
A Method for Finding Good Ashenhurst Decompositions and
Its Application to FPGA Synthesis

Ted Stanion and Carl Sechen
Department of Electrical Engineering

University of Washington

Abstract—In this paper, we present an algorithm for finding a
good Ashenhurst decomposition of a switching function. Most
current methods for performing this type of decomposition are
based on the Roth-Karp algorithm. The algorithm presented here
is based on finding an optimal cut in a BDD. This algorithm
differs from previous decomposition algorithms in that the cut
determines the size and composition of the bound set and the free
set. Other methods examine all possible bound sets of an
arbitrary size. We have applied this method to decomposing
functions into sets of -variable functions. This is a required step
when implementing a function using a lookup table (LUT) based
FPGA. The results compare very favorably to existing
implementations of Roth-Karp decomposition methods.

I. INTRODUCTION

This paper introduces a new method for the decomposition of
switching functions. Decomposition is the representation of a logic
function by a set of other functions. For example, given a function,

, which depends on variables, , we wish to
find a se t o f func t ions , , where

. We ca l l the func t ions ,
, aux i l i a ry func t ions . The se t o f va r iab les

 i s ca l led thebound se t, wh i le the se t
 is called thefree set. If , i.e. and

are disjoint, then the decomposition isdisjunctive. If , then the
decomposition issimple. Every function admits a trivial simple dis-
junctive decomposition where by virtue of the Shannon
decomposition, namely where
and . In general, however, larger bound sets pro-
vide better decompositions.

The purpose of decomposition is to transform a function which is
hard or impossible to implement into a set of functions which are eas-
ier to implement. The complexity of implementing a function may be
measured in many ways. One possible measure is the size of the sup-
port of the function. This measure is important when implementing
the function using a lookup table based FPGA architecture where
each function must be expressed as a set of functions which depend
on or fewer variables. A typical value for is 5.

The algorithms in this paper use the binary decision diagram
(BDD) as their principle data structure. We refer the reader who is
unfamiliar with this data structure to the papers by Bryant [4] and
Braceet al. [2]. In this paper, the variable associated with a node in

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

k

f X() n X x1 …xn,{ }=
f ' g1 … gm, , ,{ }

f X() f ' g1 Xb() … gm Xb() Xf, , ,()=
g1 … gm, ,{ }

Xb x1 … xl, ,{ }=
Xf xk … xn, ,{ }= k l 1+= Xb Xf

m 1=

l 1=
f f ' g x1() x2 … xn, , ,()= g x1() x1=

f ' g fx1
⋅ g fx

1
⋅+=

k k

the BDD is thedecision variable of the node. The decision variable of
the root of a BDD is thetop variable of the BDD. If the decision vari-
able of a node is , then the outgoing edge associated with the
assignment is thepositive edge. The edge associated with

 is thenegative edge.
Ashenhurst [1], Curtis [6], and Roth and Karp [11] described the

first techniques for decomposing functions. We discuss this work in
Section II. In Section III and Section IV we present a set of new algo-
rithms for performing decomposition. Like the work of Cong and
Ding [5] and Laiet al. [8], this method is also based on the BDD data
structure. Unlike their work, however, it uses an algorithm for implic-
itly enumerating all of the cut sets in a BDD to determine the bound
set and free set. We introduce this new algorithm in Section III. In
Section IV, we apply this algorithm to find good decompositions of
switching functions implemented as sets of -input subfunctions. In
Section V, we provide results obtained by this new algorithm.

II. PREVIOUSWORK

Ashenhurst reported some of the earliest work on decomposition in
1959 [1]. He gave a procedure for determining whether a given set of
bound variables admitted a simple disjunctive decomposition. The
method forms amap of the function which contains one row for each
term formed using the variables in the free set and one column for
each term formed using the variables in the bound set. Every entry in
the table corresponds to one minterm. In Ashenhurst’s method we
insert a 1 in the table if the corresponding minterm is contained by the
function, otherwise we insert a 0. He reduces the table by merging all
of the identical columns. Ashenhurst showed that there is a simple
disjunctive decomposition of the function with the given bound set if
and only if there were at most two distinct columns. In general, a
decomposition with auxiliary functions can be found if there are at
most distinct columns.

The problem with this approach is that a new table must be built
for every partition of the variables we consider. If we consider all par-
titions, an variable function would require tables. Even if we
limit the size of the set of bound variables to , the number of
required tables is still where is the number of ways
to choose out of distinct objects. Furthermore, each table initially
contains entries. Because of this exponential growth, this method
is not feasible except for functions with very few variables.

Roth and Karp extended this method in several ways [11]. First,
they employcovers to represent functions. A cover is a matrix repre-
sentation of a sum-of-products formula. Using manipulations of the
covers, the method partitions the terms formed from the bound set
into equivalence classes. These equivalence classes are in one-to-one
correspondence with the distinct columns of the previous method.
Therefore, a function has a simple disjunctive decomposition if and
only if there are at most two equivalence classes for a given partition
of the variables. Roth and Karp also generalized this method to per-

x
x 1=

x 0=

k

m
2m

n O 2n()
k

O C n k,()() C n k,()
k n

2n

form non-disjunctive decompositions on incompletely specified
functions.

By using covers rather than tables, Roth and Karp were able to
reduce the average amount of memory required, although processing
time is still a problem except for functions with a small number of
variables. The SIS system uses this method as a part of its suite of
commands for synthesizing Xilinx FPGAs [9]. To increase the speed
of the Roth-Karp algorithm in SIS, this implementation limits the size
of the bound set to or less.

Lai, Pedram and Vrudhula [8] recently described a faster method
for implementing the Roth-Karp algorithm: Assume that we wish to
find a disjunctive decomposition with a bound set and a free set

. Lai creates a BDD such that if and then
where is a permutation of the variables corresponding to the vari-
able order. The function has a simple disjunctive decomposition if
and only if there are at most two source nodes in the subdag induced
by nodes with decision variables in the free set. In fact, these nodes
are in one-to-one correspondence to the distinct columns of the
reduced map in Ashenhurst’s method and the equivalence classes of
the Roth-Karp. Laiet al. implemented this scheme using a variation
of BDDs called EVBDDs and demonstrated that it is faster than the
cover-based approach implemented in SIS. However, searching over
all possible partitions of the variables is still impracticable for func-
tions with a large number of variables. Because of this, Lai also
restricts the partitions to those with a bound set of size or less. Since
this algorithm differs from standard Roth-Karp in implementation
only, the quality of the results are the same.

The source nodes in the induced subdag of Lai’s decomposition
method form a cut in the original dag. Lai showed how any given cut
in a BDD induces a certain decomposition of the function represented
by the BDD where the variables above the cut define the bound set,
and the variables below the cut define the free variables. In this case,
the decomposition need not be disjunctive. For a given cut it should
be possible, therefore, to either calculate or estimate the cost of imple-
menting this decomposition in an FPGA. This observation suggests
an alternative method for finding a good decomposition of a function
using BDDs. If we estimate the cost of all possible cuts in the BDD,
we could then choose the best cut consistent with a given variable
ordering. We propose such a method in Section IV, but first we dis-
cuss the problem of enumerating cuts in a dag.

III. ENUMERATING CUTS IN A GRAPH

In order to implement a decomposition method based on finding an
optimum cut in a BDD, we need to enumerate all of the cuts in a dag.
However, this is a potentially intractable problem. Consider the fam-
ily of dags represented in Figure 1. For this dag there are non-
empty subsets of the nodes. Each one of these subsets is a cut for the
graph. Therefore, it is impossible to enumerate all of the cuts unless
is very small. However, we are interested in the minimal cuts of a
graph,i.e., a cut which is not a subset of any other cut. In this exam-
ple, the number of minimal cuts is . While the number of minimal
cuts is often much smaller than the number of cuts, in the worst case
it may still be exponential with respect to the number of nodes in the

k

Xb

Xf x Xb∈ y Xf∈ π x() π y()<
π

k

Figure 1: A dag with an exponential number of cut sets.

0 1 2 n-1

2n 1–

n

n

graph. Because of this, we wish to avoid explicitly enumerating the
cuts or even the minimal cuts of a dag. We do this by implicitly enu-
merating the cuts using a characteristic function.

Given a dag, , the characteristic function that we wish
to build is of the form , a function from the power set
of onto the set . Furthermore, we require this function to
evaluate to 1 when its argument defines a cut set of the dag and to
0 when it does not. We can establish a bijection between the set
and the set as follows. Let . Then the element

 which corresponds to is
where if and if . The inverse operation
from an element in to is obvious. Therefore, we may
represent this characteristic function as a switching function,

. For a given dag , we denote this as .
There are several facts about which will be useful in the next

section. First, the function is positively unate in all of its variables.
Second, the prime implicants of this function are in one-to-one corre-
spondence to the minimal cut sets of the dag. Third, since the
characteristic function is unate, any unate sum-of-products expres-
sions for this function is guaranteed to contain all prime implicants.
Therefore, since prime implicants correspond to minimal cuts, any
unate sum-of-products representation is guaranteed to contain a rep-
resentation of all of the minimal cut sets.

We use the following propositions to derive a procedure for con-
structing the characteristic function of the cuts of a dag.
Proposition 1 :Let be a dag with one node and no
edges. Then the characteristic function of the cuts of is

.
Proposition 2 : Let be a dag with a single source node,
. Let the fanout of be and be the subdag

rooted at . Suppose that is the characteristic function
for the cut sets of . Then the characteristic function for the cut sets
of is where is the variable corresponding
to node .

These two propositions provide a recursive step and a terminating
step of a procedure for calculating our characteristic function. We
outline this procedure in Figure 2.

IV. FINDING DECOMPOSITIONS IN ABDD

As we mentioned in Section II, Laiet al. showed how every cut in
a BDD implies a decomposition of a function. Unfortunately, using
their method we cannot determine any of the functions in the decom-

G V E,()=
χ: 2V 0 1,{ }→

V 0 1,{ }
G

2V

0 1,{ } V U 2V∈
x 0 1,{ } V∈ U x x1 x2 … x V, , ,()=

xi 1= vi U∈ xi 0= vi U∉
0 1,{ } V 2V

ξ: 0 1,{ } V 0 1,{ }→ G ξG

procedure cutset (G) {
s = source of G;
if FO(s) is empty then

xi = x s;
else

xi = 1;
for each v in FO(s) do

H = subgraph rooted at v;
xi = xi * cutset (H);

rof;
xi = x s + xi;

fi;
return xi;

} end procedure cutset ;

Figure 2: Procedure for calculating the characteristic function
of the cuts of a dag.

ξG

G v1{ } ∅,{ }=
G

ξG x1() x1=
G V E,()=

s s FO s() v1 … vm, ,{ }= Gj

vj 1 j m≤ ≤, ξGj

Gj

G ξG x ξGjj 1=

m∏+= x
s

position until we know the entire cut. However, there is another way
to determine a decomposition using a cut in a BDD. Recall that Lai
places all of the variables above the cut in the bound set and all the
variables in the cut and below in the free set. When we perform a
decomposition, we make the opposite assignment of variables to the
bound and free sets. The nodes in the cut become the auxiliary func-
tions of the decomposition. We create by replacing the nodes in the
cut with nodes representing literal functions.

For example , cons ider the BDD fo r the func t ion
 (Figure 3). Edges to the constant

node are lightened to indicate that they are not considered when find-
ing a cut. Therefore, the set forms a cut. The functions
represented by the nodes and become the BDDs for functions

 and which are extracted from . We create by replacing the
nodes and by nodes representing the functions and ,
respectively. Now we have created the following decomposition:

,
,

.
Figure 3 also shows the BDDs corresponding to the functions in this
decomposition.

There is a problem with this decomposition, however. The original
function is unate in all of its variables. but the new function is
binate in . This is because we replaced the subfunctions with liter-
als ignoring the fact that . If we simplified with respect to
the satisfiability don’t care set implied by the functions in

, then this unateness property would be restored.
The advantage of making this assignment of variables to the bound

and free sets lies in the fact that the nodes in the cut become functions
in the decomposition. Unlike the other method, this allows us to
bound the cost of a partial solution,i.e. a partial cut, as soon as we add
a node to the cut. Therefore, we can give a branch-and-bound proce-
dure for finding an optimal decomposition of a BDD using the
characteristic function for the set of cuts. However, we first need to
define the objective function we wish to optimize.

Since we wish to implement the function using -variable LUTs,
we must decompose the function into a set of subfunctions such that

f '

f x1 x2 x3 x4x5+() x3x4x5+ +=

Figure 3: BDDs for function in text and its decomposition.

x1

x2

x3 x3

x4

x5

1

A

B

DC

E

F

x1

x2

g1 g2

A

B

HG

1

x3 x3

x4

x5

1

DC

E

F

f '
f

g1 g1

C D,{ }
C D

g1 g2 f f '
C D g1 g2

f ' x1 x2g1 x2g2+ +=
g1 x3 x4x5+=
g2 x3x4x5=

f f '
x2

g2 g1≤ f '

g1 … gm, ,{ }

k

each subfunction depends on at most variables. If a function
depends on more than variables, what is the minimum number of
lookup tables that is required to implement the function? While we
know of no way to easily answer this question exactly, we can place a
lower bound on the number of LUTs required. Assume that the func-
tion depends on variables. In order to implement this function,
we need at least LUTs. This is the number of
internal nodes in a -ary tree with leaves. If ,
then we reach this bound only if we are always able to perform simple
disjunctive decompositions of size . Since this is a hard lower
bound, we define the cost of a function to be

(1)

where is the set of variables in the support of
. We define the cost of a decomposition as

. By using the square of the minimum num-
ber of required LUTs, we favor decompositions which are closer to
meeting our stopping criteria.

We can now give our branch-and-bound procedure for searching
for the optimal cut of a BDD. Starting with a BDD for a function ,
we create the characteristic function, which we call , describing all
cuts in the BDD for . Every path from the root of the BDD of to
the node representing the constant 1 function represents an implicant
of . We call these paths1-paths. For a given 1-path, we create the
corresponding cut set using the following procedure:

1) Initially, the cut set is the empty set.
2) When traversing a positive edge from node to node in the

BDD for , we add node to the cut set where is a node
from the BDD for and is the decision variable of .

3) When traversing a negative edge, we add no nodes to the cut
set.

If we use this procedure while enumerating all 1-paths, we will obtain
all of the minimal cuts of the BDD for . At any point while travers-
ing the path, we can bound the cost of the current cut by computing
the cost of the nodes currently in the cut. If their cost exceeds the cost
of the best cut found, we abandon the search of this path and try
another. This process is presented in Figure 4.

k
k

n 1>
n 1–() k 1–()⁄
k n n mod k k 1–=

k

cost f()
sup f() 1–

k 1–

2

=

sup f() x fx fx≠{ }=
f f ' g1 … gm, , ,{ }

cost f '() cost gi()∑+

f
ξ f

f ξ f

ξ f

u w
ξ f vi vi

f xi u

f

procedure best_cut (, cur_soln, cur_score, k) {
if () then

cur_score = cur_score +
score (|vars above cut| +

|nodes in cut|, k);
if (cur_score < best_score) then

best_score = cur_score;
best_soln = cur_soln;

fi;
else if () then

x = top ();
best_cut (, cur_soln, cur_score);
cur_score = cur_score +

score (| support ()|, k);
if (cur_score < best_score) then

best_cut(, cur_soln ∪ { },
cur_score);

fi;
fi;

} end best_cut ;

Figure 4: Branch-and-bound procedure for enumerating cuts.

ξf
ξf 1=

ξf 0≠
ξf

ξf() x

vx

ξf() x vx

The procedurebest_cut is called with four parameters: the
characteristic function of the set of cuts, , the current partial solu-
tion, cur_soln , the score of the current partial solution,
cur_score and the maximum number of variables in an LUT,k .
Initially, we call this procedure with a current solution consisting of
the empty set and current score of zero. The proceduretop returns
the top variable of a BDD. Since every variable, , in corresponds
to a node in the BDD of , we denote this node and its corresponding
function as . The procedurescore (,) returns the square of the
minimum number of LUTs required to implement an variable func-
tion with variable LUTs as determined by Eq. (1). If the
characteristic function passed to the procedure represents the constant
1 function, then the current solution is a complete cut. The current
score at this point represents the minimum number of LUTs required
to implement the auxiliary functions represented by the nodes in the
cut. In order to compute the total cost of the cut, we need to add the
cost of the function which the cut induces. Since we add a new
variable for each auxiliary function, the number of variables in is
the number of variables which appear above the cut plus the number
of nodes in the cut. If the score of this cut is better than the best found
so far, then we save it as the best found so far.

If we reach the node of the constant 0 function, then the current
path does not represent an implicant of the characteristic function.
Otherwise, we are at a non-sink node of the BDD. In this case, we first
assume that the node associated with the top variable of the character-
istic function will not be added to the current partial solution and
make the appropriate call tobest_cut . Following that, we assume
that the node associated with the top variable is added to the current
partial solution. If adding this node to the cut does not cause the score
of the new partial solution to exceed the best found so far, then we call
best_cut again. This bounds the search process by terminating
paths which are guaranteed to result in cut sets representing decom-
positions worse than the best already found. In spite of this bounding
procedure, it is sometimes not feasible to run the branch-and-bound
procedure to completion. To combat the possible combinatorial
explosion, the user may limit the number of cuts that the algorithm
enumerates.

We use the method for finding an optimal cut in a BDD in an algo-
rithm for decomposing a function of variables into a set of
functions of variables. This is outlined in Figure 5. Given a function

 and a parameter , the proceduredecomp returns a set of func-

ξ f

x ξ f

f
vx n k

n
k

f '
f '

n
k

procedure decomp(f, k) {
if (| sup (f)| <= k) then return {fn};
f = optimize_bdd (f);

 = cutset (f);
cut = best_cut (, Ø, 0, k);
nu_fns = do_decomp (f, cut);
rtn = Ø;
for each g in nu_fns do

if (| support (g)| > k) then
rtn = rtn ∪ decomp(g,k);

else
rtn = rtn ∪ {g}

fi;
rof;
return rtn;

} end decomp;

Figure 5: Procedure for decomposing a function intok-variable LUTs.

ξ
ξ

f k

tions which implement such that each function in the set has a
support of or less. If the support of is less than or equal to , we
return itself. Otherwise, we minimize the BDD of by reordering
its variables. Next, we calculate the characteristic function of all cuts
of the minimized BDD. We find an optimal cut based on this charac-
teristic function and the objective function mentioned earlier. The
proceduredo_decomp returns the set of functions corresponding to
the decomposition implied by the optimum cut. If any of the functions
in the decomposition do not meet the decomposition criteria, then
they are decomposed further with a recursive call todecomp.

V. RESULTS

To test the efficacy of the algorithm described in Figure 5, we
decomposed functions in 27 MCNC benchmark circuits into sets of 5-
variable functions. First, we minimized the circuits using standard
scripts provided with SIS 1.2 [12]. We then decomposed the circuits
using both SIS and our program, Catamount.

We implemented the algorithm described in this paper as follows.
We limit the branch-and-bound procedure to examining at most 5000
cuts. Also, if a BDD for a function was excessively large, we do not
generate the characteristic function. Instead, we choose a default
decomposition with a single variable in the free set such that our
objective function is minimized. This default decomposition pro-
duces Shannon decompos i t ions o f the type

 where and .
Once we produce the decompositions, we then simplify all func-

tions in the network. Finally, we look for nodes in the decomposed
network which can be collapsed into all of its fanouts without violat-
ing the support constraint. Whenever we find such a node, we
immediately collapse it into its fanouts. (Since the order in which the
nodes are collapsed affects which other nodes may be subsequently
collapsed, this greedy procedure may not be optimum.) At the end of
this step, we have a decomposed network which may be implemented
by 5-variable LUTs.

To compare the results obtained by this algorithm to the normal
implementation of Roth-Karp decomposition, we also decomposed
the same functions into 5-variable functions using the SIS
xl_k_decomp command. This command implements classical
Roth-Karp decomposition. After SIS obtained its initial decomposi-
tion, we also performed simplification and collapsing of collapsible
nodes as above. We base this sequence on the recommended proce-
dure for FPGA synthesis outlined in the SIS Technical Report from
UC, Berkeley [12]. In neither case did we perform merging of nodes
into two output functions as some FPGA architectures allow.

Table I shows the results of this experiment. The number of nodes
originally in each circuit is given in the column titledOri. The column
titled Inf gives the number of infeasible nodes in each circuit. This is
the number of functions whose support exceeded five and required
decomposition. The column titledSIS gives the number of LUTs
required in the final decompositions found by SIS. The column titled
Cat gives the same number for the decompositions found by Cata-
mount. The column titledRatio gives the ratio of the number of LUTs
required by Catamount to the number required by SIS.

These results demonstrate that Catamount’s decomposition algo-
rithm is very effective compared to SIS’s implementation of Roth-
Karp. For all circuits, Catamount produced a superior decomposition.
Sometimes this difference is quite large. For six circuits, the Cata-
mount decomposition required half of the number of LUTs required

f
k f k

f f

f f ' g1 g2 x, ,() x g1⋅ x g2⋅+= = g1 fx= g2 fx=

by SIS. Overall, 46 percent fewer LUTs were required to implement
all benchmark circuits.

Although SIS and Catamount both perform Ashenhurst style
decomposition, the two methods choose their bound sets quite differ-
ently. In SIS, the Roth-Karp decomposit ion is l imited to
decompositions with a bound set of size . In Catamount’s
method, no limit is placed on the size of the bound set or the free set.
There is a restriction that the bound set and free set must be consistent
with a given variable ordering. However, we may use any decompo-
sition consistent with this ordering. We feel that the limitation of
using decompositions with bound and free sets consistent with a
given ordering is offset by the flexibility in choosing sets of any size.

Another difference in the two algorithms is the way they encode
the auxiliary functions, , when forming the function . In
the implementation of Roth-Karp in the latest version of SIS (Version
1.2), these functions are encoded serially. In our algorithm, the struc-
ture of the BDD above the cut implies the encoding. Murgaiet al.
have recently introduced an extension to the existing implementation
of Roth-Karp which also performs smarter encoding of the auxiliary

TABLE I
COMPARISON WITH ROTH-KARP DECOMPOSITION IN SIS.

1. Simplification was not performed due to excessive CPU time.
2.Thexl_k_decomp command did not complete within one CPU hour. The
xl_imp command was used instead. Besides Roth-Karp, this command uses
several other decomposition techniques.

Circuit Ori Inf SIS Cat Ratio

5xp1 19 6 81 26 0.32

9sym 11 2 35 31 0.89

9symml 16 3 94 49 0.52

C499 56 24 84 781 0.93

C5315 321 95 618 344 0.56

C880 79 13 241 112 0.46

alu2 46 9 187 117 0.63

alu4 122 20 2112 182 0.86

apex2 52 8 184 109 0.59

apex6 147 28 265 182 0.69

apex7 61 8 63 57 0.90

b9 29 7 61 37 0.61

bw 34 12 62 39 0.63

clip 15 5 90 32 0.36

count 31 15 32 31 0.97

DES 562 185 2435 10721 0.44

duke2 77 18 228 134 0.59

e64 76 19 95 84 0.88

f51m 15 3 43 13 0.30

misex1 10 4 17 13 0.76

misex2 26 6 35 30 0.86

rd73 16 2 28 17 0.61

rd84 18 2 39 24 0.62

rot 161 22 291 176 0.60

sao2 13 4 123 39 0.32

vg2 10 7 29 26 0.90

z4ml 8 2 10 6 0.60

Total 2031 529 5681 3060 0.54

k 5=

g1 …gm,{ } f '

functions [10]. By doing this, they were able to reduce the LUT count
by 21 percent over the naive serial encoding (cf. the 46 percent
improvement reported here).

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have presented two ideas. First, we show how it is
possible to implicitly enumerate all of the cuts of a dag. We do this by
constructing a characteristic function for the set of cuts. Because this
function is unate, it is also possible to easily enumerate all minimal
cuts. Second, we showed how a cut in a BDD implies a decomposi-
tion of the function represented by the BDD. Since a BDD is a dag,
we use the previous algorithm to generate the characteristic function
of the set of cuts in the BDD. We then use a branch-and-bound proce-
dure in order to find the cut which produce the best decomposition
given a certain objective function. This procedure is able to signifi-
cantly outperform SIS when decomposing functions from MCNC
benchmark circuits.

We feel that we can apply these algorithms to other problems.
First, the task of analyzing dags is one which occurs often in other
CAD problems. The cut enumeration algorithm can be useful in other
applications where we need to enumerate cuts in a graph. Second, the
optimization criteria that we use for our decompositions are designed
to produce good decompositions for implementing a function using
LUTs. It should be easy to produce different decompositions which
are optimized for other purposes by changing the objective function
and stopping criteria in the procedure in Figure 5. One possible appli-
cation would be decomposition for delay optimization. At each step
in the decomposition we would choose the cut which minimized the
expected number of levels in the circuit.

REFERENCES

[1] R.L. Ashenhurst, “The decomposition of switching functions,”Ann.
Comp. Lab., Harvard Univ., vol. 29, 1959, pp. 74-116.

[2] K.S. Brace, R.L. Rudell and R.E. Bryant, “Efficient implementation of a
BDD package,”Proc. 27th ACM/IEEE DAC, June 1990, pp. 40-5.

[3] R.K. Brayton, G.D. Hachtel and A.L. Sangiovanni-Vincentelli, “Multi-
level logic synthesis,”Proc. IEEE, vol. 78, no. 2, Feb. 1990, pp. 265-300.

[4] R.E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Computers., vol. 35, no. 8, August 1986, pp. 677-91.

[5] J. Cong and Y. Ding, “Beyond the combinatorial limit in depth minimiza-
tion for LUT-based FPGA designs,”Proc. 1993 IEEE Intl. Conf. on CAD,
November 1993, pp. 110-4.

[6] H.A. Curtis,A New Approach to the Design of Switching Circuits, D. Van
Nostrand Co., Princeton, NJ, 1962.

[7] Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill, New
York, 1970.

[8] Y.-T. Lai, M. Pedram and S.B.K. Vrudhula, “BDD based decomposition
of logic functions with applications to FPGA synthesis,”Proc. 30th ACM/
IEEE DAC, June 1993, pp. 642-7.

[9] R. Murgai, Y. Nishizaki, N. Shenoy, R.K. Brayton and A. Sangiovanni-
Vincentelli, “Logic synthesis for programmable gate arrays,”Proc. 27th

ACM/IEEE DAC, June 1990, pp. 620-5.
[10]R. Murgai, R.K. Brayton and A. Sangiovanni-Vincentelli, “Optimal func-

tional decomposition using encoding,”Proc. 31st ACM/IEEE DAC, June
1994, pp. 408-13.

[11] J.P. Roth and R.M. Karp, “Minimization over Boolean graphs,”IBM J.
Res. Dev., April 1962, pp. 227-38.

[12]E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P.R. Stephan and R.K. Brayton,SIS: A system for
sequential circuit synthesis, Technical report UCB/ERL M92/41, Univer-
sity of California, Berkeley, May 1992.

	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

