A Method for Finding Good Ashenhurst Decompositions and
Its Application to FPGA Synthesis

Ted Stanion and Carl Sechen
Department of Electrical Engineering

University of Washington

Abstract—In this paper, we present an algorithm for finding a the BDD is thedecision variablef the node. The decision variable of
good Ashenhurst decomposition of a switching function. Most the root of a BDD is th#op variableof the BDD. If the decision vari-
current methods for performing this type of decomposition are able of a node ix , then the outgoing edge associated with the
based on the Roth-Karp algorithm. The algorithm presented here assignmen = 1 is thpositive edgeThe edge associated with
is based on finding an optimal cut in a BDD. This algorithm x = Ois thenegative edge
differs from previous decomposition algorithms in that the cut Ashenhurst [1], Curtis [6], and Roth and Karp [11] described the
determines the size and composition of the bound set and the freefirst techniques for decomposing functions. We discuss this work in
set. Other methods examine all possible bound sets of anSection Il In Section Il and Section IV we present a set of new algo-
arbitrary size. We have applied this method to decomposing rithms for performing decomposition. Like the work of Cong and
functions into sets ofk -variable functions. This is a required step Ding [5] and Laiet al.[8], this method is also based on the BDD data
when implementing a function using a lookup table (LUT) based Structure. Unlike their work, however, it uses an algorithm for implic-
FPGA. The results compare very favorably to existing itly enumerating all of the cut sets in a BDD to determine the bound
implementations of Roth-Karp decomposition methods. set and free set. We introduce this new algorithm in Section Ill. In
Section IV, we apply this algorithm to find good decompositions of
. INTRODUCTION switching functions implemented as setsof -input subfunctions. In

This paper introduces a new method for the decomposition GECtion V. we provide results obtained by this new algorithm.

switching functions. Decomposition is the representation of a logic II. PREVIOUS WORK

function by a set of other functions. For example, given a function,
f(X), which depends on variableX, = { X, ... X} , we wish to Ashenhurst reported some of the earliest work on decomposition in

find a set of functions, {f!gy,..,ds . Where 1959 [1]. He gave a procedure for determining whether a given set of
fX) = £(91(Xp), ..., 9Xp), Xr). We call the functions, bound variables admitted a simple disjunctive decomposition. The
{0y, ...,0,}, auxiliary functions. The set of variables Method forms aapof the function which contains one row for each

X, = {Xy, ...,x} is called thebound sef while the set term formed using the variables in the free set and one column for
Xi = {Xg ..., X} is called theree setIf k = | +1, i.e. X, andX, €ach term formed using the varia_bles in the bound set. Every entry in
are disjoint, then the decompositiortisjunctive If m = 1, then the ~the table corresponds to one minterm. In Ashenhurst's method we
decomposition isimple Every function admits a trivial simple dis- inserta 1in the table if the corresponding minterm is contained by the
junctive decomposition where= 1 by virtue of the Shanno,tlunctlo_n, otr_ler\lee we insert a 0. He reduces the table by_mergl_ng all
decomposition, namely = f(g(x,), X, ..., X,) Whemg(x) = X, of the identical columns. Ashenhurst showed that there is a simple

and f'= gt +g [. In general, however, larger bound sets prdﬂ_isjunctive decomposition of the function with the given bound set if
vide better dgéompoéitions ’ ' and only if there were at most two distinct columns. In general, a

The purpose of decomposition is to transform a function which gecomnﬁ)os?tiqn witthm auxiliary functions can be found if there are at
hard or impossible to implement into a set of functions which are edB0St2" distinct columns.

ier to implement. The complexity of implementing a function may be '€ Problem with this approach is that a new table must be built

measured in many ways. One possible measure is the size of the gglrpt_every partition of the variables we consider. If we consider all par-

[. - o .
port of the function. This measure is important when implementi gpns,hann_ van?bLe functlofnt\)/voulccij reqqlfglz)I¢ tablﬁs. Evenblf wef
the function using a lookup table based FPGA architecture wh fnit the size of the set of bound variablesko , the number o

each function must be expressed as a set of functions which depé%%mred tablesis stntD(_C@ K) _whel@(n, K s the number of_V_/e_\ys
on k or fewer variables. A typical value fér is 5. to choosek out ofi distinct objects. Furthermore, each table initially

The algorithms in this paper use the binary decision diagraﬁ?ntainszn_ entries. Because Qf this _exponential grqmnh, this method
(BDD) as their principle data structure. We refer the reader who'lsénot feasible except for func’n_ons with very few variables. .
Roth and Karp extended this method in several ways [11]. First,

unfamiliar with this data structure to the papers by Bryant [4] an(ij] . : ;
they employcoversto represent functions. A cover is a matrix repre-

Braceet al. [2]. In this paper, the variable associated with a node in
[2] pap sentation of a sum-of-products formula. Using manipulations of the

32nd ACM/IEEE Design Automation Conference [J covers, the method partitions the terms formed from the bound set

Permission to copy without fee all or part of this materia is granted, provided i i i i -to-
that the copies are not made or distributed for direct commercial advantage, Into equivalence cla}sses. These equivalence classes are In one-to-one
the ACM copyright notice and the title of the publication and its date appear, correspondence with the distinct columns of the previous method.

zénd no:ice il\s/I gi%/_en that _?opylng itsh by ,permisstion of tglht;hAssoci_attionffor Therefore, a function has a simple disjunctive decomposition if and

omputing Machinery. To copy otherwise, or to republish, requiresafee ; ; ; -

andlor specific permission. 7] 1995 ACM 0-89791-756.1/95/0006 $3.50 only if the_re are at most two equivalence clas_ses for_ a given partition
of the variables. Roth and Karp also generalized this method to per-

procedure cutset (G){
G G a o e e 4’@ s = source of G;

if FO(s) is empty then

Figure 1: A dag with an exponential number of cut sets. else XN=Xs,
xi=1;
form non-disjunctive decompositions on incompletely specifie: for eaﬁh_" i”b thf):c’t .
functions. dimxir T st a(lH\)/
By using covers rather than tables, Roth and Karp were able rof:

reduce the average amount of memory required, although process
time is still a problem except for functions with a small number ¢ fi:
variables. The SIS system uses this method as a part of its suite return xi:

XI=X g *XI

commands for synthesizing Xilinx FPGAs [9]. To increase the spe¢ end procedure cutset ;

of the Roth-Karp algorithm in SIS, this implementation limits the siz

of the bound set t& or less. Figure 2: Procedure for calculating the characteristic function
Lai, Pedram and Vrudhula [8] recently described a faster meth of the cuts of a dag.

for implementing the Roth-Karp algorithm: Assume that we wish to .)) . .
find a disjunctive decomposition with a bound ¥gt and a free s%rtaph. Because Of,th's' we wish to avoid expllcqu enymgrgtmg the
X. Lai creates a BDD such thatdf] X, apd X the®) < (y) cuts or even the mln_lmal cuts of a o!ag. We d_o this by implicitly enu-
whereTt is a permutation of the variables corresponding to the vafierating the cuts using a characteristic function. _
able order. The function has a simple disjunctive decomposition if G'Vén @dagi = (V, B) , the characteristic function that we wish
and only if there are at most two source nodes in the subdag indul@guild is of the formx: 2% — {0, 1} , a function from the power set
by nodes with decision variables in the free set. In fact, these no@bs” ONnto the se{0, 1} . Furthermore, we require this function to
are in one-to-one correspondence to the distinct columns of tR¥a/uate to 1 when its argument defines a cut set of th&dag and to
reduced map in Ashenhurst's method and the equivalence classef $fhen it does nolt\./|We can establish a buvectlon between t2 set
the Roth-Karp. Laét al.implemented this scheme using a variatio?Nd the Se\} 0,1} ™ as follows. L&d 127 . Then the element
of BDDs called EVBDDs and demonstrated that it is faster than theC {0 1}/ which corresponds t&) I8 = (X3, X, s Xv))
cover-based approach implemented in SIS. However, searching opéerex = 1 ifv; U andvxi = (\)/ ifv; U . The inverse operation
all possible partitions of the variables is still impracticable for funcfom an element i 0, 1} I l 1@ s obvious. Therefore, we may
tions with a large number of variables. Because of this, Lai al§§Present this characteristic function as a switching function,
restricts the partitions to those with a bound set oflsize or less. Sirfce{ 0, 1} M~ {0, 1}. For a given dags , we denote thisias
this algorithm differs from standard Roth-Karp in implementation There are several facts abdg which will be useful in the next
only, the quality of the results are the same. section. First, the function is positively unate in all of its variables.
The source nodes in the induced subdag of Lai's decompositi&@condx the prime implicants of this function are in one-to-one corre-
method form a cut in the original dag. Lai showed how any given céipondence to the minimal cut sets of the dag. Third, since the
in a BDD induces a certain decomposition of the function representedgracteristic function is unate, any unate sum-of-products expres-
by the BDD where the variables above the cut define the bound Sdens for this function is guaranteed to contain all prime implicants.
and the variables below the cut define the free variables. In this cakgerefore, since prime implicants correspond to minimal cuts, any
the decomposition need not be disjunctive. For a given cut it shogate sum-of-products representation is guaranteed to contain a rep-
be possible, therefore, to either calculate or estimate the cost of imgRsentation of all of the minimal cut sets.
menting this decomposition in an FPGA. This observation suggestsWe use the following propositions to derive a procedure for con-
an alternative method for finding a good decomposition of a functigfiructing the characteristic function of the cuts of a dag.
using BDDs. If we estimate the cost of all possible cuts in the BDIBroposition 1 :Let G = { { vy} , U} be a dag with one node and no
we could then choose the best cut consistent with a given variaigdges. Then the characteristic function of the cut&of s
ordering. We propose such a method in Section 1V, but first we di§s(X) = X3 -
cuss the problem of enumerating cuts in a dag. Proposition 2 :Let G = (V, E) be a dag with a single source node,
s. Letthe fanout o b&Q(s) = {v,...,vn} an@; be the subdag
rooted atv;, L<j<m . Suppose th&; is the characteristic function

In order to implement a decomposition method based on finding fay the cut sets 06, r.nThen the characteristic function for the cut sets
optimum cut in a BDD, we need to enumerate all of the cuts in a d&j.C IS & = X+ |_|j -.&c, Wherex is the variable corresponding
However, this is a potentially intractable problem. Consider the farf nodes .
ily of dags represented in Figure 1. For this dag ther@arel non-These two propositions provide a recursive step and a terminating
empty subsets of the nodes. Each one of these subsets is a cut fobi@ of a procedure for calculating our characteristic function. We
graph. Therefore, it is impossible to enumerate all of the cuts unles8utline this procedure in Figure 2.
is very small. However, we are interested in the minimal cuts of a
graph,i.e,, a cut which is not a subset of any other cut. In this exam-
ple, the number of minimal cuts is . While the number of minimal As we mentioned in Section Il, Lat al showed how every cut in
cuts is often much smaller than the number of cuts, in the worst casBDD implies a decomposition of a function. Unfortunately, using
it may still be exponential with respect to the number of nodes in ttteeir method we cannot determine any of the functions in the decom-

I1l. ENUMERATING CUTS IN A GRAPH

IV. FINDING DECOMPOSITIONS IN ABDD

procedure best cut (¢&;, cur_soln, cur_score, k) {
if (& = Lthen
cur_score = cur_score +
score (|vars above cut| +
|nodes in cut|, k);
if (cur_score < best_score) then
best_score = cur_score;
best_soln = cur_soln;
fi;
else if (& ¥tBen
x= top (&),
best cut ((&f)x ,cur_soln, cur_score);
cur_score = cur_score +
score (| support (V)|, K);
if (cur_score < best_score) then
best_cut((&;),cur_soln O{ vy
cur_score);

fi;
fi;
}end best cut ;

Figure 3: BDDs for function in text and its decomposition. Figure 4: Branch-and-bound procedure for enumerating cuts.

position until we know the entire cut. However, there is another waach subfunction depends on at mkst variables. If a function
to determine a decomposition using a cut in a BDD. Recall that Laépends on more thdn variables, what is the minimum number of
places all of the variables above the cut in the bound set and all thekup tables that is required to implement the function? While we
variables in the cut and below in the free set. When we performkaow of no way to easily answer this question exactly, we can place a
decomposition, we make the opposite assignment of variables to theer bound on the number of LUTs required. Assume that the func-
bound and free sets. The nodes in the cut become the auxiliary futign depends om>1 variables. In order to implement this function,
tions of the decomposition. We credté by replacing the nodes in tve need at leasi(n—1) / (k—1)] LUTs. This is the number of
cut with nodes representing literal functions. internal nodes in & -ary tree withh leaves.nfmod k = k-1 ,
For example, consider the BDD for the functionthenwe reach this bound only if we are always able to perform simple
f= Xy + %, (X3 + X4Xs) +X3XsXs (Figure 3). Edges to the constantdisjunctive decompositions of size . Since this is a hard lower
node are lightened to indicate that they are not considered when fihgund, we define the cost of a function to be
ing a cut. Therefore, the s¢C, D} forms a cut. The functions cost () = Psup(f)| _1“2 (1)
represented by the nod€s abd become the BDDs for functions k—1
9, andg, which are extracted from . We cretite by replacing thgneresup (f) = {x|f,#f} is the set of variables in the support of
nodesC_ andD by nodes representing th(_a functigns _ggnd f.. We define the cost of a decompositigi’, gy, ..., g} as
respectively. Now we have created the following decomposition: cost (f) + Y cost (g). By using the square of the minimum num-

f'= X1+ X201 +Xo02, ber of required LUTSs, we favor decompositions which are closer to

01 = X3+ XgXs, meeting our stopping criteria.

J2 = XgX4Xs. We can now give our branch-and-bound procedure for searching
Figure 3 also shows the BDDs corresponding to the functions in this the optimal cut of a BDD. Starting with a BDD for a functibn
decomposition. we create the characteristic function, which we Eall , describing all

There is a problem with this decomposition, however. The origing|yts in the BDD forf . Every path from the root of the BDEef to
function f is unate in all of its variables. but the new function igne node representing the constant 1 function represents an implicant
binate inX, . This is because we replaced the subfunctions with litejt £, we call these pattispaths For a given 1-path, we create the
als ignoring the fact thag, < g, . If we simplifietl’ with respect tocorresponding cut set using the following procedure:
the satisfiability don’t care set implied by the functions in 1) Initially, the cut set is the empty set.

{91, ..., On}, then this unateness property would be restored. 2) When traversing a positive edge from nade to nede in the

The advantage of making this assignment of variables to the bound BDD for &¢, we add node; to the cut set where is a node
and free sets lies in the fact that the nodes in the cut become functions from the BDD forf andx, is the decision variableuwf
in the decomposition. Unlike the other method, this allows us to 3) When traversing a negative edge, we add no nodes to the cut
bound the cost of a partial solutidm®, a partial cut, as soon as we add set.

a node to the cut. Therefore, we can give a branch-and-bound pra¢eve use this procedure while enumerating all 1-paths, we will obtain
dure for finding an optimal decomposition of a BDD using thall of the minimal cuts of the BDD fof . At any point while travers-
characteristic function for the set of cuts. However, we first need iiog the path, we can bound the cost of the current cut by computing
define the objective function we wish to optimize. the cost of the nodes currently in the cut. If their cost exceeds the cost

Since we wish to implement the function usikg -variable LUTspf the best cut found, we abandon the search of this path and try
we must decompose the function into a set of subfunctions such thabther. This process is presented in Figure 4.

procedure decomp(f, k) { tions which implementf such that each function in the set has a

if | sup(f] <= K) then return {fn}; support ofk or less. If the support &f is less than or equial to , we
f=optimize_bdd (f); returnf itself. Otherwise, we minimize the BDD bf by reordering
cut:: CLgZ;[c(uf)t; (£.2.0.K) its variables. Next, we calculate the characteristic function of all cuts
nu fns = do decom'p(f’, c’ut);’ of t_he_ m|n|m|_zed BDD. We f!nd an optlmgl cut bas_ed on thls_charac-
tn = @: - teristic function and the objective function mentioned earlier. The
for each g in nu_fns do proceduredo_decomp returns the set of functions corresponding to
if | support (g)]>k)then the decomposition implied by the optimum cut. If any of the functions
rtn = rtn decomp(g,k); in the decomposition do not meet the decomposition criteria, then
else they are decomposed further with a recursive calleomp.
rtn = rtn O {9}
fi; V. RESULTS
ghm tn: To test the efficacy of the algorithm described in Figure 5, we
Yend decomp: decomposed functions in 27 MCNC benchmark circuits into sets of 5-
variable functions. First, we minimized the circuits using standard
Figure 5: Procedure for decomposing a function katariable LUTSs. scripts provided with SIS 1.2 [12]. We then decomposed the circuits

using both SIS and our program, Catamount.
. . We implemented the algorithm described in this paper as follows.

The pr_oc_edurebgst_cut Is called with four parameters_. the We limit the branch-and-bound procedure to examining at most 5000
characteristic function of the set of cufs, , the current partial solu- . . .
A) . cuts. Also, if a BDD for a function was excessively large, we do not
tion, cur_soln , the score of the current partial solution, . .

X . . generate the characteristic function. Instead, we choose a default

cur_score and the maximum number of variables in an LWT,

" . . : - mposition with ingle variable in the fr h th r
Initially, we call this procedure with a current solution consisting O(Feco positio th a single variable in the free set such that ou

objective function is minimized. This default decomposition pro-
the empty set and current score of zero. The procddpreeturns uces Shannon decompositions of the tvpe
the top variable of a BDD. Since every variable, §in corresponéJI P yp

to a node in the BDD of , we denote this node and its correspondingz;églﬁ;‘ Xr)o;u)éettt;;; ggg;n‘:’hoesr;g;s: \I\;e ;n:EZSi:me”f)'/ all func-
function asv, . The proceduseore (n, k) returns the square of the P P ! P

minimum number of LUTSs required to implementran variable funct-Ions in the network. Finally, we look for nodes in the decomposed

tion with k variable LUTs as determined by Eq. (1). If the_network which can be coll_apsed into all of its fgnouts without violat-
characteristic function passed to the procedure represents the coné%trhe support con_st'ralnt. Whenever we find such a ner, we
1 function, then the current solution is a complete cut. The Currelmmedlately collapse it into its fqnouts. (Since the order in which the
score at this point represents the minimum number of LUTs requir8§des are collapsed affects which other nodes may be subsequently
to implement the auxiliary functions represented by the nodes in tfillaPsed, this greedy procedure may not be optimum.) At the end of
cut. In order to compute the total cost of the cut, we need to add {RiS SteP, we have a decomposed network which may be implemented
cost of the functiorf ' which the cut induces. Since we add a néy S-variable LUTS. _ _ _
variable for each auxiliary function, the number of variablegin is 10 compare the results obtained by this algorithm to the normal
the number of variables which appear above the cut plus the numi§Bplementation of Roth-Karp decomposition, we also decomposed
of nodes in the cut. If the score of this cut is better than the best fodfi§ Same functions into 5-variable functions using the SIS
so far, then we save it as the best found so far. xI_k_decomp command. This command implements classical

If we reach the node of the constant 0 function, then the currdppth-Karp decomposition. After SIS obtained its initial decomposi-
path does not represent an implicant of the characteristic functid{pn, We also performed simplification and collapsing of collapsible
Otherwise, we are at a non-sink node of the BDD. In this case, we fif@des as above. We base this sequence on the recommended proce-
assume that the node associated with the top variable of the charaétgfe for FPGA synthesis outlined in the SIS Technical Report from
istic function will not be added to the current partial solution an&/C, Berkeley [12]. In neither case did we perform merging of nodes
make the appropriate call test_cut . Following that, we assume into two output functions as some FPGA architectures allow.
that the node associated with the top variable is added to the currenfable | shows the results of this experiment. The number of nodes
partial solution. If adding this node to the cut does not cause the scef@inally in each circuit is given in the column titiedi. The column
of the new partial solution to exceed the best found so far, then we déiled Inf gives the number of infeasible nodes in each circuit. This is
best_cut again. This bounds the search process by terminatifige number of functions whose support exceeded five and required
paths which are guaranteed to result in cut sets representing dec@@composition. The column titleslSgives the number of LUTs
positions worse than the best already found. In spite of this boundifgfiuired in the final decompositions found by SIS. The column titled
procedure, it is sometimes not feasible to run the branch-and-bou@dt gives the same number for the decompositions found by Cata-
procedure to completion. To combat the possible combinatorigiount. The column titleRatiogives the ratio of the number of LUTs
explosion, the user may limit the number of cuts that the algorithrequired by Catamount to the number required by SIS.
enumerates. These results demonstrate that Catamount’s decomposition algo-

We use the method for finding an optimal cut in a BDD in an algeithm is very effective compared to SIS’s implementation of Roth-
rithm for decomposing a function af variables into a set oKarp. For all circuits, Catamount produced a superior decomposition.
functions ofk variables. This is outlined in Figure 5. Given a functioSometimes this difference is quite large. For six circuits, the Cata-
f and a parameték , the procedderomp returns a set of func- mount decomposition required half of the number of LUTs required

TABLE | functions [10]. By doing this, they were able to reduce the LUT count
COMPARISON WITH ROTH-KARP DECOMPOSITION IN' SIS. by 21 percent over the naive serial encodiofy the 46 percent
improvement reported here).

Circuit Ori Inf SIS Cat Ratig

5Xp1L 19 6 81 26 0.32 VI. CONCLUSIONS ANDFUTURE WORK

9sym 11 2 35 31 0.89 In this paper, we have presented two ideas. First, we show how it is
9symmi 16 3 94 49 0.52| possible to implicitly enumerate all of the cuts of a dag. We do this by
C499 56 24 84 78 0.93| constructing a characteristic function for the set of cuts. Because this
C5315 321 95 614 344 0.36 function is unate, it is also possible to easily enumerate all minimal
€880 79 13 241 112 0.46 cuts. Second, we showed how a cut in a BDD implies a decomposi-
alu2 46 9 187 117 0.63 tion of the function represented by the BDD. Since a BDD is a dag,
alud 122 20 2112 182 0.86 we use the previous algorithm to generate the characteristic function
apex2 52 8 184 109 059| of the set of cuts in the BDD. We then use a branch-and-bound proce-
apex6 147 2d 265 18b 0.dg dure in order to find the cut which produce the best decomposition
apex7 61 8 6 5 oop YJiven a certain objective function. This p_rocedure_ is able to signifi-
b9 9 7 61 37 061 cantly outperforr_n SIS when decomposing functions from MCNC
b o T 57 =g i benchmark circuits. _

_ We feel that we can apply these algorithms to other problems.
alip e J e = et First, the task of analyzing dags is one which occurs often in other
Zobl: 31 15 32 31 0.97] CcAD problems. The cut enumeration algorithm can be useful in other
DES 562| 1835 2439 1073 0.44| applications where we need to enumerate cuts in a graph. Second, the
duke2 77 18 224 134 0.59 optimization criteria that we use for our decompositions are designed
e64 76 19 95 84 0.88 to produce good decompositions for implementing a function using
f51m 15 3 43 13 0.30 LUTs. It should be easy to produce different decompositions which
misex1 10 4 17 13 0.76 are optimized for other purposes by changing the objective function
misex2 26 6 35 30 0.86 and stopping criteria in the procedure in Figure 5. One possible appli-
rd73 16 2 28 17 061 cation would be decomposition for delay optimization. At each step
rdea 18 > 39 oY 062 inthe decomposition we would choose the cut which minimized the
ot 161 >3 o1l 174 060 expected number of levels in the circuit.
sao2 13 4 123 39 0.32 REFERENCES
Vg2 10 ! 29 26 0.90 [1] R.L. Ashenhurst, “The decomposition of switching function&yin.
zAml 8 2 10 6 0.60 Comp. Lab., Harvard Uniyvol. 29, 1959, pp. 74-116.

Total 2031 529 568 306 0.34 [2] K.S. Brace, R.L. Rudell and R.E. Bryant, “Efficient implementation of a

, h
1 simplification was not performed due to excessive CPU time. BDD package, Proc. 27! ACM/IEEE DAG June 1990, pp. 40-5.

2Thexl_k_decomp command did not complete within one CPU hour. Thel3] R.K. Brayton, G.D. Hachtel and A.L. Sangiovanni-Vincentelli, “Multi-

xI_imp _command was used instead. Besides Roth-Karp, this command uses V8! 10ic synthesis,Proc. IEEE vol. 78, no. 2, Feb. 1990, pp. 265-300.
several other decomposition techniques. [4] R.E. Bryant, “Graph-based algorithms for Boolean function manipula-

tion,” IEEE Trans. Computersvol. 35, no. 8, August 1986, pp. 677-91.
[5] J. Cong and Y. Ding, “Beyond the combinatorial limit in depth minimiza-
by SIS. Overall, 46 percent fewer LUTs were required to implement tion for LUT-based FPGA designstoc. 1993 IEEE Intl. Conf. on CAD
all benchmark circuits. 5 Ei’eé”bf_r fz& p/‘i‘ 110'4'ht the Desian of Switching CircttsV.
Although SIS and Catamount both perform Ashenhurst sty[e] A Lurtis, A TNeW Approach fo the Lesign of switching tIre an
L. . . h Nostrand Co., Princeton, NJ, 1962.
decomposition, the two methods choose their bound sets quite diff

o S ﬁﬁ' Z. Kohavi, Switching and Finite Automata TheoiycGraw-Hill, New
ently. In SIS, the Roth-Karp decomposition is limited to * vy 1970.

decompositions with a bound set of sige 5 . In Catamountig) v.-T. Lai, M. Pedram and S.B.K. Vrudhula, “BDD based decomposition

method, no limit is placed on the size of the bound set or the free set. of logic functions with applications to FPGA synthesRioc. 362 ACM/

There is a restriction that the bound set and free set must be consistentEEE DAG June 1993, pp. 642-7.

with a given variable ordering. However, we may use any decompi®} R. Murgai, Y. Nishizaki, N. Shenoy, R.K. Brayton and A. Sangiovanni-

sition consistent with this ordering. We feel that the limitation of ~ Vincentelli, “Logic synthesis for programmable gate arrapsgc. 22

using decompositions with bound and free sets consistent with a ACM/IEEE DAG June 1990, pp. 620-5.

given ordering is offset by the flexibility in choosing sets of any siz&!0]R- Murgai, R.K. Brayton and A. Sangiovanni-Vincentelli, “Optimal func-
Another difference in the two algorithms is the way they encode tonal decomposition using encodingfoc. 3F ACM/IEEE DAC June

the auxiliary functions{ g, ...dm} , when forming the functibn . In 1994, pp. 408-13.

. - . . . [11]J.P. Roth and R.M. Karp, “Minimization over Boolean graptBM J.
the implementation of Roth-Karp in the latest version of SIS (Versuln Res. Dev.April 1962, pp. 227-38.

1.2), these functions are encoded serially. In our algorithm, the stryg;) e \. sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
ture of the BDP above the cut implies the enC.Od.ing.. Muegail. ~ Saldanha, H. Savoj, P.R. Stephan and R.K. Brayss; A system for
have recently introduced an extension to the existing implementation sequential circuit synthesi¥echnical report UCB/ERL M92/41, Univer-
of Roth-Karp which also performs smarter encoding of the auxiliary sity of California, Berkeley, May 1992.

	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

