYF * AR2++ , R4 , R1
ADDF R1 , R2 , R2

ADDI 1 , AR4
ADDI 1 , AR5

(c)

||

||

||

LDF * ++AR4 , R5
LDF * ++AR5 , R4
MPYF * AR2++ , R5 , R6
SUBF R6 , R7 , R3
MPYF * AR2++ , * AR5 , R0
SUBF R0 , R3 , R3
MPYF * AR2++ , *AR4 , R1

STF R5 , * AR5++
STF R3 , * AR4++

ADDF R3 , R1 , R2
MPYF * AR2++ , * AR5 , R1

ADDF R1 , R2 , R2

(d)

||

||

Figure 10: Program listings for the iir benchmark: (a)
The C source code, (b) The assembly code generated by
the TI compiler, (c) The assembly code generated by our
system without transformations. (d) The assembly code
generated by our system with transformations.

References

[1] Pieere G. Paulin, Cli�ord Liem, Trevor C. May, and

Shailesh Sutarwala, \DSP Design Tool Requirements for

Embedded Systems: A Telecommunications Industrial

Perspective." Journal of VLSI Signal Processing, 1994.

[2] Cli�ord Liem, Trevor May, and Pieere Paulin,

\Instruction-Set Matching and Selection for DSP and

ASIP Code Generation." Proc. The European Design

and Test Conference, pp. 31-37, 1994.

[3] Jose Pino, Soonhoi Ha, Edward A. Lee, and Joseph

T. Buck, \Software Synthesis for DSP Using Ptolemy."

Journal on VLSI Signal Processing, special issue on

\Synthesis for DSP", 1993.

[4] Gert Goossens, Jan Rabaey, Joos Vandewalle, and Hugo

De Man, \An E�cient Microcode Compiler for Appli-

cation Speci�c DSP Processors." IEEE Transactions on

Computer-Aided Design, pp. 925-937, Sep. 1990.

[5] Viraphol Chaiyakul, Daniel D. Gajski, and Loganath

Ramachandran, \High-Level Transformations for Min-

imizing Syntactic Variances." Proc. 30th Design Au-

tomation Conference, pp. 413-418, June 1993.

[6] Zia Iqbal, Miodrag Potkonjak, Sujit Dey, and Alice

Parker, \Critical Path Minimization Using Retiming

and Algebraic Speed-Up." Proc. 30th Design Automa-

tion Conference, pp. 573-577, June 1993.

[7] Shan-Hsi Huang, Jan M. Rabaey, \Maximizing the

Throughput of High Performance DSP Applications Us-

ing Behavioral Transformations." Proc. The European

Design and Test Conference, pp. 25-30, 1994.

[8] David J. Kolson, Alexandru Nicolau, Nikil Dutt, \Min-

imization of Memory Tra�c in High-Level Synthesis."

Proc. 31st Design Automation Conference, pp. 149-154,

June 1994.

[9] Florin Balasa, Francky Catthoor, and Hugo De

Man, \Dataow-driven Memory Allocation for Multi-

dimensional Signal Processing Systems." Proc. 1994 IC-

CAD.

[10] Wei-Kai Cheng, and Youn-Long Lin, \Code Generation

for a DSP Processor." Proc. 7th International Sympo-

sium on High-Level Synthesis, pp. 82-87, 1994.

[11] Paul M. Embree, and Bruce Kimble, \C Language al-

gorithms for Digital Signal Processing." Prentice-Hall,

1991.

[12] Ioannis Pitas, \Digital Image Processing Algorithms."

Prentice-Hall, 1993.

	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

