
CAD Methodology for the Design of UltraSPARCTM -I
Microprocessor at Sun Microsystems Inc.

A. Cao, A. Adalal, J. Bauman, P. Delisle, P. Dedood, P. Donehue, M. Dell’OcaKhouja, T. Doan, M. Doreswamy,

P. Ferolito, O. Geva, D. Greenhill, S. Gopaladhine, J. Irwin, L. Lev, J. MacDonald, M. Ma, S. Mitra,

P. Patel, A. Prabhu, R. Puranik, S. Rozanski, N. Ross, P. Saggurti, S. Simovich, R. Sunder,

B. Sur, W. Vercruysse, M. Wong, P. Yip, R. Yu, J. Zhou, G.Zyner.

SPARC Technology, Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, CA 94043

Abstract - The overall CAD methodology for the design of
UltraSPARC-I microprocessor at Sun is described in this paper.
Topics discussed include: CAD flow strategy, tool development
and integration strategy, and design infrastructure. The impor-
tance of concurrent design style, modular CAD flow environ-
ment, incremental design verification and early design quality
checking is strongly emphasized in this paper.

I. INTRODUCTION

The aggressive schedules of today’s high-performance
microprocessors dictate the need for a very high degree of
automation during the design. This need applies to all of the
design phases starting from high-level architectural design
and performance evaluation, all the way down to physical
design and verification.

Consequently, a wide variety of CAD tools are to be used
by a large number of designers working on an unified design
database. In order to support this effort, a reliable software
environment and efficient CAD methodologies and tools are
needed. A data management system is also required to handle
large amount of data generated during the design process. In
this paper, we focus our attention on the following CAD
methodology issues:

1) general CAD strategy for the automation of different
design tasks

2) tool development and integration

3) efficiency and reliability of the software environment

4) design information management

5) compute resource management

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or  distributed  for direct  commercial advantage,
the ACM copyright notice and  the title of the publication and its date appear,
and  notice  is  given that  copying  is  by  permission  of  the  Association for
Computing  Machinery.   To copy otherwise,  or  to  republish,  requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

TABLE 1. UltraSPARC-I specifications

In section 2 UltraSPARC-I’s design methodology is
described. We present the concept of the CAD flow in section
3. An example of a CAD flow is presented in section 4. Tool
integration issues are discussed in section 5. Section 6 pre-
sents CAD flow used for custom design needs. Section 7
describes the CAD tool development approach established.
Section 8 analyzes design information management require-
ments. Network based software environment is discussed in
Section 9. Section 10 concludes the paper.

II. ULTRASPARC-I’S DESIGNMETHODOLOGY

Figure 1. UltraSPARC-I’s design process

Achieving the UltraSPARC-I’s design specifications (refer
to Table 1) in a limited time was a challenging task. The
design started with architectural modeling, critical path analy-
sis and SPECmark performance evaluation.

Architecture SPARC V9 RISC
Device count 4.6 million

Die size 17.7 x 17.8
Clock freq 167 MHz

Power 30 watts
Technology CMOS 4 metal layers

Power Supply 3.3 V



Once the architectural specification of the design was stabi-
lized, the design was partitioned into structural units based on
timing, functional and area constraints. For the purposes of
logic synthesis, simulation, and verification, each of the struc-
tural units were coded in the Verilog hardware description lan-
guage (HDL). We refer to HDL representation of a unit as
functional RTL (register-transfer-level) description. The gate-
level description of a unit was synthesized from its RTL
description both automatically and manually depending on
performance requirements. Within a unit, control and datapath
logic were designed separately.

Custom blocks, i.e. megacells and memory cells in Figure
1, were designed in parallel with the RTL design. The initial
physical design iterations were performed using layout
bounding boxes generated from schematics. Each of the above
steps involved extensive verification. After the assembly, unit
layouts were extracted and timing analysis was performed for
each of the units.

Concurrently with unit and block design activities, standard
cell and datapath libraries were implemented using special
programs for automatic generation of schematic and layout.
Input to a generator program is a text file describing desired
cell parameters (e.g., number of inputs, output strength etc.).
These generators allowed our cell libraries to be highly toler-
ant of the evolving CMOS technology design rules. Addition-
ally, the entire library was characterized and verified
automatically.

After each individual unit was designed and verified, chip-
level assembly was performed followed by layout extraction
and full-chip timing analysis. Paths which violated timing
requirements were carefully examined, troubleshooting
options were considered and the redesign was performed. The
entire design went through numerous iterations of the above
steps until the target performance criteria were met.

To increase efficiency and reduce design time, a need arose
to automate execution of different design steps associated
with the same tasks. For example, parasitic extraction of a
unit’s layout may involve preprocessing different layouts for
extraction (e.g. collecting all the necessary pieces of the unit’s
layout), running the extractor program, post-processing
extracted netlist (e.g., for timing analysis), and verification of
extracted netlist’s connectivity. Often, not all of the steps
associated with one task can be handled by a single CAD tool.
Furthermore, different tools needed in different steps are often
not available from the same tool developer (EDA vendor or
in-house source).

In general, the problem we faced was providing a general
CAD model capable of handling automation of an arbitrary
design task, using an arbitrary combination of appropriate
CAD tools.

III. CAD FLOW CONCEPT

CAD flow is a concept which allows a series of steps asso-
ciated with a single task to be performed in an automated
fashion. The basic premises of the CAD flow are the follow-
ing:

1) A set of independent CAD tools may be used. Because
they are independent, we assume that different tools do not
necessarily have to conform to the same software stan-
dards (e.g. operate on the same type databases). Interac-
tion between different tools is provided through the flow.

2) Incremental redesign is provided. If a change is made in
the design, only these redesign steps which are affected by
the change should be performed, not the entire design task.

3) Standard design procedures are provided through the
flow, thus making the overall design process more consis-
tent, i.e. different units are designed in the same fashion.

Similar to standardizing design procedures through a CAD
flow, CAD flows were standardized themselves. Strict rules
for the flow design, implementation, regression test and
release were established and enforced. In this fashion, effi-
ciency, modularity and reusability of software were maxi-
mized.

IV. A N EXAMPLE OF A CAD FLOW

Figure 2. Control block design flow overview

We implemented all of the UltraSPARC-I’s CAD flows
using the Unix utility make. This appeared to suit the above
requirements to enable incremental redesign, futhermore, they
were designed to facilitate a wide variety of customization of
the flow for specific block constraints. Tools that were used in



the flows came from different EDA vendors (Mentor Graph-
ics, Synopsys, Cadence, Parsec Software, Meta-software,
Sunrise, Chronologic, Design Acceleration, etc.) as well as
from in-house developers. Further in the text, we describe one
of the CAD flows in detail.

The Control Block (CB) layout flow provides a robust link
between logic synthesis and cell place and route (P&R) by uti-
lizing both EDA vendor and in-house tools (refer to Figure 2).

Starting from the RTL description of a control block, the
CB flow iterates through several steps of placement and syn-
thesis before converging to the cell final placement. The
designer can interrupt the flow at any stage, hand edit interme-
diate results (e.g. synthesis results) and then continue auto-
matic execution.

Besides invoking different vendor tools and providing
interfaces between them, the CB flow performs a series of
tasks specific to UltraSPARC-I design methodology which the
vendor tools were unable to perform. For example, UltraS-
PARC-I specific requirements for clock tree design impose the
need for a specific clock buffer placement. In this regard, the
flow augmented the vendor tool capabilities to meet our
design methodology requirements. Other UltraSPARC-I -spe-
cific tasks handled by the CB flow include power network
design and buffer sizing.

V. CAD TOOLSINTEGRATION STRATEGY

As mentioned before, one of the main CAD flow tasks is
handling the diversity of tools used across the design process.
Different vendors use different netlist and data formats. Pro-
viding a smooth and continuous flow between formats and
tools is a major challenge.

Whenever possible, we used industry standards (e.g. HDL
and SDF) to pass data from one tool to another. Many EDA
vendors also provide built-in Application Programing Inter-
face (API) that accelerates the development of translators.
However, becoming overly dependent on EDA vendor lan-
guages, formats or methodologies can make switching to new
tools expensive.

At the beginning of the project we concluded that it was
critical to address the data transformation problem by creating
internal datamodels (a collection of data structures) and by
creating a corresponding set of data readers and writers. The
datamodels handle various design data (e.g netlist connectiv-
ity, behavioral descriptions and parasitic information) and the
corresponding API allows easy manipulation and retrieval of
data.

In cases where we were not able to develop our own solu-
tions, we worked closely with the vendors to have them
implement enhancements to the current version of the tools
integrated in our CAD flow.

The UltraSPARC-I CAD design architecture changed
quickly as design methodologies evolved to meet design con-
straints. While the cost of planning, developing and debug-
ging the data models and the corresponding APIs was high,
the datamodels enabled us to switch to new point tools and
make major methodology changes with a limited amount of
effort. We expect to highly leverage the datamodel software
for future projects.

VI. CAD FLOW FORCUSTOM DESIGN

In addition to our highly automated CAD flows, we imple-
mented a set of CAD point tools to enable the designers to
achieve the performance goals, including:

• ERC (electrical rule check) for early detection of illegal
circuit structures or questionable design practices.

• Parasitic estimator embedded into schematic netlister for
critical path simulation to enable early timing optimiza-
tion.

• Automatic power grid generation for 4th layer metal for
faster iteration during top level assembly

• Clock net extraction to perform skew analysis in order to
reduce clock design iteration.

• Custom tilers to perform automatic SRAM block assembly
with faster turnaround.

These tools represented an addition to the traditional circuit
design environment of schematic entry, simulation and physi-
cal layout design.

VII. CAD D EVELOPMENTMODEL

The initial effort of the CAD group was to establish key
engineering processes, such as internal software development,
vendor interaction and design group communication.

First, the software development process was defined by ini-
tial design methodology specifications, the feasibility and
trade-off analysis from the CAD standpoint, the complete
development plan and the final release schedule. In order to
increase developer productivity, this software development
process was supported by generic software libraries (e.g
netlist parsers, datamodels), code management tool, code style
guidelines, and software quality metric.

Second, the vendor interaction model was defined by
reviewing our design methodology with their R&D group,
analyzing potential enhancements, and communicating for
tool usage issues and bug tracking.

Third, the design group communication was channeled
through several primary CAD flow owners responsible for
developing and supporting the entire solution (e.g. timing,
floorplan, library, RTL, CBF, datapath, megacell, etc.).



VIII. D ESIGNINFORMATION MANAGEMENT

Considering the large size of the UltraSPARC-I design
team, the massive amount of information produced and the
high rate of design changes, our solution to this information
management challenge was to develop a Central Data Man-
agement System (CDMS).

CDMS is defined as a data management system that pro-
vides access to design files via an easy to use “check-in/
checkout” mechanism. In addition, CDMS provides a power-
ful and flexible release mechanism, permitting the controlled
interchange of data among designers and design groups, as
well as facilitating the formal product release and tapeout pro-
cess. Each CDMS user has available a local copy of the files
needed from the central database for design activities. All the
CAD flows have been tightly interfaced to CDMS in order
make this data management system as transparent as possible.

Finally, another requirement for effective design informa-
tion management is to track design changes and bugs during
any iteration of the design process. This is implemented by
application software from Scopus Technology.

IX. NETWORK INTEGRATEDCOMPUTING

ENVIRONMENT FORULTRASPARC-I

The computing requirements associated with the design of
UltraSPARC-I called for a computing environment that would
support high productivity in a cost-effective manner. This led
to the design of the Network Integrated Computing Environ-
ment (NICE), where a large network of computing resources
(600 computers/1000 processors, 2 terabytes of disk space)
was unified to give network administrators, engineers, and
managers the amount of control required to get the most out of
the hardware at hand.

At the first layer of NICE, the architecture of the network is
defined to support high performance, high availability, easy
administration, and transparency of operation.

The second layer is focused on fault (failure detection and
resolution) and performance (usage statistic/reports) manage-
ment to ensure timely response to problems and provide all
data necessary for proper capacity management and planning.

At the third layer, overall performance of the computing
environment is improved through transparent and intelligent
sharing of the network resources. DReAM, the Distributed
Resources Allocation Manager, has been developed internally
to provide these sharing services. DReAM is unique in the
sense that it is programmable, adapting to the set of rules and
policies that the organization desires to enforce for the sharing
of network resources.

Finally, at the top layer, applications take advantage of the
services provided by the other layers to truly harness the
power of the network.

X. CONCLUSION

In this paper, we presented the CAD methodologies devel-
oped for UltraSPARC-I design. We emphasized the impor-
tance of automation and need for an efficient CAD software
environment. Our CAD flow allows flexible and efficient
automation for a specific design task. In addition, we describe
how we achieved maximum usage of our compute resources
to meet UltraSPARC-I productivity and design data manage-
ment requirements. Finally, this methodology has proven
itself by delivering first silicon that meet UltraSPARC-I func-
tional and timing goals.

Figure 3. UltraSPARC-I microprocessor

REFERENCES

[1]  Larry Yang “System Design Methodology of UltraS-
PARC-I”, 1994 (submitted for publication)

[2]  Marc Tremblay “A fast and flexible performance simula-
tor for Microarchitecture trade-off analysis on UltraS-
PARC-I “, 1994 (submitted for publication)

[3]  Palnitkar, Saggurti “Finite State Machine Coverage pro-
gram” Open Verilog International Conf. 1994

[4]  J. Gateley “UltraSPARC-I Emulation”, 1994 (submitted
for publication)

[5]  Slobodan Simovich, et al, “Timing verification Methodol-
ogy for the Design of UltraSPARC-I Microprocessor at
SUN”, 1994 (submitted for publication)


	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index


