
Abstract - In this paper we present an approach to incorpo-
rate design schedule management services into a flow manage-
ment system. The basis of our approach is to derive a design
schedule from the simulation of a flow execution. Actual flow
execution can then be tracked against the proposed schedule via
design metadata. We verify our approach by implementing
design scheduling into the Hercules Workflow Manager.

I. INTRODUCTION

As designs continue to grow in size and increase in com-
plexity, the pressure placed on project managers to meet
design schedules increases.Project Management Systems,
such as MacProject or Microsoft Project1, are available to
assist the project manager in managing design schedules.
These systems provide the ability to create proposed sched-
ules and track the actual schedule as a design moves to com-
pletion. At present, schedule management systems are
typically separate from the system that controls the creation
and execution of the design process itself. Project managers
acquire projected and actual completion dates from the dif-
ferent designers working on the project, and manually insert
the information into their project management system. At the
same time, there is an increasing interest in graph-based
Design Flow Management Systems for executing and track-
ing design processes. As a process is executed within a
design flow management system, the designer would report
the progress to the project manager, who in turn would make
the appropriate update in a project management system. This
paper describes an approach for integrating both design
schedule management and process management features in a
single system.

By merging schedule management and process manage-
ment together, schedule management services can be directly

1. MacProject is a product of the Apple Corporation and Microsoft Project
is a product of the Microsoft Corporation.

*This research is supported in part by a grant from the Mentor Graphics
Corporation.

linked to the design process. There are several advantages to
having a combined system. First, the design process decom-
position developed during schedule planning can also be uti-
lized for flow management. Second, the project schedule can
be automatically updated because the status of the flow is
maintained within the flow management system. Finally, pre-
vious schedule information can be used for planning future
projects. For example, previous schedule data can be used to
predict the duration of future projects or to optimize the
resources associated with future projects.

In this paper we will show how to incorporate a schedule
model into a general flow management model and describe
how project planning can be accomplished in the context of
design process execution. We believe that our approach is
sufficiently general to be applicable to a variety of flow man-
agement systems. In the next section we will review several
available design flow management systems highlighting the
similarities of their underlying representations. Section III
describes how a schedule model can be integrated into the
flow management model, and Section IV illustrates the inte-
grated representation in a specific flow management system,
namely the Hercules Workflow Manager. Finally, we present
our conclusions in Section V.

II. FLOW MANAGEMENT SYSTEMS

Design flow management systems have been developed to
provide designers with services to aid in the development and
execution of the design process. A survey of flow manage-
ment systems include theRoadmap Model developed at Phil-
ips Research Laboratories [6], theNELSIS CAD Framework
[1], theHercules Workflow Manager [11], theHistory Model
developed at UC-Berkeley [4], theHilda CAD Framework
[2], and theVOV CAD System [3].

In general, it is a non-trivial task to compare flow manage-
ment systems because each system may be based on a differ-
ent data model or employ a different modeling language.
Nevertheless, the four-level architecture in [6] and [7] can
serve as a common basis for discussion. Through this gener-
alization, we will later show how systems of this general
architecture can integrate the schedule model. These four
levels are described below:

• Level 1 - contains the basic elements used to create
design flows.

Incorporating Design Schedule Management
into a Flow Management System*

Eric W. Johnson & Jay B. Brockman
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

• Level 2 - instantiations of Level 1 data linked together to
create design flow models.

• Level 3 - describes the metadata objects created from the
execution of a flow.

• Level 4 - depicts the actual design data generated from
the execution of a flow.

Each of the flow management systems listed above can be
described in relation to this four-level architecture.1 A brief
description of each system is presented. Table 1 follows with
a summary of the system models represented in the four-level
architecture.

The “Data Flow Based Architecture” orRoadmap Model
described by van den Hamer and Treffers [6] is based on the
Object Type Oriented Data Model (OTO-D) data model. The
OTO-D model is used for both design flow management and
storage for design metadata. The structure of theRoadMap
Model introduced the idea of a multi-level architecture for a
flow model.

TheNELSISCAD framework, developed at Delft Univer-
sity, also uses a flow-based design architecture. As with the
Roadmap Model, the information model used for the design
flow architecture inNELSIS is based on an OTO-D model
[1], but is expanded to also provide support for data hierar-
chy [12].

The Hercules Workflow Manager is a flow management
system within theOdysseyCAD framework initially devel-
oped at Carnegie Mellon University[11].Hercules uses a task
schema to help designers formulate and execute tasks. The
task schema provides construction rules which define how
tool and data resources can be combined to form tasks.

The History Model is a CAD system developed at U. C.
Berkeley to provide support for the dynamic aspects of VLSI

1. We present only a comparison between system models. For a thorough
comparison of system features based on these models, see [9].

design [4]. The model is based on a task specification lan-
guage and provides an integrated framework for managing
both design operations and design data.

Hilda is a CAD Framework developed at Siemens
Research Laboratory that uses a Petri net representation to
describe design flows [2]. The Petri net representation allows
Hilda to represent many flow management features. Since
Hilda uses a Petri Net representation for the process flow, the
functional building blocks are those associated with a Petri
Net model.

Unlike the previous systems which focus on design flow
management, theVOV CAD System, developed at UC-Ber-
keley, concentrates on monitoring and tracking design activi-
ties [3]. The authors in [3] feel a design process cannot be
planneda priori and instead must be created as the designers
work through design process.

III. DESIGN SCHEDULE MODEL

There are several different schedule models in use today.
Some simply present tasks graphically (Gantt Chart), while
others represent both the tasks and the constraints between
them (PERT) [5]. Constraint or network models predominate
in project planning. Intuitively when designers plan a sched-
ule, they break the design process into a series of activities
and estimate the time each of the activities should take as
well as the resources needed. Partitioning the design process
into a series of tasks is the same strategy that is modeled at
Level 2 of the flow management system architecture.There-
fore, one way to view the development of a design schedule
is as a simulation of the execution of a flow. Just as Level 3
data is created when an actual flow is executed, Level 3 data
may also be created when the execution of a flow is simu-
lated. The difference, however, is that the Level 3 data cre-
ated by the execution of a flow is the metadata associated
with the actual design data, while the data created by the sim-
ulation of an execution should establish an approximate time

TABLE I. SYSTEM REPRESENTATION USING THE FOUR-LEVEL ARCHITECTURE

Level RoadMap Model NELSIS Hercules History Model Hilda VOV

1 FlowType (Tool)
Pin (PinType)

Tool
FlowGraph

Activity
Port (DataType)

Task Entity
Tool Dep.
Data Dep.

Task Templates

2 Flow
InSlot

OutSlot

FlowHierarchy
PortInst
Channel

Task Node
Task Tree

Arc

Design Tasks
Design Activity

Transitions
Places
Arcs

Patterns

(Reusable)
Trace

3 Run
Representation

RepUsage

ActivityRun
Transaction

Entity Inst.
Inst Dep.

Design Process Tokens Transitions
Places
Trace

4 Representation
File Group

Transaction
Design Object

Cyclops
Data Object

Data Object Tokens Places

frame for the execution of an activity. In other words, if Level 3
design metadata describes when an activity is performed and by
whom,Level 3 schedule data ought to describe when an activ-
ity should be performed and which person or persons are
assigned the task of performing that activity.

The methodology for schedule development via flow simula-
tion can be incorporated into the four level flow management
system as shown in Fig. 1. The additional information needed
for the schedule model is represented at Level 3. This informa-
tion describes the schedule created and approximated by the
simulation of the task execution.

Simulating an execution involves creating design schedule
instances for every activity in the design process. For each
activity, schedule information can be gathered describing an
activity before the actual execution of the process. This data
can include the estimated starting time and duration length for
an activity, and the resources needed. One of the main advan-

Fig. 1. Schedule Model within System Representation

Schedule

Actual
Design

Metadata

Flow

Level 2

Level 3

(Pre-Execution)

(Post-Execution)

Process

Proposed

Milestones

tages of integrating design schedule management with flow
management is that the metadata from previous designs is
available. Thus, the duration of an activity can be based
either on the designer’s intuition or on the measured results
of similar tasks.

In a typical design process, a given activity may need to be
run several times before the design goals are achieved. In
order to track the performance of a design flow against a
schedule, it is necessary to establish which run of an activity
signifies that a task is completed. In Fig. 1, this is represented
as a link between schedule flow data and actual flow data.
This link is created when the designer determines that the
execution of an activity is completed. This link provides the
schedule flow data with information about the execution of
the process such as the actual starting and completion times
of the design data associated with the respective activity.

IV. MODEL REPRESENTATION IN HERCULES

A network schedule model was implemented in the Her-
cules Workflow Manager. Figure 2 displays the four-level
architecture as implemented in Hercules. The design sched-
ule model was added to the Hercules representation by creat-
ing a set of objects that described schedule flow data
associated with the simulation of an execution. This was
added to the Level 3 Hercules representation and is shown in
Fig. 3.

The design schedule objects added to the Hercules repre-
sentation mirror the actual flow data objects. A Run in the
actual flow space corresponds to aSchedulein the schedule
flow space.Schedule Instance Nodescorrespond to Entity
Instances and are connected usingSchedule Instance
Dependencies.

Fig. 2. Hercules Architecture Representation

Entity

Data
Dependency

Functional
Dependency

Task Tree
Node

Task Tree

Arc

Run

Entity
Instance

Instance
Dependency

Resource
Data ObjectLevel 1

Level 2

Level 3
Level 4

1 1
N N

1
1

1
1

N

1
N

N
1 1

1

1

1

1 1

1
1

NN

N

N

1

1 1

A. Integrating Design Schedule and Execution

Integrating a design schedule plan into Hercules is an
extension of actual process execution. The procedure associ-
ated with the development of a task schema and execution of
tasks within Hercules is described in [11]. We will summa-
rize this procedure and include the planning of a design
schedule using the circuit design process as an example. At
each step in the procedure, the state of the Hercules database
will be described.

The first step in the procedure involves defining a task
schema. A task schema describes the entities (tool and data
classes) and the relationships between entities that are needed
to model all tasks in a design process. Formally, the task
schema can be described as a series of construction rules
stated as mathematical expressions. Given a set of enti-
ties, , the expression
states that an instance of type is created by applying func-
tion to a n-tuple of entity instances of types .
For example, an instance of a performance can be created
applying a circuit simulator to instances of netlist and stim-
uli. This construction rule describes the “Simulate Circuit”
activity and can be written as:

The objects depicted in the schema correspond to the
objects found in Level 1 of the data model. The Hercules task
database is initialized from the schema by generating a series

Fig. 3. Execution and Schedule Model in Hercules

Task Tree
Node

Task Tree

Arc

Run

Entity
Instance

Instance
Dependency

Level 2 Level 3

Schedule

Schedule
Instance

Instance
Dependency

Schedule

1

1

1

1

1

1
1 1

N NNN

N
1

N
1

1

1

1

1

1

1

1N

1
N

N N

Design
Data

Entity

1

1

Node

d1 d2 … dn, , ,{ } di f d1 d2 … dn, , ,()←
di

f d1 d2 … dn, , ,

performance simulator netlist, stimuli()←

of containers that will hold the Entity Instances created dur-
ing flow execution. The task schema for our example is
shown in Fig. 4. The Hercules database thus would include
containers for each of the entities shown in this schema.

In order to integrate schedule management into Hercules,
containers must also be created for the Level 3 schedule
instances. These containers are created from the same task
schema. As the task entities are parsed into the database,
schedule containers are created from the functions associated
with each construction rule. For our example, two schedule
instance containers are created, one to represent the activity
“Create Circuit” and another to represent the activity “Simu-
late Circuit.” Since these schedule containers are created
from the task schema, the schedule model has no effect on
the representation of Level 1 data in Hercules, nor should it
in other flow management systems.

Once the task schema is defined and the task database is
created, designers may begin scheduling and executing tasks
that are based on the schema. In Hercules, a user prepares a
task for execution by first extracting a task tree that covers
the scope of the intended task. Next, tools and input data are
bound to the task by assigning unique tool or data instances
to each of the leaf nodes of the tree. The task is then ready
for execution. Similarly, a user prepares for schedule plan-
ning by extracting a task tree that covers the scope of the
intended task to be planned1. At this point, the task is ready
for schedule planning or in other words, the execution of the
task is ready to be simulated. During schedule planning, Her-
cules performs a post-order traversal of the task tree—that is,
running from primary inputs to outputs, creating new sched-
ule instances in the Hercules database for each activity. For
our example, the state of the Hercules database after the
planning step is shown in Fig. 5.2 Note that in the figure dif-
ferent versions of schedule instances for each task can be
generated. This is because the schedule plan can be updated
at any time during the design process.

Once schedule planning has been performed, the designer
can execute any portion of the design flow. As stated above,

1. At present the schedule portion of Hercules does not incorporate auto-
matic prediction of run times. In the future, however, instances of tools and
data that are bound to tasks may serve as inputs to such a prediction model.

2. Entity containers are shown as boxes, instances of entities are presented
as circles and the lines show dependencies between instances.

Fig. 4. Example Task Schema

Performance

Netlist

Netlist Editor

f

f

d

Stimuli Simulator

d

d

a user prepares a task for execution and executes the task
tree. Again Hercules performs a post-order traversal of the
task tree. At each step in the execution, entity instances are
created in the Hercules database for each non-leaf node.
These instances contain the metadata associated with the
actual design data and provide links to the actual design data.
Fig. 6 shows the state of the database after the initial execu-
tion of the design process. Since tools are not tied to specific
tasks and iterations of tasks can be performed, each entity
container can hold multiple entity instances.

The execution of the design process continues until the
designer verifies that the objectives of each task have been
met. At this time, the entity instances in the database repre-
sent the final design data used in the process. The schedule
instances can now be linked with the design data instances to
represent completed tasks. The final state of the Hercules
database including all entity instances, schedule instances
and the links between them is portrayed in Fig. 7.

B. Examining Design Schedule Status

At any point in the design process, it is desirable to be able
to compare the status of the execution of a task with the
schedule plan. In Hercules, two approaches were developed
to examine the status of a task with respect to a schedule:
either visually, or through queries. A Gantt Chart is a com-
mon way to visualize schedule plan status. A Gantt Chart dis-
plays the schedule information as a series of tasks and
displays graphically both the planned schedule and the

Fig. 5. Hercules Database during Planning Phase

Netlist
Editor

Execution Space Schedule Space

Performance

Netlist

Create
Circuit

Simulate
Circuit

CC1

CC2 SC1

SC2

Fig. 6. Hercules Database during Execution Phase

Netlist
Editor

Execution Space Schedule Space

Performance

Netlist

Create
Circuit

Simulate
Circuit

CC1

CC2 SC1

SC2

P1NE1

N1

N2

accomplished schedule. Both pieces of this schedule infor-
mation are provided by the model described in Section III.
For each activity, the proposed schedule information is
obtained from the parameters stored in the schedule instance
and the actual schedule information is gathered from the
entity instance associated with the design data created from
the execution of the activity.

Queries into the Hercules database are another means for
providing schedule status information. Two types of queries
are supported: queries into design schedule data, and queries
into design schedule metadata. Queries into design schedule
data are valuable because prior schedule plan data can be
used as a resource. For example, a query to show the duration
of an activity the last time it was performed could be used to
predict the duration of the present design. Queries into design
schedule metadata can be used to determine which schedules
plans were used to create the present schedule plan. These
queries are valuable because they can show the evolution of a
design schedule.

C. Hercules User Interface Features

Enhancements were made to the Hercules user interface to
access or modify schedule information in Hercules. These
enhancements provide the user with new features including:

• Utilizing existing task tree for schedule plan development

• Updating schedule plan automatically as the design flow
is executed

• Browsing the schedule instance database

• Viewing individual schedule plans

Schedule planning was integrated into the Hercules user
interface such that the same task graph shown in the user
interface could be used to both plan a schedule and execute a
design flow. Fig. 8 shows the Hercules user interface. A
visual representation of the task tree is the central feature of
the user interface; schedule operations may be applied at

Fig. 7. Hercules Database at Completion of Execution

Netlist
Editor

Execution Space Schedule Space

Performance

Netlist

Create
Circuit

Simulate
Circuit

CC1

CC2 SC1

SC2

P1NE1

P2

N3

N1

N2

each node in the tree. A more complete description of the
user interface without schedule additions is given in [11].
Mechanisms were also created in Hercules to automatically
update actual schedule information as the process flow is
executed. For example, once a data instance for the particular
task is created, the actual start date for the task is set. Then
when the task is completed, which may involve numerous
iterations of the task, the user can link the final version of the
task data to a schedule instance. If any slip in the schedule
occurs, the schedule plan updates automatically to reflect the
new schedule.

A schedule instance browser was developed to browse the
schedule instances located in the Hercules database. The
schedule instance browser is based on the existing entity
instance browser used in Hercules and allows for the man-
agement of the schedule instances. With the schedule
instance browser, the user can select, delete, or display
schedule instances.

Viewing the schedule is important to both project manag-
ers and designers. A designer must be able to see the present
time requirements of the current portion of a task. At the
same time, a project manager must have the capability of
viewing a portion of the overall schedule. Hercules can dis-
play both individual schedule information or a portion of the
overall schedule using a Gantt Chart.

V. CONCLUSIONS

A limitation of current design management is that design
schedule management and design process management are
typically implemented separately. We have developed a
model for integrating both design schedule management and
design process management into a single system. The advan-
tage of using a single system is that design schedule manage-
ment features are directly linked to the design process
allowing for easier tracking and updating of proposed sched-
ules. It was shown that a schedule model could be imple-
mented into a general four-layer flow management
representation. Using this model, schedule planning can be
accomplished by simulating the execution of a design flow.
The schedule management model has been implemented and
verified within the Hercules Workflow Manager. Because

Fig. 8. Hercules User Interface

flow management systems provide similar representations
and models to perform similar activities at each level, the
implementation of the schedule model could be extended to
other flow management systems.

Future work will focus on developing a schedule model
that considers the architectural decomposition as well as the
task flow along the lines of the model described in [8]. This
will allowing greater precision in tracking, predicting, and
optimizing design schedules.

REFERENCES

[1] K.O. ten Bosch, P. Bingley, and P. van der Wolf, “Design flow
management in the NELSIS CAD Framework,” InProceedings of the
28th ACM/IEEE Design Automation Conference, 1991, pp. 711-716.

[2] F. Bretschneider, C. Kopf, and H. Lagger, “Knowledge based design
flow management,” InProceedings of the IEEE International
Conference of Computer-Aided Design., 1990, pp. 350-353.

[3] A. Casotto and A. Sangiovanni-Vincentelli, “Automated design
management using traces” InIEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 12, August 1993, pp.
1077-1095.

[4] T. Chiueh and R. Katz, “A history model for managing the VLSI
design process,” InProceedings of the IEEE International Conference
of Computer-Aided Design, 1990, pp. 358-361.

[5] Q. W. Fleming, J. W. Bronn, and G. C. Humphreys,Product and
Production Scheduling, Probus Publishing Company, 1987.

[6] P. van den Hamer, and M. A. Treffers, “A data flow based architecture
for CAD frameworks,” InProceedings of the IEEE International
Conference of Computer-Aided Design, 1991, pp. 482-485.

[7] P. van den Hamer, K. O. ten Bosch, P. Bingley, M. A. Treffers, and P.
van der Wolf, “A comparison of two approaches to design flow
management by data schema analysis,” Jessi-SP1.

[8] M. F. Jacome and S. W. Director, “A Formal Basis for Design Process
Planning and Management,” InProceedings of the IEEE International
Conference of Computer-Aided Design, 1994, pp. 516-521.

[9] S. Kleinfeldt, M. Guiney, J. K. Miller, and M. Barnes, “Design
Methodology Management,”Proceedings of the IEEE, vol. 82, no. 2,
February 1994, pp. 231-250.

[10] G. N. Stilian,PERT: A New Management Planning and Control
Technique, American Management Association, New York, 1962.

[11] P. R. Sutton, J. B. Brockman, and S. W. Director, “Design
management using dynamically defined flows,” InProceedings of the
30th ACM/IEEE Design Automation Conference, 1993, pp. 648-653.

[12] P. van der Wolf, O. ten Bosch, and A. van der Hoeven, “An enhanced
flow model for constraint handling in hierarchical multi-view design
environments,” In Proceedings of the IEEE International Conference
of Computer-Aided Design, 1994, pp. 500-507.

	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

